1
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Du H, Wu H, Kang Q, Liao M, Qin M, Chen N, Huang H, Huang D, Wang P, Tong G. Polyphyllin I attenuates the invasion and metastasis via downregulating GRP78 in drug-resistant hepatocellular carcinoma cells. Aging (Albany NY) 2023; 15:12251-12263. [PMID: 37934581 PMCID: PMC10683619 DOI: 10.18632/aging.205176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
Drug resistance to chemotherapy agents presents a major obstacle to the effective treatment of hepatocellular carcinoma (HCC), a common type of liver cancer. Increasing evidence indicates a link between drug resistance and the recurrence of HCC. Polyphyllin I (PPI), a promising pharmaceutical candidate, has shown potential therapeutic advantages in the treatment of sorafenib-resistant hepatocellular carcinoma (SR-HCC cells). In this study, we sought to investigate the mechanism underlying the inhibitory effect of PPI on the invasion and metastasis of SR-HCC cells. Our in vitro studies included scratch wound-healing migration assays and transwell assays to examine PPI's effect on HCC cell migration and invasion. Flow cytometry was employed to analyze the accumulation or efflux of chemotherapy drugs. The results of these experiments demonstrated that PPI increased the susceptibility of HCC to sorafenib while inhibiting SR-HCC cell growth, migration, and invasion. Molecular docking analysis revealed that PPI exhibited a higher binding affinity with GRP78. Western blot analysis and immunofluorescence experiments showed that PPI reduced the expression of GRP78, E-cadherin, N-cadherin, Vimentin, and ABCG2 in SR-HCC cells. Interference with and overproduction of GRP78 in vitro impacted the proliferation, migration, invasion, and metastasis of HCC cells. Further examination revealed that PPI hindered the expression of GRP78 protein, resulting in a suppressive effect on SR-HCC cell migration and invasion. Histological examination of tumor tissue substantiated that administering PPI via gavage to HepG2/S xenograft nude mice inhibited tumor growth and significantly reduced tumor size, as evidenced by xenograft experiments involving nude mice. Hematoxylin and eosin (HE) staining of tumor tissue specimens, along with immunohistochemistry (IHC), were conducted to evaluate the expression levels of Ki67, GRP78, N-cadherin, Vimentin, and ABCG2. The results indicated that PPI administration decreased the levels of proteins associated with metastasis and markers of drug resistance in tumor tissues, impeding tumor growth and spread. Overall, our findings demonstrated that PPI effectively suppressed the viability, proliferation, invasion, and metastasis of SR-HCC cells both in vitro and in vivo by modulating GRP78 activity. These findings provide new insights into the mechanism of PPI inhibition of SR-HCC cell invasion and metastasis, highlighting PPI as a potential treatment option for sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Haochen Wu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Qinyang Kang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Ning Chen
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Houshuang Huang
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Department of Integrated Traditional Chinese and Western Medicine, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| |
Collapse
|
3
|
Qing B, Wang S, Du Y, Liu C, Li W. Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: hope or frustration. Front Pharmacol 2023; 14:1273987. [PMID: 37790807 PMCID: PMC10544988 DOI: 10.3389/fphar.2023.1273987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is a kind of cell response for coping with hypoxia and other stresses. Pieces of evidence show that continuous stress can promote the occurrence, development, and drug resistance of tumors through the unfolded protein response. Therefore, the abnormal ac-tivation of ERS and its downstream signaling pathways not only can regulate tumor growth and metastasis but also profoundly affect the efficacy of antitumor therapy. Therefore, revealing the molecular mechanism of ERS may be expected to solve the problem of tumor multidrug resistance (MDR) and become a novel strategy for the treatment of refractory and recurrent tumors. This re-view summarized the mechanism of ERS and tumor MDR, reviewed the relationship between ERS and tumor MDR, introduced the research status of tumor tissue and ERS, and previewed the prospect of targeting ERS to improve the therapeutic effect of tumor MDR. This article aims to provide researchers and clinicians with new ideas and inspiration for basic antitumor treatment.
