1
|
Schuitema O, Motta PJ, Gelsleichter J, Horton M, Habegger ML. Histological comparison of shark dermis across various ecomorphologies. Anat Rec (Hoboken) 2025; 308:1463-1479. [PMID: 39185549 DOI: 10.1002/ar.25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
The integument plays essential roles in the structural support, protection, and hydrodynamic capability among fishes. Most research on shark skin has focused on the external epidermal layer, while the larger dermis anchoring the dermal denticles has been mostly ignored. Shark dermis is composed of two layers, the upper stratum laxum and the lower stratum compactum, holding supportive collagen and elastic fibers. There may be morphological and compositional differences in the dermis across various species of sharks that could relate to their different swimming modes and ecologies. The goal of this study was to characterize and describe the dermis among three shark species, Ginglymostoma cirratum, Sphyrna mokarran, and Isurus oxyrinchus, each representing a different swimming mode. Histological characterizations were performed at 16 locations along the body of each shark; variables such as dermal thickness, abundance of collagen and elastic fibers, and fiber size were quantified. Results showed G. cirratum has the thickest skin overall, and the largest fiber size for both collagen and elastic fibers, with overall patterns of increased amounts of collagen fibers and decreased amount of elastic fibers. At the opposite end of the spectrum, I. oxyrinchus showed the thinnest dermis along the flank region, with overall patterns of increased elastic fibers and decreased collagen fibers. These findings may challenge our original assumptions of a rigid body in fast moving sharks and a more flexible body in slower moving sharks and highlight the diversity of the shark integument.
Collapse
|
2
|
Sayahkarajy M, Witte H. Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique. Biomimetics (Basel) 2025; 10:60. [PMID: 39851776 PMCID: PMC11761222 DOI: 10.3390/biomimetics10010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot. The robot comprises six serially connected segments that can individually bend with the segmental pneumatic artificial muscles. Kinematic equations and relations are proposed to measure the desired actuation to mimic anguilliform locomotion kinematics. The robot was tested experimentally and the position and velocities of spatially digitized points were collected using QualiSys® Tracking Manager (QTM) 1.6.0.1. The collected data were analyzed offline, proposing a new complex variable delay-embedding dynamic mode decomposition (CDE DMD) algorithm that combines complex state filtering and time embedding to extract a linear approximate model. While the experimental results exhibited exotic curves in phase plane and time series, the analysis results showed that the proposed algorithm extracts linear and chaotic modes contributing to the data. It is concluded that the robot dynamics can be described by the linearized model interrupted by chaotic modes. The technique successfully extracts coherent modes from limited measurements and linearizes the system dynamics.
Collapse
Affiliation(s)
- Mostafa Sayahkarajy
- Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany;
| | | |
Collapse
|
3
|
Stin V, Godoy-Diana R, Bonnet X, Herrel A. Form and function of anguilliform swimming. Biol Rev Camb Philos Soc 2024; 99:2190-2210. [PMID: 39004428 DOI: 10.1111/brv.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Anguilliform swimmers are long and narrow animals that propel themselves by undulating their bodies. Observations in nature and recent investigations suggest that anguilliform swimming is highly efficient. However, understanding the underlying reasons for the efficiency of this type of locomotion requires interdisciplinary studies spanning from biology to hydrodynamics. Regrettably, these different fields are rarely discussed together, which hinders our ability to understand the repeated evolution of this swimming mode in vertebrates. This review compiles the current knowledge of the anatomical features that drive anguilliform swimming, compares the resulting kinematics across a wide range of anguilliform swimmers, and describes the resulting hydrodynamic interactions using data from both in vivo experiments and computational studies.
