1
|
Ikenaga J, Aratake S, Yoshida K, Yoshida M. A novel role for ATP2B in ascidians: Ascidian-specific mutations in ATP2B contribute to sperm chemotaxis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:430-437. [PMID: 35468255 DOI: 10.1002/jez.b.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sperm chemotaxis, in which sperms are attracted to conspecific eggs via species-specific attractants, plays an important role in fertilization. This phenomenon has been observed in various animals and species-specific sperm attractants have been reported in some species. However, the mechanisms involved in the reception and recognition of the species-specific attractant by the sperms is poorly studied. Previously, we found that the plasma membrane-type Ca2+ /ATPase (PMCA) is the receptor for the sperm-activating and -attracting factor (SAAF) in the ascidian Ciona intestinalis. To determine the role of PMCA in species-specific sperm chemotaxis, we identified the amino acid sequences of PMCAs derived from six Phlebobranchia species. The testis-specific splice variant of PMCA was found to be present in all the species investigated and the ascidian-specific sequence was detected near the 3'-terminus. Moreover, dN/dS analysis revealed that the extracellular loops 1, 2, and 4 in ascidian PMCA underwent a positive selection. These findings suggest that PMCA recognizes the species-specific structure of SAAF at the extracellular loops 1, 2, and 4, and its testis-specific C-terminal region is involved in the activation and chemotaxis of ascidian sperms.
Collapse
Affiliation(s)
- Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Satoe Aratake
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, 225-8503, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
2
|
Tiwary E, Hu M, Prasain JK. Sperm-Guiding Unconventional Prostaglandins in C. elegans: Synthesis and Signaling. Metabolites 2021; 11:metabo11120853. [PMID: 34940611 PMCID: PMC8705762 DOI: 10.3390/metabo11120853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins comprise a family of lipid signaling molecules derived from polyunsaturated fatty acids and are involved in a wide array of biological processes, including fertilization. Prostaglandin-endoperoxide synthase (a.k.a. cyclooxygenase or Cox) initiates prostaglandin synthesis from 20-carbon polyunsaturated fatty acids, such as arachidonic acid. Oocytes of Caenorhabditis elegans (C. elegans) have been shown to secrete sperm-guidance cues prostaglandins, independent of Cox enzymes. Both prostaglandin synthesis and signal transduction in C. elegans are environmentally modulated pathways that regulate sperm guidance to the fertilization site. Environmental factors such as food triggers insulin and TGF-β secretion and their levels regulate tissue-specific prostaglandin synthesis in C. elegans. This novel PG pathway is abundant in mouse and human ovarian follicular fluid, where their functions, mechanism of synthesis and pathways remain to be established. Given the importance of prostaglandins in reproductive processes, a better understanding of how diets and other environmental factors influence their synthesis and function may lead to new strategies towards improving fertility in mammals.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Medicines, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Muhan Hu
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-996-2612
| |
Collapse
|
3
|
Kholodnyy V, Dzyuba B, Gadêlha H, Cosson J, Boryshpolets S. Egg-sperm interaction in sturgeon: role of ovarian fluid. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:653-669. [PMID: 32803545 DOI: 10.1007/s10695-020-00852-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Fertilization of freshwater fish occurs in the environment which negatively affects a lifespan of gametes mostly due to the osmotic shock; therefore, male gametes should reach the female gamete, as soon as possible. The existence of mechanisms controlling the encounter of gametes would be highly expedient in this case. By analogy with other species for which guidance was demonstrated, it is likely that this control may be performed by ovarian fluid or substances released by eggs. The aim was to study the effect of ovarian fluid and egg-released substances on spermatozoa behavior in sterlet. It was found that the presence of a particular concentration of ovarian fluid (30% solution in water) had an inhibiting effect on spermatozoa motility initiation. Lower concentrations of the ovarian fluid improved the longevity of spermatozoa and did not affect their trajectories. Test of chemotactic response (using a microcapillary injection of fluids into the suspension of motile spermatozoa) showed no effect of ovarian fluid on spermatozoa behavior, while at the same time, the attracting effect of the egg-conditioned medium was evident (i.e., due to some substances released from the eggs during their contact with freshwater). The results of the fertilization test showed that the presence of ovarian fluid prevented the eggs from losing the fertilizing ability due to the contact with water, as well as promoted the spermatozoa to fertilize the eggs during a longer period of time. Thus, the combined physicochemical action of "female factors" affects sterlet gametes during fertilization and may be involved in the guidance and selection mechanisms.
Collapse
Affiliation(s)
- Vitaliy Kholodnyy
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Borys Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Hermes Gadêlha
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Jacky Cosson
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
4
|
Dittman AH, Quinn TP. Amino acid cues emanating from Pacific salmon eggs and ovarian fluid. JOURNAL OF FISH BIOLOGY 2020; 97:1408-1414. [PMID: 32829515 DOI: 10.1111/jfb.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The eggs of salmonid fishes are an important food source for many aquatic predators that detect eggs using olfaction. Moreover, chemicals from eggs and ovarian fluid aid sperm cells in detecting and locating eggs for fertilization, and ovarian fluid is attractive to conspecific males. Thus chemicals from eggs and ovarian fluid may facilitate reproduction but may also attract egg predators. The authors sampled mature females of three Pacific salmon species - Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch) and sockeye (Oncorhynchus nerka) - and determined the proportional representation of amino acids, potent fish odorants, from their eggs and ovarian fluid (Chinook and coho salmon only). They then tested juvenile coho salmon, an egg predator, for responses to ovarian fluid and egg odours using the electro-olfactogram (EOG) recording technique. The amino acid compositions of the salmon species were significantly and positively correlated with each other, and the interspecific differences were comparable to those between individuals of the same species. The egg water samples were, on average, dominated by lysine, alanine and glutamine (12.6%, 12.4% and 10.9%, respectively). The ovarian fluid samples were dominated by lysine (20.5%), followed by threonine (9.7%), glycine (9.2%) and arginine (8.8%). EOG recordings demonstrated the ability of juvenile coho salmon to detect the chemical traces of eggs and ovarian fluid. It is concluded that salmon eggs are a potent source of odours for potential predators but likely not highly differentiated among salmon species.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Carlisle JA, Swanson WJ. Molecular mechanisms and evolution of fertilization proteins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:652-665. [PMID: 33015976 DOI: 10.1002/jez.b.23004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Sexual reproduction involves a cascade of molecular interactions between the sperm and the egg culminating in cell-cell fusion. Vital steps mediating fertilization include chemoattraction of the sperm to the egg, induction of the sperm acrosome reaction, dissolution of the egg coat, and sperm-egg plasma membrane binding and fusion. Despite decades of research, only a handful of interacting gamete recognition proteins (GRPs) have been identified across taxa mediating each of these steps, most notably in abalone, sea urchins, and mammals. This review outlines and compares notable GRP pairs mediating sperm-egg recognition in these three significant model systems and discusses the molecular basis of species-specific fertilization driven by GRP function. In addition, we explore the evolutionary theory behind the rapid diversification of GRPs between species. In particular, we focus on how the coevolution between interacting sperm and egg proteins may contribute to the formation of boundaries to hybridization. Finally, we discuss how pairing structural information with evolutionary insights can improve our understanding of mechanisms of fertilization and their origins.