Collapse
Affiliation(s)
- Bowen Qing
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Song Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingan Du
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Can Liu
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Wei Li
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| |
Collapse
|
4
|
Xu Y, Jiang J, Wang H, Yu W, Sun G. Synthesis and Preclinical Evaluation of [ 68Ga]SP94 for Micro-PET Imaging of GRP78 Expression in Hepatocellular Carcinoma. ACS Med Chem Lett 2021; 12:1553-1558. [PMID: 34676037 DOI: 10.1021/acsmedchemlett.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is overexpressed in a wide variety of solid tumors, serving as a well-characterized target for tumor imaging or therapy. In this work, we developed a GRP78-responsive radiotracer (DOTA-68Ga)-Gly-Gly-Gly-Ser-Phe-Ser-Ile-Ile-His-Thr-Pro-Ile-Leu-Pro-Leu-Gly-Gly-Cys ([68Ga]SP94) for hepatocellular carcinoma (HCC) micro-PET imaging. DOTA-SP94 was synthesized by solid phase synthesis and then radiolabeled with 68GaCl3 with >99% radiochemical purity. The expression levels of GRP78 in HepG2 cells were confirmed by Western blotting. In vitro and in vivo study of [68Ga]SP94 showed high stability and high uptake in GRP78-overexpressing HepG2 cells and tumor, fast clearance, and low nontarget uptake. Micro-PET images showed excellent tumor accumulation of [68Ga]SP94 in the HepG2-implanted nude mice tumor model. Additionally, the radiotracer uptake in HepG2 tumors can be blocked by unlabeled DOTA-SP94, suggesting that the tracer uptake by HCC was receptor-mediated. We envision that our radiotracer can be used for noninvasive imaging of HCC and is worthy of further clinical investigations.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Jinhui Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Hui Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Wenjing Yu
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
5
|
Huang KCY, Chiang SF, Yang PC, Ke TW, Chen TW, Lin CY, Chang HY, Chen WTL, Chao KSC. ATAD3A stabilizes GRP78 to suppress ER stress for acquired chemoresistance in colorectal cancer. J Cell Physiol 2021; 236:6481-6495. [PMID: 33580514 DOI: 10.1002/jcp.30323] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
AAA domain containing 3A (ATAD3A) is a nucleus-encoded mitochondrial protein with vital function in communication between endoplasmic reticulum (ER) and mitochondria which is participated in cancer metastasis. Here we show that elevated ATAD3A expression is clinically associated with poor 5-year disease-free survival in patients with colorectal cancer (CRC), especially high-risk CRC patients who received adjuvant chemotherapy. Our results indicated ATAD3A is significantly upregulated to reduce chemotherapy-induced cancer cell death. We found that knockdown of ATAD3A leads to dysregulation in protein processing for inducing ER stress by RNA sequencing (RNA-seq). In response to chemotherapy-induced ER stress, ATAD3A interacts with elevated GRP78 protein to assist protein folding and alleviate ER stress for cancer cell survival. This reduction of ER stress leads to reduce the surface exposure of calreticulin, which is the initiator of immunogenic cell death and antitumor immunity. However, silencing of ATAD3A enhances cell death, triggers the feasibility of chemotherapy-induced ER stress for antitumor immunity, increases infiltration of T lymphocytes and delays tumor regrowth in vitro and in vivo. Clinically, CRC patients with less ATAD3A have high density of CD45+ intratumoral infiltrating lymphocytes (TILs) and memory CD45RO+ TILs. Taken together, our results suggest that pharmacologic targeting to ATAD3A might be a potential therapeutic strategy to enhance antitumor immunity for CRC patients who received adjuvant chemotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Chen Yang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chen-Yu Lin
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Yu Chang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-San Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Batzorig U, Wei PL, Wang W, Huang CY, Chang YJ. Glucose-Regulated Protein 94 Mediates the Proliferation and Metastasis through the Regulation of ETV1 and MAPK Pathway in Colorectal Cancer. Int J Med Sci 2021; 18:2251-2261. [PMID: 33967600 PMCID: PMC8100635 DOI: 10.7150/ijms.56024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health problem. Glucose-regulated protein 94 (GRP94) is known as an important endoplasmic reticulum-stress response protein that shows correlation with aggressive cancer behavior. However, the role of GRP94 in CRC is still unclear. Our results showed that silencing GRP94 (GRP94-KD) reduced cell proliferation, invasion and migration of CRC cells and suppressed tumorigenesis in the xenograft mouse model. Rescue assay showed that ETV1 overexpression reversed the effect of GRP94 on cell proliferation and migration. In the molecular mechanism, we found that knockdown of GRP94 inhibited the level of MAPK pathway, including ERK/p-ERK, JNK/p-JNK, and p38/p-p38 signals. Cyclooxygenase-2 and epithelial-mesenchymal transformation biomarkers, such as N-cadherin, vimentin, and β-catenin were suppressed in GRP94 knockdown cells. Treatment of specific inhibitors of MAPK pathway showed that ERK/p-ERK, and p38/p-p38 inhibitors significantly influenced ETV1 expression as compared to JNK/p-JNK inhibitor. Our results indicated that silencing GRP94 repressed the ability of EMT process, cancer cell proliferation, metastasis, and CRC tumorigenesis. Therefore, GRP94 may play an important role in CRC by regulating ETV1 and MAPK pathway.
