1
|
Hayman DJ, Morrin LM, Halder S, Phillips EJ, Simons MJP, Evans IR. Expansion of Drosophila haemocytes using a conditional GeneSwitch driver affects larval haemocyte function, but does not modulate adult lifespan or survival after severe infection. J Exp Biol 2025; 228:jeb249649. [PMID: 40116111 PMCID: PMC12079669 DOI: 10.1242/jeb.249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Macrophages are responsible for diverse and fundamental functions in vertebrates. Drosophila blood cells (haemocytes) are dominated by cells bearing a striking homology to vertebrate macrophages (plasmatocytes). The importance of haemocytes has been demonstrated previously, with immune and developmental phenotypes observed upon haemocyte ablation. Here, we show that we can increase Hemolectin (Hml)-positive cell numbers using a constitutively active form of ras and ablate Hml-positive cell numbers using the pro-apoptotic transgene bax. However, compared with larvae, total blood cell numbers in adults were not significantly affected by experimental expansion or ablation, implying the existence of feedback mechanisms regulating haemocyte numbers. No effect on lifespan was observed from driving ras and bax in Hml-positive cells via a conditional approach (Hml-GeneSwitch). Using constitutive expression, we observed differences in lifespan; however, we attribute this to differences in genetic background. Additionally, no effect of either transgene was observed upon infection with a high dose of two different bacterial species, although pupal lethality was observed upon expansion of Hml-positive cells in a self-encapsulation mutant genetic background. The latter confirms that changes in Hml-positive cell numbers can result in phenotypes. The lack of adult phenotypes could be due to the strength of experimental manipulations or compensation via feedback mechanisms operating to regulate total blood cell numbers. Our study demonstrates the importance of conditional approaches to modulate haemocyte cell numbers, allowing for more precise study of innate immune function. This strategy could be especially fruitful to uncover mechanisms regulating total blood cell numbers across development and ageing.
Collapse
Affiliation(s)
- Dan J. Hayman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lola M. Morrin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sudipta Halder
- Division of Clinical Medicine, School of Medicine and Population Health and Bateson Centre for Disease Mechanisms, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | - Iwan R. Evans
- Division of Clinical Medicine, School of Medicine and Population Health and Bateson Centre for Disease Mechanisms, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in dietary restriction-mediated lifespan outcomes in Drosophila. GeroScience 2025:10.1007/s11357-025-01537-5. [PMID: 39888582 DOI: 10.1007/s11357-025-01537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A Villa
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Gardeux V, Bevers RPJ, David FPA, Rosschaert E, Rochepeau R, Deplancke B. DGRPool, a web tool leveraging harmonized Drosophila Genetic Reference Panel phenotyping data for the study of complex traits. eLife 2024; 12:RP88981. [PMID: 39431984 PMCID: PMC11493408 DOI: 10.7554/elife.88981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. Drosophila melanogaster is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource. To address this, we created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 1034 phenotypes across 135 DGRP studies in a common environment. DGRPool enables users to download data and run various tools such as genome-wide (GWAS) and phenome-wide (PheWAS) association studies. As a proof-of-concept, DGRPool was used to study the longevity phenotype and uncovered both established and unexpected correlations with other phenotypes such as locomotor activity, starvation resistance, desiccation survival, and oxidative stress resistance. DGRPool has the potential to facilitate new genetic and molecular insights of complex traits in Drosophila and serve as a valuable, interactive tool for the scientific community.