Collapse
Affiliation(s)
- Vincent Stin
- UMR 7636, PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 7 Quai Saint-Bernard, Paris, 75005, France
- Département Adaptation du Vivant, UMR 7179 MECADEV, MNHN/CNRS, 43 rue Buffon, Paris, 75005, France
| | - Ramiro Godoy-Diana
- UMR 7636, PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 7 Quai Saint-Bernard, Paris, 75005, France
| | - Xavier Bonnet
- UMR 7372 Centre d'Etude Biologique de Chizé, CNRS, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Anthony Herrel
- Département Adaptation du Vivant, UMR 7179 MECADEV, MNHN/CNRS, 43 rue Buffon, Paris, 75005, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
- Naturhistorisches Museum Bern, Bernastrasse 15, Bern, 3005, Switzerland
| |
Collapse
|
4
|
Tack NB, Du Clos KT, Gemmell BJ. Fish can use coordinated fin motions to recapture their own vortex wake energy. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231265. [PMID: 38179082 PMCID: PMC10762429 DOI: 10.1098/rsos.231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
During swimming, many fishes use pectoral fins for propulsion and, in the process, move substantial amounts of water rearward. However, the effect that this upstream wake has on the caudal fin remains largely unexplored. By coordinating motions of the caudal fin with the pectoral fins, fishes have the potential to create constructive flow interactions which may act to partially recapture the upstream energy lost in the pectoral fin wake. Using experimentally derived velocity and pressure fields for the silver mojarra (Eucinostomus argenteus), we show that pectoral-caudal fin (PCF) coordination enables the circulation and interception of pectoral fin wake vortices by the caudal fin. This acts to transfer energy to the caudal fin and enhance its hydrodynamic efficiency at swimming speeds where this behaviour occurs. We also find that mojarras commonly use PCF coordination in nature. The results offer new insights into the evolutionary drivers and behavioural plasticity of fish swimming as well as for developing more capable bioinspired underwater vehicles.
Collapse
Affiliation(s)
- Nils B. Tack
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kevin T. Du Clos
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brad J. Gemmell
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Hiebert TC, Gemmell BJ, von Dassow G, Conley KR, Sutherland KR. The hydrodynamics and kinematics of the appendicularian tail underpin peristaltic pumping. J R Soc Interface 2023; 20:20230404. [PMID: 37989229 PMCID: PMC10688231 DOI: 10.1098/rsif.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs. Yet, we lack a complete understanding of the fluid flow that underpins their filtration. Using high-speed, high-resolution video and micro particle image velocimetry, we describe the kinematics and hydrodynamics of the tail in Oikopleura dioica in filtering and free-swimming postures. We show that sinusoidal waves of the tail generate peristaltic pumping within the tail chamber with fluid moving parallel to the tail when filtering. We find that the tail contacts attachment points along the tail chamber during each beat cycle, serving to seal the tail chamber and drive pumping. When we tested how the pump performs across environmentally relevant temperatures, we found that the amplitude of the tail was invariant but tail beat frequency increased threefold across three temperature treatments (5°C, 15°C and 25°C). Investigation into this unique pumping mechanism gives insight into the ecological success of appendicularians and provides inspiration for novel pump designs.
Collapse
Affiliation(s)
- Terra C. Hiebert
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | - Brad J. Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | - Keats R. Conley
- Oregon Institute of Marine Biology, University of Oregon, OR 97420, USA
| | | |
Collapse
|
6
|
Stin V, Godoy-Diana R, Bonnet X, Herrel A. Measuring the 3D wake of swimming snakes (Natrix tessellata) using volumetric particle image velocimetry. J Exp Biol 2023; 226:jeb245929. [PMID: 37306032 DOI: 10.1242/jeb.245929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
We describe a method for measuring the 3D vortical structures produced by an anguilliform swimmer using volumetric velocimetry. The wake of freely swimming dice snakes (Natrix tessellata) was quantified, revealing the creation of multiple vortices along the body of the snake due to its undulation. The 3D structure of the vortices generally consisted of paired vortex tubes, some of which were linked together to form a hairpin structure. The observations match predictions from computational fluid dynamic studies of other anguilliform swimmers. Quantitative measurements allowed us to study vortex circulation and size, and global kinetic energy of the flow, which varied with swimming speed, vortex topology and individual characteristics. Our findings provide a baseline for comparing wake structures of snakes with different morphologies and ecologies and investigating the energetic efficiency of anguilliform swimming.