Collapse
Affiliation(s)
- Uyanga Batzorig
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Weu Wang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal microRNAs and their Clinical Implications. Cancers (Basel) 2020; 12:cancers12040823. [PMID: 32235370 PMCID: PMC7226466 DOI: 10.3390/cancers12040823] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
The communication between hepatocellular carcinoma (HCC) cells and their microenvironment is an essential mechanism supporting or preventing tumor development and progression. Recent evidence has identified extracellular vesicles (EVs) as one of the mechanisms mediating paracrine signaling between cells. Exosomes, the most described class of EVs, deliver proteins, mRNAs, noncoding RNAs, DNA, and lipids to recipient cells, also at remote distances. MicroRNAs (miRNAs), as part of the non-coding RNA exosomal cargo, have an important role in regulating cellular pathways in targeted cells, regulating several processes related to tumor progression invasion and metastasis, such as angiogenesis, immune-escape, epithelial-to-mesenchymal transition, invasion, and multi-drug resistance. Accumulating evidence suggests exosomal miRNAs as relevant players in the dynamic crosstalk among cancerous, immune, and stromal cells in establishing the tumorigenic microenvironment. In addition, they sustain the metastasic niche formation at distant sites. In this review, we summarized the recent findings on the role of the exosome-derived miRNAs in the cross-communication between tumor cells and different hepatic resident cells, with a focus on the molecular mechanisms responsible for the cell re-programming. In addition, we describe the clinical implication derived from the exosomal miRNA-driven immunomodulation to the current immunotherapy strategies and the molecular aspects influencing the resistance to therapeutic agents.
Collapse
|
8
|
Feng YH, Tung CL, Su YC, Tsao CJ, Wu TF. Proteomic Profile of Sorafenib Resistance in Hepatocellular Carcinoma; GRP78 Expression Is Associated With Inferior Response to Sorafenib. Cancer Genomics Proteomics 2020; 16:569-576. [PMID: 31659110 DOI: 10.21873/cgp.20159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM The outcome of patients with advanced hepatocellular carcinoma (HCC) remains poor and therapeutic options, including sorafenib, the first anti-cancer drug proved to prolong survival in patients with advanced HCC, are limited. However, no clinically useful predictive biomarker for sorafenib has been reported. MATERIALS AND METHODS We exploited two-dimensional gel electrophoresis coupled with mass spectrometry to find de-regulated proteins by using conditioning of a sorafenib-resistant HCC cell line, Huh7. Tumor samples from 60 patients with HCC treated with sorafenib were analyzed and correlated with survival outcome. RESULTS Comparative proteomics indicated three proteins including, 78 kDa glucose related protein (GRP78), 14-3-3ε, and heat shock protein 90β (HSP90β). The three proteins were over-expressed in sorafenib-resistant Huh7 cells. In HCC tumor samples from patients treated with sorafenib, 73% of tumor samples had a high expression of GRP78, 18% had high 14-3-3ε expression and 85% had high HSP90β expression. Among these, GRP78 was associated with the shortest progression-free survival of HCC patients treated with sorafenib. CONCLUSION GRP78 can be a predictive biomarker in HCC patients treated with sorafenib. Strategies designed to inhibit the GRP78-related pathway may overcome sorafenib resistance.