Collapse
Affiliation(s)
- Jolie A Carlisle
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| |
Collapse
|
6
|
Lymbery RA, Kennington WJ, Cornwall CE, Evans JP. Ocean acidification during prefertilization chemical communication affects sperm success. Ecol Evol 2019; 9:12302-12310. [PMID: 31832161 PMCID: PMC6854328 DOI: 10.1002/ece3.5720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/19/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Ocean acidification (OA) poses a major threat to marine organisms, particularly during reproduction when externally shed gametes are vulnerable to changes in seawater pH. Accordingly, several studies on OA have focused on how changes in seawater pH influence sperm behavior and/or rates of in vitro fertilization. By contrast, few studies have examined how pH influences prefertilization gamete interactions, which are crucial during natural spawning events in most externally fertilizing taxa. One mechanism of gamete interaction that forms an important component of fertilization in most taxa is communication between sperm and egg-derived chemicals. These chemical signals, along with the physiological responses in sperm they elicit, are likely to be highly sensitive to changes in seawater chemistry. In this study, we experimentally tested this possibility using the blue mussel, Mytilus galloprovincialis, a species in which females have been shown to use egg-derived chemicals to promote the success of sperm from genetically compatible males. We conducted trials in which sperm were allowed to swim in gradients of egg-derived chemicals under different seawater CO2 (and therefore pH) treatments. We found that sperm had elevated fertilization rates after swimming in the presence of egg-derived chemicals in low pH (pH 7.6) compared with ambient (pH 8.0) seawater. This observed effect could have important implications for the reproductive fitness of external fertilizers, where gamete compatibility plays a critical role in modulating reproduction in many species. For example, elevated sperm fertilization rates might disrupt the eggs' capacity to avoid fertilizations by genetically incompatible sperm. Our findings highlight the need to understand how OA affects the multiple stages of sperm-egg interactions and to develop approaches that disentangle the implications of OA for female, male, and population fitness.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - W. Jason Kennington
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Jonathan P. Evans
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
7
|
Abstract
In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idán Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
8
|
Ghiselli F, Breton S, Milani L. Mitochondrial activity in gametes and uniparental inheritance: a comment on 'What can we infer about the origin of sex in early eukaryotes?'. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0147. [PMID: 29335380 DOI: 10.1098/rstb.2017.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 01/27/2023] Open
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Via Semi 3, 40126 Bologna, Italy
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, 90 avenue Vincent d'Indy, Montréal, Québec, Canada H2V 2S9
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Via Semi 3, 40126 Bologna, Italy
| |
Collapse
|
9
|
Foo SA, Deaker D, Byrne M. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm. J Exp Biol 2018; 221:jeb.177188. [DOI: 10.1242/jeb.177188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023]
Abstract
The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma, with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata. In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma. We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs.
Collapse
Affiliation(s)
- Shawna A. Foo
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Dione Deaker
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hussain YH, Sadilek M, Salad S, Zimmer RK, Riffell JA. Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Dev Biol 2017; 422:186-197. [PMID: 28088316 DOI: 10.1016/j.ydbio.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
Sperm selection by females is an important process influencing fertilization and, particularly in broadcast-spawning organisms, often occurs before sperm reach the egg. Waterborne sperm chemoattractants are one mechanism by which eggs selectively influence conspecific sperm behavior, but it remains an open question whether the eggs from different females produce different amounts of sperm chemoattractant, and how that might influence sperm behavior. Here, we quantify the differences in attractant production between females of the sea urchin species Lytechinus pictus and use computational models and microfluidic sperm chemotaxis assays to determine how differences in chemoattractant production between females affects their ability to attract sperm. Our study demonstrates that there is significant individual female variation in egg chemoattractant production, and that this variation changes the scope and strength of sperm attraction. These results provide evidence for the importance of individual female variability in differential sperm attraction and fertilization success.