Collapse
Affiliation(s)
- Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Roel PJ Bevers
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabrice PA David
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Bioinformatics Competence Center, EPFLLausanneSwitzerland
| | - Emily Rosschaert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, KU LeuvenLeuvenBelgium
| | - Romain Rochepeau
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
4
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in Dietary Restriction-Mediated Lifespan Outcomes in Drosophila. RESEARCH SQUARE 2024:rs.3.rs-4876799. [PMID: 39372939 PMCID: PMC11451724 DOI: 10.21203/rs.3.rs-4876799/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories, represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L. Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A. Villa
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in Dietary Restriction-Mediated Lifespan Outcomes in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611756. [PMID: 39314308 PMCID: PMC11418940 DOI: 10.1101/2024.09.06.611756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories, represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A Villa
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular mechanisms of genotype-dependent lifespan variation mediated by caloric restriction: insight from wild yeast isolates. FRONTIERS IN AGING 2024; 5:1408160. [PMID: 39055969 PMCID: PMC11269085 DOI: 10.3389/fragi.2024.1408160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, United States
- Ora Biomedical, Seattle, WA, United States
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, United States
- Optispan, Seattle, WA, United States
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular Mechanisms of Genotype-Dependent Lifespan Variation Mediated by Caloric Restriction: Insight from Wild Yeast Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585422. [PMID: 38559208 PMCID: PMC10979966 DOI: 10.1101/2024.03.17.585422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Ora Biomedical, Seattle, WA, 98168, USA
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Optispan, Seattle, WA, 98168, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
8
|
Narayan VP, Wasana N, Wilson AJ, Chenoweth SF. Misalignment of plastic and evolutionary responses of lifespan to novel carbohydrate diets. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231732. [PMID: 38234441 PMCID: PMC10791524 DOI: 10.1098/rsos.231732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Diet elicits varied effects on longevity across a wide range of animal species where dietary discordance between an organisms' evolutionary and developmental dietary history is increasingly recognized to play a critical role in shaping lifespan. However, whether such changes, predominantly assessed in a single generation, lead to evolutionary shifts in lifespan remains unclear. In this study, we used an experimental evolution approach to test whether changes in an organisms' evolutionary and developmental dietary history, specifically carbohydrate content, causes lifespan evolution in Drosophila serrata. After 30 generations, we investigated the evolutionary potential of lifespan in response to four novel diets that varied systematically in their ratio of carbohydrate-protein content. We also examined developmental plasticity effects using a set of control populations that were raised on the four novel environments allowing us to assess the extent to which plastic responses of lifespan mirrored adaptive responses observed following experimental evolution. Both high- and low-carbohydrate diets elicited plastic effects on lifespan; however, the plastic responses for lifespan to developmental diets bore little resemblance to the evolved responses on evolutionary diets. Understanding the dietary conditions regulating the match/mismatch of plastic and evolved responses will be important in determining whether a particular match/mismatch combination is adaptive for lifespan. While the differences in evolutionary diet by developmental diet interactions are only beginning to be elucidated, this study lays the foundation for future investigations of carbohydrate contributions to evolved and plastic effects on health and lifespan.
Collapse
Affiliation(s)
- Vikram P. Narayan
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Nidarshani Wasana
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alastair J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Stephen F. Chenoweth
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Li M, Macro J, Meadows K, Mishra D, Martin D, Olson S, Huggins BJ, Graveley BR, Li JYH, Rogina B. Late-life shift in caloric intake affects fly metabolism and longevity. Proc Natl Acad Sci U S A 2023; 120:e2311019120. [PMID: 38064506 PMCID: PMC10723134 DOI: 10.1073/pnas.2311019120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/05/2023] [Indexed: 12/17/2023] Open
Abstract
The prevalence of obesity is increasing in older adults and contributes to age-related decline. Caloric restriction (CR) alleviates obesity phenotypes and delays the onset of age-related changes. However, how late in life organisms benefit from switching from a high-(H) to a low-calorie (L) diet is unclear. We transferred male flies from a H to a L (HL) diet or vice versa (LH) at different times during life. Both shifts immediately change fly rate of aging even when applied late in life. HL shift rapidly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and extends lifespan. Transcriptomic analysis uncovers that flies aged on H diet have acquired increased stress response, which may have temporal advantage over flies aged on L diet and leads to rapid decrease in mortality rate after HL switch. Conversely, a LH shift increases mortality rate, which is temporarily higher than in flies aged on a H diet, and shortens lifespan. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including increase in ribosome biogenesis, stress response and growth. These changes reflect protection from sudden release of ROS, energy storage, and use of energy to growth, which all likely contribute to higher mortality rate. As the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our study provides framework to study underlying mechanisms of CR interventions that counteract the detrimental effects of H diets and reduce rate of aging even when initiated later in life.