Collapse
Affiliation(s)
- Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan, R.O.C. .,Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan, R.O.C
| | - Chao-Ling Tung
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan, R.O.C
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C.,Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chao-Jung Tsao
- Department of Hematology and Oncology, Chi-Mei Medical Center, Liouying Campus, Tainan, Taiwan, R.O.C
| | - Ting-Feng Wu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, R.O.C.
| |
Collapse
|
9
|
Booth L, Poklepovic A, Dent P. Not the comfy chair! Cancer drugs that act against multiple active sites. Expert Opin Ther Targets 2019; 23:893-901. [PMID: 31709855 DOI: 10.1080/14728222.2019.1691526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Discoveries of novel signal transduction pathways in the 1990s stimulated drug companies to develop small molecule tyrosine kinase and serine / threonine kinase inhibitors which were based on catalytic site inhibition. All kinases bind ATP and catalyze phosphate transfer and, therefore, inhibitors that block ATP binding and its metabolism would be predicted to have a known on-target specificity but were also likely to have many unknown or unrecognized targets due to similarities in all ATP binding pockets. This on-target off-target biology of kinase inhibitors, which exhibit a "signal" in the clinic, means that therapeutically valuable agents are acting through unknown biological processes to mediate their anti-tumor effects.Areas covered: This perspective discusses drug therapies whose actions cannot be explained by their actions on the original targeted kinase; it concludes with a methodology to screen for changes in cell signaling via in-cell western immunoblotting.Expert opinion: Most malignancies do not depend on survival signaling from one specific mutated proto-oncogene, especially for previously treated malignancies where multiple clonal variants of the primary tumor have evolved. Hence, the concept of a highly "personalized medicine" approach fails because it is unlikely that a specific therapy will kill all clonal variants of the tumor.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Nakano Y, Kobayashi D, Miyake M, Kanno R, Murakawa M, Hazama A. The Cytotoxic Effects of Geranylgeranylacetone Are Attenuated in the High-Glucose Condition. Biores Open Access 2019; 8:162-168. [PMID: 31656692 PMCID: PMC6814082 DOI: 10.1089/biores.2018.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Geranylgeranylacetone (GGA) has been used as an antiulcer drug and also is known as inducer of heat shock protein 70 that has cytoprotective effects especially in hyperglycemic condition. In contrast, cytotoxicity of GGA has also been reported. Some studies have reported that GGA suppresses cell growth and induces apoptosis in cell models of human leukemia, ovarian carcinoma, and colon cancer in vitro. Therefore, the aim of this study was to determine whether GGA can have a cytotoxic effect on a human cervical cancer cell line (HeLa), human colorectal adenocarcinoma cells (Caco-2), and human embryonic kidney cells 293 (HEK) in normal-glucose and high-glucose environments (NG and HG, respectively). The results showed that 100 μM GGA inhibited proliferation of HeLa cells only in NG environment despite inhibiting proliferation of Caco-2 and HEK cells regardless of glucose concentration. Cell viability assay revealed that GGA decreased viability of HeLa, Caco-2, and HEK cells only in NG environment. Flow cytometric analyses revealed that the type of cell death was a combination of necrosis and apoptosis. Our study revealed that difference in cytotoxicity of GGA is influenced by glucose condition. The cytotoxic effects of GGA are attenuated in the HG condition. Since both cytotoxic and cytoprotective effects are reported about GGA, further research is needed about the mechanism of the cytotoxic effects.
Collapse
Affiliation(s)
- Yuko Nakano
- Department of Anesthesiology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Daisuke Kobayashi
- Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masao Miyake
- Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryoko Kanno
- Department of Anesthesiology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Murakawa
- Department of Anesthesiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
11
|
Ming M, Ying M, Ling M. miRNA-125a-5p inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting TP53 regulated inhibitor of apoptosis 1 and Bcl-2-like-2 protein. Exp Ther Med 2019; 18:1196-1202. [PMID: 31316614 PMCID: PMC6601372 DOI: 10.3892/etm.2019.7674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the role and underlying molecular mechanism of microRNA (miR)-125a-5p in hepatocellular carcinoma. The level of miR-125a-5p was detected using reverse transcription-quantitative polymerase chain reaction. TargetScan was used to investigate the association between miR-125a-5p and TP53-regulated inhibitor of apoptosis 1 (TRIAP1)/B cell lymphoma-2-like 2 protein (BCL2L2). Dual luciferase reporter assay was used to confirm this prediction. To investigate the role of miR-125a-5p in hepatocellular carcinoma (HCC) cells, miR-125a-5p was overexpressed in the human HCC cell line PLC/PRF/5 using miR-125a-5p mimics. Subsequently, cell proliferation, cell apoptosis and cell migration were studied using MTT assay, flow cytometry analysis and Transwell assay, respectively. Protein expression levels in the present study were measured by western blot analysis. Taken together, the present results suggested that miR-125a-5p was markedly downregulated in HCC cells. TRIAP1 and BCL2L2 were direct targets of miR-125a-5p and were upregulated in PLC/PRF/5 cells. miR-125a-5p upregulation inhibited PLC/PRF/5 cell viability and migration and induced cell apoptosis. In addition, miR-125a-5p overexpression increased the expression of caspase9 and apoptotic protease-activating factor 1. Notably, the present study revealed that all the effects on PLC/PRF/5 cells elicited by miR-125a-5p overexpression were eliminated by TRIAP1/BCL2L2 upregulation. In conclusion, miR-125a-5p was shown to be downregulated in hepatocellular carcinoma and its upregulation inhibited hepatocellular carcinoma cell growth and metastasis by targeting TRIAP1 and BCL2L2.