Collapse
Affiliation(s)
- Yasmeen H Hussain
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Martin Sadilek
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA
| | - Shukri Salad
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Richard K Zimmer
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, CA 90095, USA
| | - Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Osthold S, Veitinger S, Becker C, Brockmeyer NH, Muschol M, Wennemuth G, Altmüller J, Hatt H, Gisselmann G. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front Mol Biosci 2016; 2:73. [PMID: 26779489 PMCID: PMC4703994 DOI: 10.3389/fmolb.2015.00073] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca(2+) signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Felix Vogel
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Adrian Hofreuter
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | | | - Sandra Osthold
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Sophie Veitinger
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | | | - Norbert H. Brockmeyer
- Department of Dermatology and Venereology, Center for Sexual Health and Medicine, Ruhr University BochumBochum, Germany
- Competence Network for HIV/AIDS, Ruhr University BochumBochum, Germany
| | - Michael Muschol
- Institute of Anatomy, University Hospital EssenEssen, Germany
| | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| |
Collapse
|
12
|
Incorporating movement and reproductive asynchrony into a simulation model of fertilization success for a marine broadcast spawner. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Derby CD. Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 2014; 12:2700-30. [PMID: 24824020 PMCID: PMC4052311 DOI: 10.3390/md12052700] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
One of the most distinctive and defining features of coleoid cephalopods—squid, cuttlefish and octopus—is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these—melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute and Department of Biology, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
14
|
Ho MA, Price C, King CK, Virtue P, Byrne M. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations. MARINE ENVIRONMENTAL RESEARCH 2013; 90:136-141. [PMID: 23948149 DOI: 10.1016/j.marenvres.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
The gametes of marine invertebrates are being spawned into an ocean that is simultaneously warming and decreasing in pH. Predicting the potential for interactive effects of these stressors on fertilization is difficult, especially for stenothermal polar invertebrates adapted to fertilization in cold, viscous water and, when decreased sperm availability may be an additional stressor. The impact of increased temperature (2-4 °C above ambient) and decreased pH (0.2-0.4 pH units below ambient) on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations was investigated in cross-factorial experiments in context with near future ocean change projections. The high temperature treatment (+4 °C) was also used to assess thermal tolerance. Gametes from multiple males and females in replicate experiments were used to reflect the multiple spawner scenario in nature. For fertilization at low sperm density we tested three hypotheses, 1) increased temperature enhances fertilization success, 2) low pH reduces fertilization and, 3) due to the cold stenothermal physiology of S. neumayeri, temperature would be the more significant stressor. Temperature and sperm levels had a significant effect on fertilization, but decreased pH did not affect fertilization. Warming enhanced fertilization at the lowest sperm concentration tested likely through stimulation of sperm motility and reduced water viscosity. Our results indicate that fertilization in S. neumayeri, even at low sperm levels potentially found in nature, is resilient to near-future ocean warming and acidification.
Collapse
Affiliation(s)
- M A Ho
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
15
|
Crimaldi JP, Zimmer RK. The physics of broadcast spawning in benthic invertebrates. ANNUAL REVIEW OF MARINE SCIENCE 2013; 6:141-165. [PMID: 23957600 DOI: 10.1146/annurev-marine-010213-135119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most benthic invertebrates broadcast their gametes into the sea, whereupon successful fertilization relies on the complex interaction between the physics of the surrounding fluid flow and the biological properties and behavior of eggs and sperm. We present a holistic overview of the impact of instantaneous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Although mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before dilution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance contact rates between sperm and chemoattractant-releasing eggs. We argue that sperm motility is a biological adaptation that replaces molecular diffusion in conventional mixing processes and enables gametes to bridge the gap that remains after aggregation by the flow.
Collapse
Affiliation(s)
- John P Crimaldi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428;
| | | |
Collapse
|
16
|
Yoshida M, Hiradate Y, Sensui N, Cosson J, Morisawa M. Species-specificity of sperm motility activation and chemotaxis: a study on ascidian species. THE BIOLOGICAL BULLETIN 2013; 224:156-165. [PMID: 23995740 DOI: 10.1086/bblv224n3p156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Egg-derived sperm-activating factors and attractants activate sperm motility and attract the sperm, respectively. These phenomena constitute the first communication signaling between males and females in the process of fertilization in many animals and plants, and in many cases, these are species-specific events. Thus, sperm motility activation and chemotaxis may act as a safety process for the authentication between conspecific egg and sperm, and help to prevent crossbreeding. Here, we examine species-specificity of sperm motility activation and chemotaxis in the ascidians belonging to the order Phlebobranchiata: Ciona intestinalis, Ciona savignyi, Phallusia mammillata, Phallusia nigra, and Ascidia sydneiensis. Cross-reactivity in both motility activation and chemotaxis of sperm was not observed between C. savignyi and P. mammillata, or between A. sydneiensis and Phallusia spp. However, there is a "one way" (no reciprocity) cross-reaction between P. mammillata and P. nigra in sperm activation, and between C. savignyi and A. sydneiensis in sperm chemotaxis. Furthermore, the level of activity is different, even when cross-reaction is observed. Thus, sperm motility activation and chemotaxis are neither "species-" nor "genus-" specific phenomena among the ascidian species. Moreover, the interaction between the sperm-activating and sperm-attracting factors (SAAFs) in the ascidian species and the SAAF receptors on the sperm cells are not all-or-none responses.
Collapse
Affiliation(s)
- Manabu Yoshida
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
17
|
Evans JP, Sherman CDH. Sexual selection and the evolution of egg-sperm interactions in broadcast-spawning invertebrates. THE BIOLOGICAL BULLETIN 2013; 224:166-183. [PMID: 23995741 DOI: 10.1086/bblv224n3p166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many marine invertebrate taxa are broadcast spawners, where multiple individuals release their gametes into the water for external fertilization, often in the presence of gametes from heterospecifics. Consequently, sperm encounter the considerable challenges of locating and fertilizing eggs from conspecific females. To overcome these challenges, many taxa exhibit species-specific attraction of sperm toward eggs through chemical signals released from eggs (sperm chemotaxis) and species-specific gamete recognition proteins (GRPs) that mediate compatibility of gametes at fertilization. In this prospective review, we highlight these selective forces, but also emphasize the role that sexual selection, manifested through sperm competition, cryptic female choice, and evolutionary conflicts of interest between the sexes (sexual conflict), can also play in mediating the action of egg chemoattractants and GRPs, and thus individual reproductive fitness. Furthermore, we explore patterns of selection at the level of gametes (sperm phenotype, gamete plasticity, and egg traits) to identify putative traits targeted by sexual selection in these species. We conclude by emphasizing the excellent, but relatively untapped, potential of broadcast-spawning marine invertebrates as model systems to illuminate several areas of research in post-mating sexual selection.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
18
|
De Lisa E, Salzano AM, Moccia F, Scaloni A, Di Cosmo A. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris. J Exp Biol 2013; 216:2229-37. [DOI: 10.1242/jeb.081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Marine invertebrates exhibit both chemokinesis and chemotaxis phenomena, induced in most cases by the release of water-borne peptides or pheromones. In mollusks, several peptides released during egg-laying improve both male attraction and mating. Unlike other cephalopods, Octopus vulgaris adopts an indirect internal fertilization strategy. We here report on the identification and characterization of a chemoattractant peptide isolated from mature eggs of octopus females. Using two-chamber and time-lapse microscopy assays, we demonstrate that this bioactive peptide is able to increase sperm motility and induce chemotaxis by changing the octopus spermatozoa swimming behavior in a dose-dependent manner. We also provide evidence that chemotaxis in the octopus requires the presence of extracellular calcium and membrane protein phophorylation at tyrosine. This study is the first report on a sperm-activating factor in a non-free-spawning marine animal.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, Laboratory of Physiology, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Di Cosmo
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| |
Collapse
|
19
|
Hirohashi N, Alvarez L, Shiba K, Fujiwara E, Iwata Y, Mohri T, Inaba K, Chiba K, Ochi H, Supuran CT, Kotzur N, Kakiuchi Y, Kaupp UB, Baba SA. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂. Curr Biol 2013; 23:775-81. [PMID: 23583548 DOI: 10.1016/j.cub.2013.03.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/28/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Kashikar ND, Alvarez L, Seifert R, Gregor I, Jäckle O, Beyermann M, Krause E, Kaupp UB. Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. ACTA ACUST UNITED AC 2013; 198:1075-91. [PMID: 22986497 PMCID: PMC3444779 DOI: 10.1083/jcb.201204024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sperm use temporal sampling, resetting of intracellular calcium level, and adaptation of their sensitivity to respond to a wide range of chemoattractant concentrations during their voyage toward the egg. Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca2+ oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2–0.6 s before a Ca2+ response was produced. Additional molecules delivered during a Ca2+ response reset the cell by causing a pronounced Ca2+ drop that terminated the response; this reset was followed by a new Ca2+ rise. After stimulation, sperm adapted their sensitivity following the Weber–Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well.