Collapse
Affiliation(s)
- Vincent Stin
- PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- UMR 7179 MECADEV, Département Adaptation du Vivant, MNHN/CNRS, 75005 Paris, France
| | - Ramiro Godoy-Diana
- PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Xavier Bonnet
- Centre d'Étude Biologique de Chizé, CNRS, UMR 7372, 79360 Villiers-en-Bois, France
| | - Anthony Herrel
- UMR 7179 MECADEV, Département Adaptation du Vivant, MNHN/CNRS, 75005 Paris, France
| |
Collapse
|
7
|
Haas TF, Castro-Santos T, Miehls SM, Deng ZD, Bruning TM, Wagner CM. Survival, healing, and swim performance of juvenile migratory sea lamprey ( Petromyzon marinus) implanted with a new acoustic microtransmitter designed for small eel-like fishes. ANIMAL BIOTELEMETRY 2023; 11:9. [PMID: 36937100 PMCID: PMC10008077 DOI: 10.1186/s40317-023-00318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Background Little is known about the transformer stage of the parasitic lampreys, a brief but critical period that encompasses juvenile out-migration from rivers to lakes or oceans to begin parasitic feeding. Information about this life stage could have significant conservation implications for both imperiled and invasive lampreys. We investigated tag retention, survival, wound healing, and swim performance of newly transformed sea lamprey (Petromyzon marinus) implanted with a new micro-acoustic transmitter, the eel-lamprey acoustic transmitter (ELAT), in a controlled laboratory environment. Results The 61-day survival of our tagged subjects was 71%, within the range reported in similar studies of juvenile lampreys. However, survival was significantly lower in the tagged animals (vs control), with no effect statistically attributable to measures of animal length, mass, condition, or population of origin (Great Lakes vs. Atlantic drainage). Mortality in tagged fish was concentrated in the first four days post-surgery, suggesting injury from the surgical process. An unusually long recovery time from anesthesia may have contributed to the increased mortality. In a simple burst swim assay, tagged animals swam significantly slower (- 22.5%) than untagged animals, but were not significantly different in endurance swim tests. A composite wound healing score at day four was a significant predictor of maximum burst swim speed at day 20, and wound condition was related to animal mass, but not length, at the time of tagging. Conclusions Impairments to survival and swim performance of juvenile sea lamprey implanted with the ELAT transmitter were within currently reported ranges for telemetry studies with small, difficult to observe fishes. Our results could be improved with more refined anesthesia and surgical techniques. The ability to track migratory movements of imperiled and pest populations of parasitic lampreys will improve our ability to estimate vital rates that underlie recruitment to the adult population (growth, survival) and to investigate the environmental factors that regulate the timing and rates of movement, in wild populations.
Collapse
Affiliation(s)
- Taylor F. Haas
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, East Lansing, MI USA
| | - Theodore Castro-Santos
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Research Laboratory, Turners Falls, MA USA
| | - Scott M. Miehls
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI USA
| | - Zhiqun D. Deng
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA USA
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Tyler M. Bruning
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI USA
| | - C. Michael Wagner
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, East Lansing, MI USA
| |
Collapse
|
8
|
Thandiackal R, Lauder G. In-line swimming dynamics revealed by fish interacting with a robotic mechanism. eLife 2023; 12:81392. [PMID: 36744863 PMCID: PMC10032654 DOI: 10.7554/elife.81392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Schooling in fish is linked to a number of factors such as increased foraging success, predator avoidance, and social interactions. In addition, a prevailing hypothesis is that swimming in groups provides energetic benefits through hydrodynamic interactions. Thrust wakes are frequently occurring flow structures in fish schools as they are shed behind swimming fish. Despite increased flow speeds in these wakes, recent modeling work has suggested that swimming directly in-line behind an individual may lead to increased efficiency. However, only limited data are available on live fish interacting with thrust wakes. Here we designed a controlled experiment in which brook trout, Salvelinus fontinalis, interact with thrust wakes generated by a robotic mechanism that produces a fish-like wake. We show that trout swim in thrust wakes, reduce their tail-beat frequencies, and synchronize with the robotic flapping mechanism. Our flow and pressure field analysis revealed that the trout are interacting with oncoming vortices and that they exhibit reduced pressure drag at the head compared to swimming in isolation. Together, these experiments suggest that trout swim energetically more efficiently in thrust wakes and support the hypothesis that swimming in the wake of one another is an advantageous strategy to save energy in a school.