Collapse
Affiliation(s)
- Ma Ming
- Department of Hepatobiliary Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Ma Ying
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ma Ling
- Department of Pharmacy, Xinjiang Uygur Autonomous Region Chest Hospital, Urumqi, Xinjiang 830049, P.R. China
| |
Collapse
|
12
|
Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology 2018; 16:103. [PMID: 30572882 PMCID: PMC6300915 DOI: 10.1186/s12951-018-0429-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sorafenib is an effective clinical drug in therapy of hepatocellular carcinoma, having led to improved prognosis in hepatocellular carcinoma patients. However acquired resistance is still being encountered. So, it is urgently to develop alternative strategies to overcome drug resistance. Exosomes can be modified with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. The GRP78 is overexpressed in Sorafenib resistant cancer cells compared to Sorafenib sensitive cancer cells and thus is able to act as a target for therapy of hepatocellular carcinoma. RESULTS In this study, we modified BM-MSCs to express the exosomal siGRP78. And we show that siGRP78 modified exosomes combined with Sorafenib is able to target GRP78 in hepatocellular carcinoma cells and inhibit the growth and invasion of the cancer cells in vitro. Further, siGRP78 modified exosomes combined with Sorafenib also inhibit the growth and metastasis of the cancer cells in vivo. CONCLUSIONS siGRP78 modified exosomes could sensitize Sorafenib resistant cancer cells to Sorafenib and reverse the drug resistance.
Collapse
Affiliation(s)
- Hongdan Li
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| | - Cheng Yang
- Department of General Surgery 2, Central Hospital of Jinzhou City, Jinzhou, 121000, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
13
|
Ding X, Sun W, Chen J. IL-2 augments the sorafenib-induced apoptosis in liver cancer by promoting mitochondrial fission and activating the JNK/TAZ pathway. Cancer Cell Int 2018; 18:176. [PMID: 30459526 PMCID: PMC6234789 DOI: 10.1186/s12935-018-0671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sorafenib is the standard targeted drug used to treat hepatocellular carcinoma (HCC), but the therapeutic response between individuals varies markedly. Recently, cytokine-based immunotherapy has been a topic of intense discussion in the fight against cancer. The aim of this study was to explore whether cytokine IL-2 could augment the anti-tumour effects of sorafenib on HCC. Methods HepG2 and Huh7 cells were co-treated with sorafenib and IL-2 in vitro, and cellular viability and death were analysed through the MTT assay, TUNEL staining, LDH release assay, and western blotting. Mitochondrial function was measured via ELISA, immunofluorescence, and western blotting. Pathway blockers were used to establish the role of the JNK-TAZ pathways in regulating cancer cell phenotypes. Results Our data demonstrated that sorafenib treatment increased the HCC apoptotic rate, repressed cell proliferation, and inhibited migratory responses, and these effects were enhanced by IL-2 supplementation. Mechanistically, the combination of IL-2 and sorafenib interrupted mitochondrial energy metabolism by downregulating mitochondrial respiratory proteins. In addition, IL-2 and sorafenib co-treatment promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, elevated mitochondrial ROS production, increased leakage of mitochondrial pro-apoptotic factors, and activation of the mitochondrial death pathway. A molecular investigation revealed that mitochondrial fission was required for the IL-2/sorafenib-mediated mitochondrial dysfunction. Mitochondrial fission was triggered by sorafenib and was largely amplified by IL-2 supplementation. Finally, we found that IL-2/sorafenib regulated mitochondrial fission via the JNK-TAZ pathways; blockade of the JNK-TAZ pathways abrogated the inhibitory effects of L-2/sorafenib on cancer survival, growth and mobility. Conclusions Altogether, these data strongly suggest that additional supplementation with IL-2 enhances the anti-tumour activity of sorafenib by promoting the JNK-TAZ-mitochondrial fission axis. This finding will pave the way for new treatment modalities to control HCC progression by optimizing sorafenib-based therapy.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Wei Sun