Collapse
Affiliation(s)
- Nachiket D Kashikar
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Butts IA, Johnson K, Wilson CC, Pitcher TE. Ovarian fluid enhances sperm velocity based on relatedness in lake trout, Salvelinus namaycush. Theriogenology 2012; 78:2105-2109.e1. [DOI: 10.1016/j.theriogenology.2012.06.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/24/2022]
|
23
|
Byrne M. Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. MARINE ENVIRONMENTAL RESEARCH 2012; 76:3-15. [PMID: 22154473 DOI: 10.1016/j.marenvres.2011.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
Climate change is a threat to marine biota because increased atmospheric CO₂ is causing ocean warming, acidification, hypercapnia and decreased carbonate saturation. These stressors have toxic effects on invertebrate development. The persistence and success of populations requires all ontogenetic stages be completed successfully and, due to their sensitivity to environmental stressors, developmental stages may be a population bottleneck in a changing ocean. Global change ecotoxicology is being used to identify the marine invertebrate developmental stages vulnerable to climate change. This overview of research, and the methodologies used, shows that most studies focus on acidification, with few studies on ocean warming, despite a long history of research on developmental thermotolerance. The interactive effects of stressors are poorly studied. Experimental approaches differ among studies. Fertilization in many species exhibits a broad tolerance to warming and/or acidification, although different methodologies confound inter-study comparisons. Early development is susceptible to warming and most calcifying larvae are sensitive to acidification/increased pCO₂. In multistressor studies moderate warming diminishes the negative impact of acidification on calcification in some species. Development of non-calcifying larvae appears resilient to near-future ocean change. Although differences in species sensitivities to ocean change stressors undoubtedly reflect different tolerance levels, inconsistent handling of gametes, embryos and larvae probably influences different research outcomes. Due to the integrative 'developmental domino effect', life history responses will be influenced by the ontogenetic stage at which experimental incubations are initiated. Exposure to climate change stressors from early development (fertilization where possible) in multistressor experiments is needed to identify ontogenetic sensitivities and this will be facilitated by more consistent methodologies.
Collapse
Affiliation(s)
- M Byrne
- Schools of Medical and Biological Science, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Burnett LA, Washburn CA, Sugiyama H, Xiang X, Olson JH, Al-Anzi B, Bieber AL, Chandler DE. Allurin, an amphibian sperm chemoattractant having implications for mammalian sperm physiology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:1-61. [PMID: 22449486 DOI: 10.1016/b978-0-12-394306-4.00007-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eggs of many species are surrounded by extracellular coats that emit ligands to which conspecific sperm respond by undergoing chemotaxis and changes in metabolism, motility, and acrosomal status in preparation for fertilization. Here we review methods used to measure sperm chemotaxis and focus on recent studies of allurin, a 21-kDa protein belonging to the Cysteine-RIch Secretory Protein (CRISP) family that has chemoattraction activity for both amphibian and mammalian sperm. Allurin is unique in being the first extensively characterized Crisp protein found in the female reproductive tract and is the product of a newly discovered amphibian gene within a gene cluster that has been largely conserved in mammals. Study of its expression, function, and tertiary structure could lead to new insights in the role of Crisp proteins in sperm physiology.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cummins SF, Bowie JH. Pheromones, attractants and other chemical cues of aquatic organisms and amphibians. Nat Prod Rep 2012; 29:642-58. [DOI: 10.1039/c2np00102k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Kuanpradit C, Stewart MJ, York PS, Degnan BM, Sobhon P, Hanna PJ, Chavadej J, Cummins SF. Characterization of mucus-associated proteins from abalone (Haliotis) - candidates for chemical signaling. FEBS J 2011; 279:437-50. [DOI: 10.1111/j.1742-4658.2011.08436.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction. Proc Natl Acad Sci U S A 2011; 108:13200-5. [PMID: 21788487 DOI: 10.1073/pnas.1018666108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical communication is fundamental to sexual reproduction, but how sperm search for and find an egg remains enigmatic. For red abalone (Haliotis rufescens), a large marine snail, the relationship between chemical signaling and fluid motion largely determines fertilization success. Egg-derived attractant plumes are dynamic, changing their size and shape in response to unique combinations of physical and chemical environmental features. Attractant plumes that promote sexual reproduction, however, are limited to a precise set of hydrodynamic conditions. Performance-maximizing shears are those that most closely match flows in native spawning habitats. Under conditions in which reproductive success is chronically limited by sperm availability, gametes are under selection for mechanisms that increase sperm-egg encounter. Here, chemoattraction is found to provide a cheap evolutionary alternative for enhancing egg target size without enlarging cytoplasmic and/or cell volume. Because egg signaling and sperm response may be tuned to meet specific fluid-dynamic constraints, shear could act as a critical selective pressure that drives gamete evolution and determines fitness.