Collapse
Affiliation(s)
- Michael Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Jacob Macro
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Kali Meadows
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dushyant Mishra
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dominique Martin
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Sara Olson
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Billy Joe Huggins
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Brenton R. Graveley
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| |
Collapse
|
10
|
Drake ED, Simons MJ. Stochasticity Explains Nongenetic Inheritance of Lifespan and Apparent Trade-Offs between Reproduction and Aging. AGING BIOLOGY 2023; 1:20230012. [PMID: 40151671 PMCID: PMC7617532 DOI: 10.59368/agingbio.20230012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Stochastic effects are central to the biology and demography of aging. Genetically identical individuals do not all die at the exact same time but show a distribution of lifespan. Although such effects are appreciated, any cascading effects from the stochastic effects of aging are underappreciated. We show here that genetically identical female flies (Drosophila melanogaster) that live long produce longer-lived daughters. In line with previous work, we also find that daughters born to older mothers are shorter-lived, also termed the Lansing effect. We further show that longer-lived flies produce less offspring, suggesting an apparent trade-off due to stochastic effects alone. We explain these effects using an extension of the reliability theory of aging by dichotomizing aging physiology in reproduction and lifespan-supporting units. These simple models reproduce the nongenetic inheritance of lifespan, the Lansing effect, and trade-offs between reproduction and lifespan. Our work implies that if nongenetic inheritance of lifespan is widespread, it explains the generally low heritability of this trait. Furthermore, trade-offs between performance, for example, reproduction, and lifespan may be less widespread than predicted by the evolutionary biology of aging, stemming from stochasticity rather than differential investment. Antiaging treatments could therefore come without any unintended costs to other physiology, a perceived risk that limits the translation of these treatments to humans.
Collapse
Affiliation(s)
- Elizabeth D. Drake
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Institute of Ecology and Evolution, Ashworth Laboratories, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mirre J.P. Simons
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Lin YC, Zhang M, Chang YJ, Kuo TH. Comparisons of lifespan and stress resistance between sexes in Drosophila melanogaster. Heliyon 2023; 9:e18178. [PMID: 37576293 PMCID: PMC10415617 DOI: 10.1016/j.heliyon.2023.e18178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Animals exhibit different extents of sexual dimorphism in a variety of phenotypes. Sex differences in longevity, one of the most complex life history traits, have also been reported. Although lifespan regulation has been studied extensively in the fruit fly, Drosophila melanogaster, the sex differences in lifespan have not been consistent in previous studies. To explore this issue, we revisited this question by examining the lifespan and stress resistance of both sexes among 15 inbred strains. We first found positive correlations between males and females from the same strain in terms of lifespan and resistance to starvation and desiccation stress. Although the lifespan difference between male and female flies varied greatly depending on the strain, males across all strains collectively had a longer lifespan. In contrast, females showed better resistance to starvation and desiccation stress. We also observed greater variation in lifespan and resistance to starvation and desiccation stress in females. Unexpectedly, there was no notable correlation observed between lifespan and the three types of stress resistance in either males or females. Overall, our study provides new data regarding sexual dimorphism in fly lifespan and stress resistance; this information may promote the investigation of mechanisms underlying longevity in future research.
Collapse
Affiliation(s)
- Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - MingYang Zhang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
12
|
Piper MDW, Zanco B, Sgrò CM, Adler MI, Mirth CK, Bonduriansky R. Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice? FEBS J 2023; 290:1725-1734. [PMID: 35466532 PMCID: PMC10952493 DOI: 10.1111/febs.16463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Reducing overall food intake, or lowering the proportion of protein relative to other macronutrients, can extend the lifespan of diverse organisms. A number of mechanistic theories have been developed to explain this phenomenon, mostly assuming that the molecules connecting diet to lifespan are evolutionarily conserved. A recent study using Drosophila melanogaster females has pinpointed a single essential micronutrient that can explain how lifespan is changed by dietary restriction. Here, we propose a likely mechanism for this observation, which involves a trade-off between lifespan and reproduction, but in a manner that is conditional on the dietary supply of an essential micronutrient - a sterol. Importantly, these observations argue against previous evolutionary theories that rely on constitutive resource reallocation or damage directly inflicted by reproduction. Instead, they are compatible with a model in which the inverse relationship between lifespan and food level is caused by the consumer suffering from varying degrees of malnutrition when maintained on lab food. The data also indicate that animals on different lab foods may suffer from different nutritional imbalances and that the mechanisms by which dietary restriction benefits the lifespan of different species may vary. This means that translating the mechanistic findings from lab animals to humans will not be simple and should be interpreted in light of the range of challenges that have shaped each organism's lifespan in the wild and the composition of the natural diets upon which they would feed.