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Jinglong Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| |
Collapse
|
14
|
Kim JS, Choi GH, Jung Y, Kim KM, Jang SJ, Yu ES, Lee HC. Downregulation of Raf-1 kinase inhibitory protein as a sorafenib resistance mechanism in hepatocellular carcinoma cell lines. J Cancer Res Clin Oncol 2018; 144:1487-1501. [PMID: 29858683 DOI: 10.1007/s00432-018-2672-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Although sorafenib enhances overall survival, sorafenib resistance has been reported to be a significant limiting factor for improved prognosis in patients with hepatocellular carcinoma (HCC). Therefore, it is important to identify the mechanism of sorafenib resistance. This study aimed to identify the causative factor of sorafenib resistance and suggest methods for overcoming it. METHODS The sensitivity to sorafenib was compared in human HCC cell lines and patient-derived HCC primary cells. Based on its cytotoxicity, signaling pathways altered by sorafenib and the causative factors were examined through assays. The mechanism by which sorafenib modified the sorafenib-resistance inducer through gene or protein expression or stability was also investigated. We also designed a treatment option to overcome sorafenib resistance. RESULTS Sorafenib activated the Raf/MEK/ERK pathway and caused sorafenib resistance in HCC cell lines and patient-derived HCC primary cells. Sorafenib reactivated the MAPK pathway by down-regulating RKIP at the post-translational level. Knockdown of RKIP increased phosphorylated ERK and thus suppressed sorafenib-mediated cell death. We also found that sorafenib-reactivated ERK maybe an attractive target for second-line therapy for patients with sorafenib resistance. Sequential combination treatment with sorafenib and PD98059 significantly reduced the viability and proliferation of sorafenib-resistant cells, while their increasing apoptosis efficacy. CONCLUSION Reactivation of the Raf/MEK/ERK pathway through aberrant expression of RKIP is one of the mechanisms behind sorafenib resistance in HCC. Sequential combination treatment with sorafenib and PD98059 could provide a new strategy to overcome sorafenib resistance in future clinical studies.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Gwang Hyeon Choi
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Yusun Jung
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Se-Jin Jang
- Department of Pathology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| | - Eun Sil Yu
- Department of Pathology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, South Korea
| | - Han Chu Lee
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| |
Collapse
|
15
|
Monajati M, Tavakoli S, Abolmaali SS, Yousefi G, Tamaddon A. Effect of PEGylation on assembly morphology and cellular uptake of poly ethyleneimine-cholesterol conjugates for delivery of sorafenib tosylate in hepatocellular carcinoma. ACTA ACUST UNITED AC 2018; 8:241-252. [PMID: 30397579 PMCID: PMC6209830 DOI: 10.15171/bi.2018.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022]
Abstract
Introduction: Sorafenib (SFB) is an FDA-approved chemotherapeutic agent with a high partition coefficient (log P = 4.34) for monotherapy of hepatocellular carcinoma (HCC). The oral bioavailability is low and variable, so it was aimed to study the application of the polymeric nanoassembly of cholesterol conjugates of branched polyethyleneimine (PEI) for micellar solubilization of SFB and to investigate the impact of the polymer PEGylation on the physicochemical and cellular characteristics of the lipopolymeric dispersions. Methods: Successful synthesis of cholesterol-PEI lipopolymers, either native or PEGylated, was confirmed by FTIR, 1H-NMR, pyrene assay methods. The nanoassemblies were also characterized in terms of morphology, particle size distribution and zeta-potential by TEM and dynamic light scattering (DLS). The SFB loading was optimized using general factorial design. