1
|
Coughlin DJ, Dutterer MD, LaMonica ZD, Peyton EM, Kwon ES, Hittle KA. Muscle and Metabolic Genes Are Differentially Expressed During Thermal Acclimation by the Brook Trout Myotome. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:416-426. [PMID: 39817681 DOI: 10.1002/jez.2901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures. Previous work has shown that brook trout display a significant thermal acclimation response in their myotomal muscle, with slower contractile properties observed in warm acclimated fish. In this study, gene expression was examined in hatchery brook trout acclimated to a range in temperatures (4, 10 or 20°C). Brook trout displayed variations in gene expression in their myotomal muscle in accordance with acclimation temperature. Genes important for muscle function, cellular metabolism, protein degradation, and stress response showed variation to both warm (20°C) and cold (4°C) acclimation. The warm acclimated fish also showed decreased expression of genes associated with aerobic metabolism and increased expression of genes for heat shock proteins, while the cold acclimated fish showed increased expression of genes associated with lipid metabolism and protein turnover. α-tubulin displayed a close association with thermal acclimation, increasing in expression with acclimation temperature. The patterns of muscle gene expression were the opposite of what was expected. Although warm acclimated fish have previously been shown to display slow muscle contractile properties, this study found that warm acclimation is associated with increased expression of genes for kinetically faster isoforms of important muscle proteins. Collectively, the results demonstrate a robust response to elevated temperature in the hatchery fish greater than 10,000 genes showing differential expression with temperature. These results provide a roadmap for the analysis of the acclimation response of native populations of brook trout encountering climate change.
Collapse
Affiliation(s)
- David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | | | | - Evelyn M Peyton
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - Elizabeth S Kwon
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - Kathleen A Hittle
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| |
Collapse
|
2
|
O'Donnell MJ, Regish AM, McCormick SD, Letcher BH. How quickly do brook trout lose long-term thermal acclimation? J Therm Biol 2025; 129:104103. [PMID: 40186954 DOI: 10.1016/j.jtherbio.2025.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Abundances of coldwater adapted stream fish populations are declining largely due to anthropogenic influences, including increased temperature. To persist in streams with unsuitable thermal habitat, fish must move to coldwater patches, acclimate, or adapt to water temperatures above thermal optima. Brook trout, a coldwater adapted salmonid, has previously displayed physiological plasticity and the ability for reversible thermal acclimation when reared at higher temperatures. However, because stream temperatures are not static, it is important to explore the rate at which thermal acclimation occurs to evaluate whether prior thermal experience will influence future thermal performance. To determine the temporal scale in loss of thermal acclimation as water temperatures cool, we acclimated brook trout to three thermal regimes: +0 °C (ambient; mimicking the daily average water temperature of a nearby long-term study site), as well as +2 °C and +4 °C above ambient. After 2 years of being reared under those conditions, fish from the warmer treatments were moved to a common, colder temperature (ambient). We then used critical thermal maximum to measure the loss in acclimation response of fish from each treatment over time. We found that regardless of initial acclimation temperature, thermal tolerance of warm acclimated fish decreased rapidly for 1 week, then gradually decreased, and was completely lost within 42 days. This gradual loss of acclimation may be valuable to persistence in warmer streams and will be important to include in models of the impact climate change has on brook trout and other aquatic ectotherms with significant thermal plasticity.
Collapse
Affiliation(s)
- M J O'Donnell
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Research Laboratory, 1 Migratory Way, Turners Falls, MA, 01376, USA.
| | - A M Regish
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Research Laboratory, 1 Migratory Way, Turners Falls, MA, 01376, USA.
| | - S D McCormick
- Department of Biology, University of Massachusetts, Amherst, MA, USA.
| | - B H Letcher
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Research Laboratory, 1 Migratory Way, Turners Falls, MA, 01376, USA.