Collapse
|
28
|
Yoshida M, Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 2011; 17:457-65. [PMID: 21610215 DOI: 10.1093/molehr/gar041] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan.
| | | |
Collapse
|
29
|
Veitinger T, Riffell JR, Veitinger S, Nascimento JM, Triller A, Chandsawangbhuwana C, Schwane K, Geerts A, Wunder F, Berns MW, Neuhaus EM, Zimmer RK, Spehr M, Hatt H. Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J Biol Chem 2011; 286:17311-25. [PMID: 21454470 PMCID: PMC3089573 DOI: 10.1074/jbc.m110.211524] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 03/18/2011] [Indexed: 11/06/2022] Open
Abstract
In the female reproductive tract, mammalian sperm undergo a regulated sequence of prefusion changes that "prime" sperm for fertilization. Among the least understood of these complex processes are the molecular mechanisms that underlie sperm guidance by environmental chemical cues. A "hard-wired" Ca(2+) signaling strategy that orchestrates specific motility patterns according to given functional requirements is an emerging concept for regulation of sperm swimming behavior. The molecular players involved, the spatiotemporal characteristics of such motility-associated Ca(2+) dynamics, and the relation between a distinct Ca(2+) signaling pattern and a behavioral sperm phenotype, however, remain largely unclear. Here, we report the functional characterization of two human sperm chemoreceptors. Using complementary molecular, physiological, and behavioral approaches, we comparatively describe sperm Ca(2+) responses to specific agonists of these novel receptors and bourgeonal, a known sperm chemoattractant. We further show that individual receptor activation induces specific Ca(2+) signaling patterns with unique spatiotemporal dynamics. These distinct Ca(2+) dynamics are correlated to a set of stimulus-specific stereotyped behavioral responses that could play vital roles during various stages of prefusion sperm-egg chemical communication.
Collapse
Affiliation(s)
- Thomas Veitinger
- From the Department of Chemosensation, Institute for Biology II, Rheinisch-Westfaelische Technische Hochschule-Aachen University, 52074 Aachen, Germany
- the Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | - Jeffrey R. Riffell
- the Department of Neuroscience, University of Arizona, Tucson, Arizona 85721
| | - Sophie Veitinger
- From the Department of Chemosensation, Institute for Biology II, Rheinisch-Westfaelische Technische Hochschule-Aachen University, 52074 Aachen, Germany
- the Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | | | - Annika Triller
- the Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | | | - Katlen Schwane
- the Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | - Andreas Geerts
- the Bayer Schering Pharma AG Pharma Research Center, 42096 Wuppertal, Germany
| | - Frank Wunder
- the Bayer Schering Pharma AG Pharma Research Center, 42096 Wuppertal, Germany
| | - Michael W. Berns
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412
- the Beckman Laser Institute, University of California, Irvine, California
| | - Eva M. Neuhaus
- the Charité-NeuroScience Research Center, 10117 Berlin, Germany, and
| | - Richard K. Zimmer
- the Department of Ecology and Evolutionary Biology, Neuroscience Program, and Brain Research Institute, UCLA, Los Angeles, California 90095-1606
| | - Marc Spehr
- From the Department of Chemosensation, Institute for Biology II, Rheinisch-Westfaelische Technische Hochschule-Aachen University, 52074 Aachen, Germany
| | - Hanns Hatt
- the Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| |
Collapse
|
30
|
Himes JE, Riffell JA, Zimmer CA, Zimmer RK. Sperm chemotaxis as revealed with live and synthetic eggs. THE BIOLOGICAL BULLETIN 2011; 220:1-5. [PMID: 21385951 DOI: 10.1086/bblv220n1p1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fertilization is one of the least understood fundamental biological processes. How sperm search for and find an egg remains enigmatic. Sperm attraction to egg-derived chemical cues may be significant evolutionarily for maintaining species barriers and important ecologically for increasing gamete encounters. New tools are needed, however, to resolve the functional consequences of these dissolved signal molecules. Freshly spawned eggs from red abalone (Haliotis rufescens) naturally release l-tryptophan, which stimulates chemotactic responses by conspecific sperm. Here, microspheres were manufactured to the approximate size and the same shape as female gametes and formulated to emit controlled doses of chemoattractant, imitating natural l-tryptophan release rates. When experimentally tested for effectiveness, male gametes did not distinguish between chemically impregnated mimics and live eggs, demonstrating that l-tryptophan alone is both necessary and sufficient to promote chemotaxis, and confirming the identity of a native sperm attractant. The techniques that we describe can be used to create synthetic eggs for most animal and plant species, including humans. Egg mimics increase the capacity for experimental manipulation and enable realistic studies of sperm behavior even in the absence of female gametes.
Collapse
Affiliation(s)
- Julie E Himes
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
31
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
32
|
Hernández-Ibarra NK, Morelos RM, Cruz P, Galindo-Sanchez CE, Avila S, Ramirez JL, Ibarra AM. Allotriploid Genotypic Assignment in Abalone Larvae by Detection of Microsatellite-Recombinant Genotypes. J Hered 2010; 101:476-90. [DOI: 10.1093/jhered/esq027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- N Karina Hernández-Ibarra
- Centro de Investigaciones Biológicas del Noroeste SC, Aquaculture Program, Aquaculture Genetics and Breeding Laboratory, Mar Bermejo 195, La Paz BCS 23090, Mexico
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyer E, Manahan DT. Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus). THE BIOLOGICAL BULLETIN 2009; 217:6-24. [PMID: 19679719 DOI: 10.1086/bblv217n1p6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transport of amino acids from low concentrations in seawater by marine invertebrates has been extensively studied, but few of the genes involved in this physiological process have been identified. We have characterized three amino acid transporter genes cloned from embryos of the sea urchin Strongylocentrotus purpuratus. These genes show phylogenetic proximity to classical amino acid transport systems, including Gly and B0+, and the inebriated gene (INE). Heterologous expression of these genes in frog oocytes induced a 40-fold increase in alanine transport above endogenous levels, demonstrating that these genes mediate alanine transport. Antibodies specific to one of these genes (Sp-AT1) inhibited alanine transport, confirming the physiological activity of this gene in larvae. Whole-mount antibody staining of larvae revealed expression of Sp-AT1 in the ectodermal tissues associated with amino acid transport, as independently demonstrated by autoradiographic localization of radioactive alanine. Maximum rates of alanine transport increased 6-fold during early development, from embryonic to larval stages. Analysis of gene expression during this developmental period revealed that Sp-AT1 transcript abundance remained nearly constant, while that of another transporter gene (Sp-AT2) increased 11-fold. The functional characterization of these genes establishes a molecular biological basis for amino acid transport by developmental stages of marine invertebrates.