Collapse
|
9
|
Tack NB, Gemmell BJ. A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising? J Exp Biol 2022; 225:281299. [PMID: 36354328 DOI: 10.1242/jeb.244967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
Many fishes use their tail as the main thrust producer during swimming. This fin's diversity in shape and size influences its physical interactions with water as well as its ecological functions. Two distinct tail morphologies are common in bony fishes: flat, truncate tails which are best suited for fast accelerations via drag forces, and forked tails that promote economical, fast cruising by generating lift-based thrust. This assumption is based primarily on studies of the lunate caudal fin of Scombrids (i.e. tuna, mackerel), which is comparatively stiff and exhibits an airfoil-type cross-section. However, this is not representative of the more commonly observed and taxonomically widespread flexible forked tail, yet similar assumptions about economical cruising are widely accepted. Here, we present the first comparative experimental study of forked versus truncate tail shape and compare the fluid mechanical properties and energetics of two common nearshore fish species. We examined the hypothesis that forked tails provide a hydrodynamic advantage over truncate tails at typical cruising speeds. Using experimentally derived pressure fields, we show that the forked tail produces thrust via acceleration reaction forces like the truncate tail during cruising but at increased energetic costs. This reduced efficiency corresponds to differences in the performance of the two tail geometries and body kinematics to maintain similar overall thrust outputs. Our results offer insights into the benefits and tradeoffs of two common fish tail morphologies and shed light on the functional morphology of fish swimming to guide the development of bio-inspired underwater technologies.
Collapse
Affiliation(s)
- Nils B Tack
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brad J Gemmell
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
10
|
Swimming behavior and hydrodynamics of the Chinese cavefish Sinocyclocheilus rhinocerous and a possible role of its head horn structure. PLoS One 2022; 17:e0270967. [PMID: 35877693 PMCID: PMC9312365 DOI: 10.1371/journal.pone.0270967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The blind troglobite cavefish Sinocyclocheilus rhinocerous lives in oligotrophic, phreatic subterranean waters and possesses a unique cranial morphology including a pronounced supra-occipital horn. We used a combined approach of laboratory observations and Computational Fluid Dynamics modeling to characterize the swimming behavior and other hydrodynamic aspects, i.e., drag coefficients and lateral line sensing distance of S. rhinocerous. Motion capture and tracking based on an Artificial Neural Network, complemented by a Particle Image Velocimetry system to map out water velocity fields, were utilized to analyze the motion of a live specimen in a laboratory aquarium. Computational Fluid Dynamics simulations on flow fields and pressure fields, based on digital models of S. rhinocerous, were also performed. These simulations were compared to analogous simulations employing models of the sympatric, large-eyed troglophile cavefish S. angustiporus. Features of the cavefish swimming behavior deduced from the both live-specimen experiments and simulations included average swimming velocities and three dimensional trajectories, estimates for drag coefficients and potential lateral line sensing distances, and mapping of the flow field around the fish. As expected, typical S. rhinocerous swimming speeds were relatively slow. The lateral line sensing distance was approximately 0.25 body lengths, which may explain the observation that specimen introduced to a new environment tend to swim parallel and near to the walls. Three-dimensional simulations demonstrate that just upstream from the region under the supra-occipital horn the equipotential of the water pressure and velocity fields are nearly vertical. Results support the hypothesis that the conspicuous cranial horn of S. rhinocerous may lead to greater stimulus of the lateral line compared to fish that do not possess such morphology.