| |
Collapse
|
3
|
Waraniak J, Batchelor S, Wagner T, Keagy J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178960. [PMID: 40022980 DOI: 10.1016/j.scitotenv.2025.178960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Extreme weather events, such as heatwaves, are becoming more frequent and intense as a result of climate change. Critically, such extreme weather events can be more important drivers of extirpation and selection than changes in annual or seasonal averages and they pose a particularly large threat to poikilothermic organisms. In this study, we evaluated the transcriptomic response of a coldwater adapted fish species, the eastern brook trout (Salvelinus fontinalis), to two successive heatwaves during July and August 2022. We sampled brook trout at eight time points from four streams (N = 116 fish), sequenced mRNA from gill samples using TagSeq, and quantified expression levels of 32,670 unique transcripts. Multivariate analyses found that overall expression patterns in response to water temperature change were similar among streams. These analyses further detected groups of genes involved in immune response and oxygen carrier activity that were upregulated and downregulated respectively at higher water temperatures. We also detected 43 genes that were differentially expressed at different time points and followed the same expression pattern during the two heatwaves. Of these genes, 42 covaried with water temperature and most (27, 62.8 %) exhibited responses that varied by stream. Some of the differentially expressed genes, including heat shock proteins and cold-inducible RNA binding proteins, have been widely linked to temperature responses in experimental studies, whereas other genes we identified have functions that have not been well-studied in relationship to temperature or have unknown functions. This study shows the utility of landscape transcriptomic approaches to identify important biological processes governing wild organismal responses to short-term stressors. The results of this study can guide future investigations to identify phenotypic and genetic diversity that contribute to adaptive responses to heatwaves and improve predictions of how populations will respond to future climate change.
Collapse
Affiliation(s)
- Justin Waraniak
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA.
| | - Sarah Batchelor
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA
| | - Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, 410 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hook SE, Farr RJ, Su J, Hobday AJ, Wingate C, Woolley L, Pilmer L. Transcriptional profiles reveal physiological mechanisms for compensation during a simulated marine heatwave in Yellowtail Kingfish (Seriola lalandi). BMC Genomics 2025; 26:230. [PMID: 40069618 PMCID: PMC11895300 DOI: 10.1186/s12864-025-11283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/23/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Changing ocean temperatures are already causing declines in populations of marine organisms. Predicting the capacity of organisms to adjust to the pressures posed by climate change is a topic of much current research effort, particularly for species we farm or harvest. To explore one measure of phenotypic plasticity, the physiological compensations in response to heat stress as might be experienced in a marine heatwave, we exposed Yellowtail Kingfish (Seriola lalandi) to sublethal heat stress, and used the transcriptome in gill and muscle, benchmarked against heat shock proteins and oxidative stress indicators, to characterise the acute heat stress response (6 h after the initiation of stress), and the physiological compensation to that response (24 and 72 h after the initiation of stress). RESULTS The heat stress experiments induced elevations in heat shock proteins, as measured in blood, demonstrating the sublethal stress level. The initial response (6 h) to heat stress included the expected cellular stress response. Exposure of 24 h or more led to altered transcriptomic patterns for protein degradation, membrane transporters, and primary metabolism. In the muscle, numerous transcripts with mitochondrial function had altered abundance. There was a profound change to the regulation of transcription, as well as numerous transcripts with differential exon usage, suggesting that this may be a mechanism for conferring physiological resilience to heat stress. CONCLUSIONS These results demonstrate the processes involved in acclimation to heat stress in this species, and the utility of using the transcriptome to assess plasticity. It also showed that differential exon usage may be an important mechanism for conferring plasticity. Future work should investigate the role of genome regulation, and alternative splicing in particular, on conferring resilience to temperature changes.
Collapse
Affiliation(s)
| | - Ryan J Farr
- CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Jenny Su
- CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | | | - Catherine Wingate
- DPIRD Marine Fish, Aquaculture Research and Development, Fremantle, WA, Australia
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Lindsey Woolley
- DPIRD Marine Fish, Aquaculture Research and Development, Fremantle, WA, Australia
| | - Luke Pilmer
- DPIRD Marine Fish, Aquaculture Research and Development, Fremantle, WA, Australia
| |
Collapse
|
5
|
Durhack TC, Thorstensen MJ, Mackey TE, Aminot M, Lawrence MJ, Audet C, Enders EC, Jeffries KM. Behavioural responses to acute warming precede critical shifts in the cellular and physiological thermal stress responses in a salmonid fish (brook trout, Salvelinus fontinalis). J Exp Biol 2025; 228:JEB249964. [PMID: 39774845 DOI: 10.1242/jeb.249964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
From a conservation perspective, it is important to identify when sub-lethal temperatures begin to adversely impact an organism. However, it is unclear whether, during acute exposures, sub-lethal cellular thresholds occur at similar temperatures to other physiological or behavioural changes, or at temperatures associated with common physiological endpoints measured in fishes to estimate thermal tolerance. To test this, we estimated temperature preference (15.1±1.1°C, mean±s.d.) using a shuttle box, agitation temperature (22.0±1.4°C), defined as the point where a fish exhibits a behavioural avoidance response, and the upper thermal limit (CTmax, 28.2±0.4°C) for 1 year old brook trout (Salvelinus fontinalis) acclimated to 10°C. We then acutely exposed a different subset of fish to the mean temperatures associated with the pre-determined physiological endpoints and sampled tissues when they reached the target temperature or after 60 min of recovery at 10°C for transcriptomic analysis. We used qPCR to estimate mRNA transcript levels of genes associated with heat shock proteins, oxidative stress, apoptosis and inducible transcription factors. A major shift in the transcriptome response occurred once the agitation temperature was reached, which may identify a possible link between the cellular stress response and the behavioural avoidance response.