Collapse
Affiliation(s)
- Eli Meyer
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, USA
| | | |
Collapse
|
34
|
Krug PJ, Riffell JA, Zimmer RK. Endogenous signaling pathways and chemical communication between sperm and egg. ACTA ACUST UNITED AC 2009; 212:1092-100. [PMID: 19329742 DOI: 10.1242/jeb.027029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Red abalone (Haliotis rufescens) sperm detect a waterborne chemical cue released by conspecific eggs, and change their swimming behavior to increase the likelihood of fertilization success. Previously, we isolated the natural sperm attractant by bioassay-guided fractionation and high-performance liquid chromatography, and chemically identified it as the free-amino acid l-tryptophan (l-Trp). In the present study, levels of this ecologically meaningful compound were quantified in various abalone tissues, and in freshly spawned eggs. Tryptophan was the least abundant of 19 dissolved free amino acids (DFAAs) in ovary, testis, foot muscle, gill, stomach and hemolymph. As a proportion of the DFAA pool, however, Trp concentrations were significantly elevated in eggs (three- to seven-times higher) relative to all other sampled tissues. Natural rates of Trp release from eggs also were measured and correlated with fertility. Fertilization success peaked during an initial 30 min period (post-spawn), but decreased to nil over the next 50 min. Closely paralleling these events, Trp accumulated in seawater around freshly spawned eggs for the first 45 min (post-spawn) before decaying rapidly from solution. Older eggs stopped releasing Trp approximately when they became infertile, revealing a critical link between gamete physiology and chemical signaling. This apparent negative feedback loop did not arise from tryptophan oxidation, uptake by bacteria in seawater, or a degrading enzyme released by eggs. As a metabolic precursor critical to development of the larval nervous system, Trp could be an honest indicator of egg fitness for prospective sperm suitors. Our results suggest that endogenous signaling pathways have been co-opted for external communication between gametes, as an adaptation to increase reproductive success by promoting sperm navigation towards fertile eggs.
Collapse
Affiliation(s)
- Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | | | | |
Collapse
|
35
|
Sugiyama H, Burnett L, Xiang X, Olson J, Willis S, Miao A, Akema T, Bieber AL, Chandler DE. Purification and multimer formation of allurin, a sperm chemoattractant from Xenopus laevis egg jelly. Mol Reprod Dev 2009; 76:527-36. [PMID: 18951371 DOI: 10.1002/mrd.20969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Allurin, a sperm chemoattractant isolated from Xenopus laevis egg jelly, can be purified in one step from an extract of diffusible jelly proteins ("egg water") using a FPLC or HPLC anion exchange column and a multi-step NaCl gradient. Allurin homomultimers were detected by Western blotting with antibodies prepared against the purified protein or peptides within the protein. Allurin multimers were stable and resisted dissociation by SDS and beta-mercaptoethanol. Alkylation of allurin provided evidence for two free sulfhydryl groups but did not eliminate multimer formation, suggesting that intermolecular disulfide bond formation is not required for allurin aggregation. Concentration of egg water was accompanied by a reduction of chemoattractant activity that could not be fully accounted for by homomultimer formation. Rather, the presence of a multiphasic dose-activity curve upon partial purification and formation of hetero-allurin complexes during concentration suggested that egg water may contain allurin-binding proteins that reduce multimer formation and activity.
Collapse
Affiliation(s)
- Hitoshi Sugiyama
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Morita M, Kitamura M, Nakajima A, Sri Susilo E, Takemura A, Okuno M. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. ACTA ACUST UNITED AC 2009; 66:202-14. [PMID: 19235200 DOI: 10.1002/cm.20343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (> 7.8) solution without cAMP, and a phosphorylation assay using (gamma-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+-binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+-sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+-sensitive flagellar protein phosphorylation.
Collapse
Affiliation(s)
- Masaya Morita
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Sesoko, Motobu, Okinawa, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Morita M, Iguchi A, Takemura A. Roles of calmodulin and calcium/calmodulin-dependent protein kinase in flagellar motility regulation in the coral Acropora digitifera. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:118-123. [PMID: 18661183 DOI: 10.1007/s10126-008-9127-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/13/2008] [Indexed: 05/26/2023]
Abstract
In the corals Acropora spp., eggs secrete substances that induce sperm motility regulation. An elevation of intracellular pH ([pH]i) and a regulation of intracellular Ca(2+) concentration ([Ca(2+)]) are involved in the sperm motility regulation cascade. However, the detailed molecular aspects of flagellar motility regulation have not been fully demonstrated in Acropora. In this study, we determined the presence and roles of both calmodulin (CaM) and calcium/calmodulin dependent-protein kinase (CaMK) in the sperm flagellar motility regulation of Acropora. A (45)Ca(2+)-overlay assay and an immunoblot analysis showed that sperm contain an acidic 16-kDa protein that was CaM, and an immunoblot analysis revealed the presence of CaMK in coral sperm. In addition, a specific inhibitor of CaMK, KN-93, and a CaM antagonist, W-7, inhibited sperm motility activation induced by NH(4)Cl treatment. NH(4)Cl treatment causes an increase in intracellular [pH]i of sperm, suggesting that CaM and CaMK are involved in sperm motility initiation caused by an increase in [pH]i. The involvement of CaM and CaMK in motility regulation in coral highlights the importance of these molecules throughout the animal kingdom.