Collapse
|
11
|
Fies J, Gemmell BJ, Fogerson SM, Morgan JR, Tytell ED, Colin SP. Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration. J Exp Biol 2021; 224:273346. [PMID: 34632494 PMCID: PMC8627570 DOI: 10.1242/jeb.242639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/06/2021] [Indexed: 01/26/2023]
Abstract
Axon regeneration is critical for restoring neural function after spinal cord injury. This has prompted a series of studies on the neural and functional recovery of lampreys after spinal cord transection. Despite this, there are still many basic questions remaining about how much functional recovery depends on axon regeneration. Our goal was to examine how swimming performance is related to degree of axon regeneration in lampreys recovering from spinal cord transection by quantifying the relationship between swimming performance and percent axon regeneration of transected lampreys after 11 weeks of recovery. We found that while swimming speeds varied, they did not relate to percent axon regeneration. In fact, swimming speeds were highly variable within individuals, meaning that most individuals could swim at both moderate and slow speeds, regardless of percent axon regeneration. However, none of the transected individuals were able to swim as fast as the control lampreys. To swim fast, control lampreys generated high amplitude body waves with long wavelengths. Transected lampreys generated body waves with lower amplitude and shorter wavelengths than controls, and to compensate, transected lampreys increased their wave frequencies to swim faster. As a result, transected lampreys had significantly higher frequencies than control lampreys at comparable swimming velocities. These data suggest that the control lampreys swam more efficiently than transected lampreys. In conclusion, there appears to be a minimal recovery threshold in terms of percent axon regeneration required for lampreys to be capable of swimming; however, there also seems to be a limit to how much they can behaviorally recover. Summary: Lampreys that have recovered from having their spinal cords transected do not fully regain swimming abilities and are not able to swim as efficiently as non-transected lampreys.
Collapse
Affiliation(s)
- Jacob Fies
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809USA
| | - Brad J Gemmell
- Integrative Biology, University of South Florida, Tampa, FL 33620USA
| | - Stephanie M Fogerson
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543USA.,Department of Biology, Duke University, Durham, NC 27708USA
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543USA
| | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA 02155USA
| | - Sean P Colin
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809USA.,The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543USA
| |
Collapse
|
12
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
13
|
Zhong Q, Quinn DB. Streamwise and lateral maneuvers of a fish-inspired hydrofoil. BIOINSPIRATION & BIOMIMETICS 2021; 16:056015. [PMID: 34352733 DOI: 10.1088/1748-3190/ac1ad9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Fish are highly maneuverable compared to human-made underwater vehicles. Maneuvers are inherently transient, so they are often studied via observations of fish and fish-like robots, where their dynamics cannot be recorded directly. To study maneuvers in isolation, we designed a new kind of wireless carriage whose air bushings allow a hydrofoil to maneuver semi-autonomously in a water channel. We show that modulating the hydrofoil's frequency, amplitude, pitch bias, and stroke speed ratio (pitching speed of left vs right stroke) produces streamwise and lateral maneuvers with mixed effectiveness. Modulating pitch bias, for example, produces quasi-steady lateral maneuvers with classic reverse von Kármán wakes, whereas modulating the stroke speed ratio produces sudden yaw torques and vortex pairs like those observed behind turning zebrafish. Our findings provide a new framework for considering in-plane maneuvers and streamwise/lateral trajectory corrections in fish and fish-inspired robots.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Daniel B Quinn
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| |
Collapse
|
14
|