Collapse
Affiliation(s)
| | - Brooke Zanco
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | | - Christen K. Mirth
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
| |
Collapse
|
13
|
Munneke AS, Chakraborty TS, Porter SS, Gendron CM, Pletcher SD. The serotonin receptor 5-HT2A modulates lifespan and protein feeding in Drosophila melanogaster. FRONTIERS IN AGING 2022; 3:1068455. [PMID: 36531741 PMCID: PMC9751412 DOI: 10.3389/fragi.2022.1068455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
The conserved neurotransmitter serotonin has been shown to be an important modulator of lifespan in specific nutritional contexts; however, it remained unclear how serotonin signaling influences lifespan under normal conditions. Here, we show that serotonin signaling through the 5-HT2A receptor influences lifespan, behavior, and physiology in Drosophila. Loss of the 5-HT2A receptor extends lifespan and induces a resistance to changes in dietary protein that are normally detrimental to lifespan. 5-HT2A -/- null mutant flies also display decreased protein feeding and protein content in the body. Therefore, serotonin signaling through receptor 5-HT2A is likely recruited to promote motivation for protein intake, and chronic reduction of protein-drive through loss of 5-HT2A signaling leads to a lower protein set-point adaptation, which influences physiology, decreases feeding, and increases lifespan. Our findings reveal insights into the mechanisms by which organisms physiologically adapt in response to perceived inability to satisfy demand.
Collapse
Affiliation(s)
- Allyson S. Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tuhin S. Chakraborty
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Saige S. Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Christi M. Gendron
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Scott D. Pletcher
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Gertiatrics Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Shaposhnikov MV, Guvatova ZG, Zemskaya NV, Koval LA, Schegoleva EV, Gorbunova AA, Golubev DA, Pakshina NR, Ulyasheva NS, Solovev IA, Bobrovskikh MA, Gruntenko NE, Menshanov PN, Krasnov GS, Kudryavseva AV, Moskalev AA. Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Commun Biol 2022; 5:566. [PMID: 35681084 PMCID: PMC9184560 DOI: 10.1038/s42003-022-03524-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the global challenges of our time. The search for new anti-aging interventions is also an issue of great actuality. We report on the success of Drosophila melanogaster lifespan extension under the combined influence of dietary restriction, co-administration of berberine, fucoxanthin, and rapamycin, photodeprivation, and low-temperature conditions up to 185 days in w1118 strain and up to 213 days in long-lived E(z)/w mutants. The trade-off was found between longevity and locomotion. The transcriptome analysis showed an impact of epigenetic alterations, lipid metabolism, cellular respiration, nutrient sensing, immune response, and autophagy in the registered effect. The lifespan of fruit flies can be extended up to 213 days under specialized conditions.
Collapse
|
15
|
Gautrey SL, Simons MJP. Amino acid availability is not essential for lifespan extension by dietary restriction in the fly. J Gerontol A Biol Sci Med Sci 2022; 77:2181-2185. [PMID: 35486979 DOI: 10.1093/gerona/glac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/12/2022] Open
Abstract
Dietary restriction (DR) is one of the most potent ways to extend health- and lifespan. Key progress in understanding the mechanisms of DR, and ageing more generally, was made when dietary protein, and more specifically essential amino acids (EAA), were identified as the dietary component to restrict to obtain DR's health and lifespan benefits. This role of dietary amino acids has influenced work on ageing mechanisms, especially in nutrient sensing, e.g. Tor and insulin(-like) signalling networks. Experimental biology in Drosophila melanogaster has been instrumental in generating and confirming the hypothesis that EAA availability is important in ageing. Here, we expand on previous work testing the involvement of EAA in DR through large scale (N=6,238) supplementation experiments across four diets and two genotypes in female flies. Surprisingly, we find that EAA are not essential to DR's lifespan benefits. Importantly, we do identify the fecundity benefits of EAA supplementation suggesting the supplemented EAA were bioavailable. Furthermore, we find that the effects of amino acids on lifespan vary by diet and genetic line studied and that at our most restricted diet fecundity is constrained by other nutrients than EAA. We suggest that DR for optimal health is a concert of nutritional effects, orchestrated by genetic, dietary and other environmental interactions. Our results question the universal importance of amino acid availability in the biology of ageing and DR.