Collapse
Affiliation(s)
- Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422, Sesoko, Motobu, Okinawa 905-0227, Japan.
| | | | | |
Collapse
|
38
|
Dynamic Scaling in Chemical Ecology. J Chem Ecol 2008; 34:822-36. [DOI: 10.1007/s10886-008-9486-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 11/26/2022]
|
39
|
Affiliation(s)
- U. Benjamin Kaupp
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Nachiket D. Kashikar
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Ingo Weyand
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| |
Collapse
|
40
|
Burnett LA, Boyles S, Spencer C, Bieber AL, Chandler DE. Xenopus tropicalis allurin: expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity. Dev Biol 2008; 316:408-16. [PMID: 18342304 DOI: 10.1016/j.ydbio.2008.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Previously we reported the identification of the first vertebrate sperm chemoattractant, allurin, in the frog Xenopus laevis (Xl) and demonstrated that it was a member of the CRISP family of proteins. Here we report identification, purification, and characterization of Xenopus tropicalis (Xt) allurin, a homologous protein in X. tropicalis. "Egg water" as well as purified allurin from both species exhibit efficient cross-species sperm chemoattractant activity. Western blots show that Xt egg water contains a single anti-allurin cross-reactive protein whose molecular weight (20,497 Da by MALDI MS) agrees well with the molecular weight of the hypothetical gene product for a newly recognized "Crisp A" gene in the X. tropicalis genome. A recombinant form of the protein, expressed in 3T3 cells, exhibits chemoattraction for both Xt and Xl sperm and cross reacts with anti-allurin antibodies. Examination of Crisp protein expression in the Xt oviduct using RT-PCR showed that of five documented Xt Crisp genes (Crisps 2, 3, LD1, LD2 and A) only Crisp A was expressed. In contrast, Crisp 2, Crisp 3, Crisp LD1, and Crisp LD2, but not Crisp A, were all found to be expressed in the Xt testes while subsets of Crisp proteins where expressed in the Xt ovary. These data suggest that Crisp proteins in amphibians may play multiple roles in sperm production, maturation and guidance just as they are thought to in mammals indicating that Crisp protein involvement in reproduction may not be limited to mammals.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Program, School of Life Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
41
|
Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity (Edinb) 2007; 100:296-303. [PMID: 17987054 DOI: 10.1038/sj.hdy.6801076] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Self-compatible, hermaphroditic marine invertebrates have the potential to self-fertilize in the absence of mates or under sperm-limited conditions, and outcross when sperm is available from a variety of males. Hence, many hermaphroditic marine invertebrates may have evolved mixed-mating systems that involve facultative self-fertilization. Such mixed-mating strategies are well documented for plants but have rarely been investigated in animals. Here, I use allozyme markers to make estimates of selfing from population surveys of reef slope and reef flat sites, and contrast this with direct estimates of selfing from progeny-array analysis, for the brooding coral Seriatopora hystrix. Consistent heterozygote deficits previously reported for S. hystrix suggests that inbreeding (including the extreme of selfing) may be common in this species. I detected significant levels of inbreeding within populations (F(IS)=0.48) and small but significant differentiation among all sites (F(ST)=0.04). I detected no significant differentiation among habitats (F(HT)=0.009) though among site differentiation did occur within the reef slope habitat (F(SH)=0.06), but not within the reef flat habitat (F(SH)=0.015). My direct estimates of outcrossing for six colonies and their progeny from a single reef flat site revealed an intermediate value (t(m) (+/-s.d.)=0.53+/-0.20). Inbreeding coefficients calculated from progeny arrays (F(e)=0.31) were similar to indirect estimates based on adult genotype frequencies for that site (F(IS)=0.38). This study confirms that the mating system of this brooding coral is potentially variable, with both outcrossing and selfing.
Collapse
|
42
|
Kicklighter CE, Germann M, Kamio M, Derby CD. Molecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2007.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Riffell JA, Zimmer RK. Sex and flow: the consequences of fluid shear for sperm–egg interactions. J Exp Biol 2007; 210:3644-60. [PMID: 17921166 DOI: 10.1242/jeb.008516] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARYFertilization is a complex interaction among biological traits of gametes and physical properties of the fluid environment. At the scale of fertilization (0.01–1 mm), sperm encounter eggs while being transported within a laminar (or viscous) shear flow. Varying laminar-shear in a Taylor-Couette flow tank, our experiments simulated important aspects of small-scale turbulence within the natural habitats of red abalone(Haliotis rufescens), a large marine mollusk and external fertilizer. Behavioral interactions between individual cells, sperm–egg encounter rates, and fertilization success were quantified, simultaneously, using a custom-built infrared laser and computer-assisted video imaging system. Relative to still water, sperm swam faster and moved towards an egg surface,but only in comparatively slow flows. Encounter rate, swim speed and orientation, and fertilization success each peaked at the lowest shear tested(0.1 s–1), and then decayed as shear increased beyond 1.0 s–1. The decay did not result, however, from damage to either sperm or eggs. Analytical and numerical models were used to estimate the propulsive force generated by sperm swimming (Fswim) and the shear force produced by fluid motion within the vicinity of a rotating egg(Fshear). To first order, male gametes were modeled as prolate spheroids. The ratio Fswim/Fshear was useful in explaining sperm–egg interactions. At low shears where Fswim/Fshear>1, sperm swam towards eggs, encounter rates were pronounced, and fertilization success was very high; behavior overpowered fluid motion. In contrast, sperm swimming,encounter rate and fertilization success all decayed rapidly when Fswim/Fshear<1; fluid motion dominated behavior. The shears maximizing fertilization success in the lab typically characterized natural flow microenvironments of spawning red abalone. Gamete behavior thus emerges as a critical determinant of sexual reproduction in the turbulent sea.
Collapse
Affiliation(s)
- Jeffrey A. Riffell
- Department of Ecology and Evolutionary Biology, University of California,Los Angeles, CA 90095-1606, USA
| | - Richard K. Zimmer
- Department of Ecology and Evolutionary Biology, University of California,Los Angeles, CA 90095-1606, USA
- Neurosciences Program and Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
44
|
Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, McQuillan JA, Stocker R, Jermiin LS, Hunt NH. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007; 396:203-13. [PMID: 17499941 DOI: 10.1016/j.gene.2007.04.010] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/27/2007] [Accepted: 04/04/2007] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase (INDO) and tryptophan 2,3-dioxygenase (TDO) each catalyze the first step in the kynurenine pathway of tryptophan metabolism. We describe the discovery of another enzyme with this activity, indoleamine 2,3-dioxygenase-like protein (INDOL1), which is closely related to INDO and is expressed in mice and humans. The corresponding genes have a similar genomic structure and are situated adjacent to each other on human and mouse chromosome 8. They are likely to have arisen by gene duplication before the origin of the tetrapods. The expression of INDOL1 is highest in the mouse kidney, followed by epididymis, and liver. Expression of mouse INDOL1 was further localized to the tubular cells in the kidney and the spermatozoa. INDOL1 was assigned its name because of its structural similarity to INDO. We demonstrate that INDOL1 catalyses the conversion of tryptophan to kynurenine therefore a more appropriate nomenclature for the enzymes might be INDO-1 and INDO-2, or the more commonly-used abbreviations, IDO-1 and IDO-2. Although the two proteins have similar enzymatic activities, their different expression patterns within tissues and during malaria infection, suggests a distinct role for each protein. This identification of INDOL1 may help to explain the regulation of the diversity of physiological and patho-physiological processes in which the kynurenine pathway is involved.