Collapse
Affiliation(s)
- Travis C Durhack
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, Canada, R3T 2N6
| | | | | | | | - Michael J Lawrence
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, Canada, R3T 2N6
| | - Céline Audet
- Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Eva C Enders
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Quebec, QC, Canada, G1K 9A9
| | | |
Collapse
|
6
|
Stewart EMC, Bowman JC, Wilson CC, Raby GD. Local conditions drive interpopulation variation in field-based critical thermal maximum of brook trout. CONSERVATION PHYSIOLOGY 2024; 12:coae086. [PMID: 40171451 PMCID: PMC11959187 DOI: 10.1093/conphys/coae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 04/03/2025]
Abstract
Individual- and population-level responses to thermal change will be pivotal for species' resilience and adaptive responses to climate change. Thermal tolerance of ectotherms has been extensively studied under laboratory conditions, but comparatively few studies have assessed intra- and interpopulation variation under natural conditions or in situ. We measured field critical thermal maximum (CTmax) of brook trout (Salvelinus fontinalis) populations at twenty sites across Ontario, Canada, to assess their thermal tolerance in situ and examine potential factors underlying intraspecific variation in thermal performance. We modelled CTmax as a function of acclimation using short-term stream temperature data to assess interpopulation variation, and used full-season stream temperatures to calculate thermal safety margins (TSM) for each population. CTmax ranged between 27.41 and 30.46°C and acclimation periods between 4 and 40 days were strong predictors of site CTmax, aligning closely with lab-based studies. Seasonal temperature profiles varied substantially among sites, with mean 30-day stream temperature accounting for 66% of the among-site variation in CTmax. TSMs ranged between 0.51 and 15.51°C and reflected differences among site thermal regimes. Streams in watersheds with more urban or agricultural development had the lowest TSMs in addition to those that were fed by lake surface water. This work emphasizes the importance of locally based conservation and management practices that act at or below the population level, as local factors beyond acclimation temperature were partly responsible for variation in thermal tolerance and thus dictate the resiliency of brook trout under climate change.
Collapse
Affiliation(s)
- Erin M C Stewart
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| | - Jacob C Bowman
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| | - Chris C Wilson
- Ontario Ministry of Natural Resources, Aquatic Research and Monitoring Section, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| | - Graham D Raby
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
7
|
Banousse G, Normandeau E, Semeniuk C, Bernatchez L, Audet C. Parental thermal environment controls the offspring phenotype in Brook charr (Salvelinus fontinalis): insights from a transcriptomic study. G3 (BETHESDA, MD.) 2024; 14:jkae051. [PMID: 38478598 PMCID: PMC11075542 DOI: 10.1093/g3journal/jkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024]
Abstract
Brook charr is a cold-water species which is highly sensitive to increased water temperatures, such as those associated with climate change. Environmental variation can potentially induce phenotypic changes that are inherited across generations, for instance, via epigenetic mechanisms. Here, we tested whether parental thermal regimes (intergenerational plasticity) and offspring-rearing temperatures (within-generational plasticity) modify the brain transcriptome of Brook charr progeny (fry stage). Parents were exposed to either cold or warm temperatures during final gonad maturation and their progeny were reared at 5 or 8 °C during the first stages of development. Illumina Novaseq6000 was used to sequence the brain transcriptome at the yolk sac resorption stage. The number of differentially expressed genes was very low when comparing fry reared at different temperatures (79 differentially expressed genes). In contrast, 9,050 differentially expressed genes were significantly differentially expressed between fry issued from parents exposed to either cold or warm temperatures. There was a significant downregulation of processes related to neural and synaptic activity in fry originating from the warm parental group vs fry from the cold parental one. We also observed significant upregulation of DNA methylation genes and of the most salient processes associated with compensation to warming, such as metabolism, cellular response to stress, and adaptive immunity.