Collapse
Affiliation(s)
- Sarah L Gautrey
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Mirre J P Simons
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
16
|
Longo VD, Anderson RM. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022; 185:1455-1470. [PMID: 35487190 PMCID: PMC9089818 DOI: 10.1016/j.cell.2022.04.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.
Collapse
Affiliation(s)
- Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
17
|
Simons MJP, Sebire M, Verhulst S, Groothuis TGG. Androgen Elevation Accelerates Reproductive Senescence in Three-Spined Stickleback. Front Cell Dev Biol 2022; 9:752352. [PMID: 34977010 PMCID: PMC8718761 DOI: 10.3389/fcell.2021.752352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Costs of reproduction shape the life-history evolution of investment in current and future reproduction and thereby aging. Androgens have been proposed to regulate the physiology governing these investments. Furthermore, androgens are hypothesized to play a central role in carotenoid-dependent sexual signaling, regulating how much carotenoids are diverted to ornamentation and away from somatic maintenance, increasing oxidative stress, and accelerating aging. We investigated these relationships in male three-spined stickleback in which we elevated 11-ketotestosterone and supplied vitamin E, an antioxidant, in a 2 × 2 design. Androgen elevation shortened the time stickleback maintained reproductive activities. We suspect that this effect is caused by 11-ketotestosterone stimulating investment in current reproduction, but we detected no evidence for this in our measurements of reproductive effort: nest building, body composition, and breeding coloration. Carotenoid-dependent coloration was even slightly decreased by 11-ketotestosterone elevation and was left unaffected by vitamin E. Red coloration correlated with life expectancy and reproductive capacity in a quadratic manner, suggesting overinvestment of the individuals exhibiting the reddest bellies. In contrast, blue iris color showed a negative relationship with survival, suggesting physiological costs of producing this aspect of nuptial coloration. In conclusion, our results support the hypothesis that androgens regulate investment in current versus future reproduction, yet the precise mechanisms remain elusive. The quadratic relationships between sexual signal expression and aspects of quality have wider consequences for how we view sexual selection on ornamentation and its relationship with aging.
Collapse
Affiliation(s)
- Mirre J P Simons
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marion Sebire
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Simon Verhulst
- Behavioural Biology, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, Netherlands
| | - Ton G G Groothuis
- Behavioural Biology, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Shen J, Shan J, Liang B, Zhang D, Tang H, Zhong L, Li M. Effects of Atomoxetine Hydrochloride on Regulation of Lifespan in Drosophila Model. J Nutr Health Aging 2022; 26:203-208. [PMID: 35166316 DOI: 10.1007/s12603-022-1741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nootropics (smart drugs) are used by students to enhance cognitive performance which have been reported times in recent years. However, some of the nootropics are central nervous system stimulants which are very likely to lead to addiction or complications such as vomiting and dizziness. Are there nootropics that can improve learning behavior while having potential positive effect on health? Here, we reported that Atomoxetine (ATX) has sex-specific effect on prolonging the life span of female Drosophila melanogaster. Further study indicated that ATX enhanced female resistance to heat stress and their vertical climbing ability, but it did decrease the number of eggs laid. ATX increased food-intake and sleep time both of females and males, and significantly reduced the 24h spontaneous activity of females and males. Our results present the sex dimorphic effect of ATX on life span regulation in Drosophila, and support further research on the beneficial role of ATX and the mechanisms in other animal models.
Collapse
Affiliation(s)
- J Shen
- Jie Shen, Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China 310018,
| | | | | | | | | | | | | |
Collapse
|
19
|
Guzman RM, Howard ZP, Liu Z, Oliveira RD, Massa AT, Omsland A, White SN, Goodman AG. Natural genetic variation in Drosophila melanogaster reveals genes associated with Coxiella burnetii infection. Genetics 2021; 217:6117219. [PMID: 33789347 PMCID: PMC8045698 DOI: 10.1093/genetics/iyab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10−5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-β signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.
Collapse
Affiliation(s)
- Rosa M Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Zachary P Howard
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ryan D Oliveira
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alisha T Massa
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen N White
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,USDA-ARS Animal Disease Research, Pullman, WA 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|