Collapse
Affiliation(s)
- Helen J Ball
- Discipline of Pathology and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pechenik JA, Pearse JS, Qian PY. Effects of salinity on spawning and early development of the tube-building polychaete Hydroides elegans in Hong Kong: not just the sperm's fault? THE BIOLOGICAL BULLETIN 2007; 212:151-60. [PMID: 17438207 DOI: 10.2307/25066592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ambient salinities drop dramatically during monsoon season in Hong Kong coastal waters, posing a number of problems for externally fertilizing species like the polychaete Hydroides elegans. In this study, we investigated (1) whether adults would retain their gametes when external salinity dropped to levels too low to support fertilization and development, and (2) whether failure of development at low salinity reflects a failure of fertilization or a failure of fertilized eggs to cleave. Adults released eggs and sperm in the laboratory even at the lowest salinity tested, a practical salinity (S) of 5, and yet very few eggs cleaved at salinities below about 22. By mixing gametes at high salinity and then transferring the fertilized eggs to low-salinity seawater, we found that salinities below about 22 reduced the percentage of fertilized eggs that cleaved. Similarly, mixing gametes at salinities as low as 15 and then transferring the eggs to full-strength seawater (S = 30) rescued a substantial number of eggs, many more of which cleaved after their transfer to the higher salinity. The results suggest that failure of early development at low salinity in this species in large part reflects an inability of newly fertilized eggs to complete meiosis and cleave, rather than simply a failure of fertilization.
Collapse
Affiliation(s)
- Jan A Pechenik
- Biology Department, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
46
|
Bearon RN. A Model for Bacterial Colonization of Sinking Aggregates. Bull Math Biol 2006; 69:417-31. [PMID: 16835807 DOI: 10.1007/s11538-005-9038-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 04/13/2005] [Indexed: 10/24/2022]
Abstract
Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.
Collapse
Affiliation(s)
- R N Bearon
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA.
| |
Collapse
|
47
|
Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol 2006; 250:128-36. [PMID: 16413109 DOI: 10.1016/j.mce.2005.12.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since their discovery in 1991, members of the odorant receptor (OR) family have been found in various ectopic tissues, including testis and sperm. It took, however, more than a decade for the first mammalian testicular ORs to be functionally characterized and implicated in a reproductively relevant scenario. Activation of hOR17-4 and mOR23 in human and mouse sperm, respectively, mediates distinct flagellar motion patterns and chemotactic behavior in various bioassays. For hOR17-4, receptor function and downstream signal transduction events are shown to be subject to pharmacological manipulation. Further insight into the basic principles that govern sperm OR operation as well as into the molecular logic that underlies OR-mediated signaling could set the stage for pioneering future applications in procreation and/or contraception.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
48
|
Panhuis TM, Clark NL, Swanson WJ. Rapid evolution of reproductive proteins in abalone and Drosophila. Philos Trans R Soc Lond B Biol Sci 2006; 361:261-8. [PMID: 16612885 PMCID: PMC1569613 DOI: 10.1098/rstb.2005.1793] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Observations from different taxa, including plants, protozoa, insects and mammals, indicate that proteins involved in reproduction evolve rapidly. Several models of adaptive evolution have been proposed to explain this phenomenon, such as sexual conflict, sexual selection, self versus non-self recognition and pathogen resistance. Here we discuss the potential role of sexual conflict in the rapid evolution of reproductive genes in two different animal systems, abalone (Haliotis) and Drosophila. In abalone, we reveal how specific interacting sperm-egg proteins were identified and discuss this identification in the light of models for rapid protein evolution and speciation. For Drosophila, we describe the genomic approaches taken to identify male accessory gland proteins and female reproductive tract proteins. Patterns of protein evolution from both abalone and Drosophila support the predicted patterns of rapid protein evolution driven by sexual conflict. We stress however that other selective pressures may contribute to the rapid evolution that is observed. We conclude that the key to distinguishing between sexual conflict and other mechanisms of protein evolution will be an integration of genetic, experimental and theoretical data.
Collapse
Affiliation(s)
| | | | - Willie J Swanson
- Department of Genome Sciences, University of WashingtonPO Box 357730, Seattle, WA 98195-7730, USA
| |
Collapse
|
49
|
Abstract
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Collapse
Affiliation(s)
- Nathaniel L Clark
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, USA
| | | | | |
Collapse
|
50
|
Tanaka H, Kubokawa K, Morisawa M. Sperm-derived sperm motility-initiating substance from amphioxus Branchiostoma belcheri. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2006; 305:68-73. [PMID: 16358272 DOI: 10.1002/jez.a.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sperm of amphioxus, Branchiostoma belcheri, were immotile when excised from the testis and suspended in seawater. The sperm became motile upon spawning in natural seawater, suggesting mechanisms that triggered sperm motility during spawning. When a male amphioxus that underwent spawning was transferred to a cup containing a small amount of natural seawater, and then the seawater containing the spawned sperm was centrifuged, the supernatant caused motility initiation in the immotile sperm from the testis. This sperm motility-initiating activity was also found in the supernatant of seawater in which immotile sperm from the testis were incubated overnight. These suggest that in the amphioxus, a sperm motility-initiating substance resides in the sperm, and upon spawning, the substance is transformed into a free and active form to activate the sperm. Partial purification of the substance revealed it as a small and heat-stable substance with maximum UV absorbance at 234 nm.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | | | | |
Collapse
|