Collapse
Affiliation(s)
- Ghizlane Banousse
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| | - Eric Normandeau
- Plateforme de bio-informatique de l’IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada G1V 0A6
| | - Christina Semeniuk
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ont, Canada N9C 1A2
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| |
Collapse
|
8
|
Middleton EK, Gilbert MJH, Landry T, Lamarre SG, Speers-Roesch B. Environmental variation associated with overwintering elicits marked metabolic plasticity in a temperate salmonid, Salvelinus fontinalis. J Exp Biol 2024; 227:jeb246743. [PMID: 38235572 PMCID: PMC10911287 DOI: 10.1242/jeb.246743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Poleward winters commonly expose animals, including fish, to frigid temperatures and low food availability. Fishes that remain active over winter must therefore balance trade-offs between conserving energy and maintaining physiological performance in the cold, yet the extent and underlying mechanisms of these trade-offs are not well understood. We investigated the metabolic plasticity of brook char (Salvelinus fontinalis), a temperate salmonid, from the biochemical to whole-animal level in response to cold and food deprivation. Acute cooling (1°C day-1) from 14°C to 2°C had no effect on food consumption but reduced activity by 77%. We then assessed metabolic performance and demand over 90 days with exposure to warm (8°C) or cold winter (2°C) temperatures while fish were fed or starved. Resting metabolic rate (RMR) decreased substantially during initial cooling from 8°C to 2°C (Q10=4.2-4.5) but brook char exhibited remarkable thermal compensation during acclimation (Q10=1.4-1.6). Conversely, RMR was substantially lower (40-48%) in starved fish, conserving energy. Thus, the absolute magnitude of thermal plasticity may be masked or modified under food restriction. This reduction in RMR was associated with atrophy and decreases in in vivo protein synthesis rates, primarily in non-essential tissues. Remarkably, food deprivation had no effect on maximum oxygen uptake rates and thus aerobic capacity, supporting the notion that metabolic capacity can be decoupled from RMR in certain contexts. Overall, our study highlights the multi-faceted energetic flexibility of Salvelinus spp. that likely contributes to their success in harsh and variable environments and may be emblematic of winter-active fishes more broadly.
Collapse
Affiliation(s)
- Ella K. Middleton
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Matthew J. H. Gilbert
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| | - Thomas Landry
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Simon G. Lamarre
- Département de Biologie, Université de Moncton, Moncton, Canada, E1A 3E9
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, Canada, E2K 5E2
| |
Collapse
|
9
|
Jane SF, Detmer TM, Larrick SL, Rose KC, Randall EA, Jirka KJ, McIntyre PB. Concurrent warming and browning eliminate cold-water fish habitat in many temperate lakes. Proc Natl Acad Sci U S A 2024; 121:e2306906120. [PMID: 38165940 PMCID: PMC10786301 DOI: 10.1073/pnas.2306906120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/02/2023] [Indexed: 01/04/2024] Open
Abstract
Cold-water species in temperate lakes face two simultaneous climate-driven ecosystem changes: warming and browning of their waters. Browning refers to reduced transparency arising from increased dissolved organic carbon (DOC), which absorbs solar energy near the surface. It is unclear whether the net effect is mitigation or amplification of climate warming impacts on suitable oxythermal habitat (<20 °C, >5 mgO/L) for cold-loving species because browning expands the vertical distribution of both cool water and oxygen depletion. We analyzed long-term trends and high-frequency sensor data from browning lakes in New York's Adirondack region to assess the contemporary status of summertime habitat for lacustrine brook trout. Across two decades, surface temperatures increased twice as fast and bottom dissolved oxygen declined >180% faster than average trends for temperate lakes. We identify four lake categories based on oxythermal habitat metrics: constrained, squeezed, overheated, and buffered. In most of our study lakes, trout face either seasonal loss (7 of 15) or dramatic restriction (12 to 21% of the water column; 5 of 15) of suitable habitat. These sobering statistics reflect rapid upward expansion of oxygen depletion in lakes with moderate or high DOC relative to compression of heat penetration. Only in very clear lakes has browning potentially mitigated climate warming. Applying our findings to extensive survey data suggests that decades of browning have reduced oxythermal refugia in most Adirondack lakes. We conclude that joint warming and browning may preclude self-sustaining cold-water fisheries in many temperate lakes; hence, oxythermal categorization is essential to guide triage strategies and management interventions.
Collapse
Affiliation(s)
- Stephen F. Jane
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY14853
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Thomas M. Detmer
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Siena L. Larrick
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Kevin C. Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Eileen A. Randall
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Kurt J. Jirka
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Peter B. McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| |
Collapse
|
10
|
Rowsey LE, Reeve C, Savoy T, Speers-Roesch B. Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus). J Exp Biol 2024; 227:jeb246741. [PMID: 38044850 PMCID: PMC10906487 DOI: 10.1242/jeb.246741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.
Collapse
Affiliation(s)
- Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Tyler Savoy
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
11
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Earhart ML, Blanchard TS, Morrison PR, Strowbridge N, Penman RJ, Brauner CJ, Schulte PM, Baker DW. Identification of upper thermal thresholds during development in the endangered Nechako white sturgeon with management implications for a regulated river. CONSERVATION PHYSIOLOGY 2023; 11:coad032. [PMID: 37228298 PMCID: PMC10205467 DOI: 10.1093/conphys/coad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Climate change-induced warming effects are already evident in river ecosystems, and projected increases in temperature will continue to amplify stress on fish communities. In addition, many rivers globally are impacted by dams, which have many negative effects on fishes by altering flow, blocking fish passage, and changing sediment composition. However, in some systems, dams present an opportunity to manage river temperature through regulated releases of cooler water. For example, there is a government mandate for Kenney dam operators in the Nechako river, British Columbia, Canada, to maintain river temperature <20°C in July and August to protect migrating sockeye salmon (Oncorhynchus nerka). However, there is another endangered fish species inhabiting the same river, Nechako white sturgeon (Acipenser transmontanus), and it is unclear if these current temperature regulations, or timing of the regulations, are suitable for spawning and developing sturgeon. In this study, we aimed to identify upper thermal thresholds in white sturgeon embryos and larvae to investigate if exposure to current river temperatures are playing a role in recruitment failure. We incubated embryos and yolk-sac larvae in three environmentally relevant temperatures (14, 18 and 21°C) throughout development to identify thermal thresholds across different levels of biological organization. Our results demonstrate upper thermal thresholds at 21°C across physiological measurements in embryo and yolk-sac larvae white sturgeon. Before hatch, both embryo survival and metabolic rate were reduced at 21°C. After hatch, sublethal consequences continued at 21°C because larval sturgeon had decreased thermal plasticity and a dampened transcriptional response during development. In recent years, the Nechako river has reached 21°C by the end of June, and at this temperature, a decrease in sturgeon performance is evident in most of the traits measured. As such, the thermal thresholds identified here suggest current temperature regulations may not be suitable for developing white sturgeon and future recruitment.
Collapse
Affiliation(s)
- Madison L Earhart
- Corresponding author: Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada. . Tel.: 204-799-9338
| | - Tessa S Blanchard
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
| | - Phillip R Morrison
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
- Department of Resource Management and Protection, and Biology Department, Vancouver Island University, 900 Fifth Street Nanaimo, BC V9R 5S5, Canada
| | - Nicholas Strowbridge
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
- School of Biodiversity, One Health, & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Rachael J Penman
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
- Instreams fisheries research, 2323 Boundary Rd Unit 115, Vancouver, BC V5M 4V8, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
| | - Daniel W Baker
- Department of Fisheries and Aquaculture, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
13
|
Hematological adaptations in diploid and triploid Salvelinus fontinalis and diploid Oncorhynchus mykiss (Salmonidae, Teleostei) in response to long-term exposure to elevated temperature. J Therm Biol 2022; 106:103256. [DOI: 10.1016/j.jtherbio.2022.103256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
|