Rival DE, Yang W, Caron JB. Fish without Tail Fins-Exploring the Function of Tail Morphology of the First Vertebrates. Integr Comp Biol 2021; 61:37-49. [PMID: 33690846 DOI: 10.1093/icb/icab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use a series of hydrodynamic experiments on abstracted models to explore whether primitive vertebrates may have swum under various conditions without a clearly-differentiated tail fin. Cambrian vertebrates had post-anal stubby tails, some had single dorsal and ventral fins, but none had yet evolved a clearly differentiated caudal fin typical of post-Cambrian fishes, and must have relied on their long and flexible laterally-compressed bodies for locomotion, i.e., by bending their bodies side-to-side in order to propagate waves from head to tail. We approach this problem experimentally based on an abstracted model of Metaspriggina walcotti from the 506-million-year old Burgess Shale by using oscillating thin flexible plates while varying the tail fin geometry from rectangular to uniform, and finally to a no tail-fin condition. Despite a missing tail fin, this study supports the observation that the abstracted Metaspriggina model can generate a strong propulsive force in cruise conditions, both away from, and near the sea bed (in ground effect). However, when the abstracted Metaspriggina model moves in ground effect, a weaker performance is observed, indicating that Metaspriggina may not necessarily have been optimized for swimming near the sea bed. When considering acceleration from rest, we find that the Metaspriggina model's performance is not significantly different from other morphological models (abstracted truncate tail and abstracted heterocercal tail). Statistical analysis shows that morphological parameters, swimming modes, and ground effect all play significant roles in thrust performance. While the exact relationships of Cambrian vertebrates are still debated, as agnathans, they share some general characteristics with modern cyclostomes, in particular an elongate body akin to lampreys. Lampreys, as anguilliform swimmers, are considered to be some of the most efficient swimmers using a particular type of suction thrust induced by the traveling body wave as it travels from head to tail. Our current experiments suggest that Metaspriggina's ability in acceleration from rest, through possibly a similar type of suction thrust, which is defined as the ability to generate low pressure on upstream facing sections of the body, might have evolved early in response to increasing predator pressure during the Cambrian Explosion.
Collapse
Affiliation(s)
- David E Rival
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 2V9, Canada
| | - Wenchao Yang
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 2V9, Canada
| | - Jean-Bernard Caron
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2J7, Canada
| |
Collapse
|
15
|
Thandiackal R, White CH, Bart-Smith H, Lauder GV. Tuna robotics: hydrodynamics of rapid linear accelerations. Proc Biol Sci 2021; 288:20202726. [PMID: 33593180 DOI: 10.1098/rspb.2020.2726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.
Collapse
Affiliation(s)
- Robin Thandiackal
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Carl H White
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - Hilary Bart-Smith
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Battista NA. Diving into a Simple Anguilliform Swimmer’s Sensitivity. Integr Comp Biol 2020; 60:1236-1250. [DOI: 10.1093/icb/icaa131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
Computational models of aquatic locomotion range from modest individual simple swimmers in 2D to sophisticated 3D multi-swimmer models that attempt to parse collective behavioral dynamics. Each of these models contain a multitude of model input parameters to which its outputs are inherently dependent, that is, various performance metrics. In this work, the swimming performance’s sensitivity to parameters is investigated for an idealized, simple anguilliform swimming model in 2D. The swimmer considered here propagates forward by dynamically varying its body curvature, similar to motion of a Caenorhabditis elegans. The parameter sensitivities were explored with respect to the fluid scale (Reynolds number), stroke (undulation) frequency, as well as a kinematic parameter controlling the velocity and acceleration of each upstroke and downstroke. The input Reynolds number and stroke frequencies sampled were from [450, 2200] and [1, 3] Hz, respectively. In total, 5000 fluid–structure interaction simulations were performed, each with a unique parameter combination selected via a Sobol sequence, in order to conduct global sensitivity analysis. Results indicate that the swimmer’s performance is most sensitive to variations in its stroke frequency. Trends in swimming performance were discovered by projecting the performance data onto particular 2D subspaces. Pareto-like optimal fronts were identified. This work is a natural extension of the parameter explorations of the same model from Battista in 2020.
Collapse
Affiliation(s)
- Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, USA
- From the symposium “Melding Modeling and Morphology: integrating approaches to understand the evolution of form and function” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas
| |
Collapse
|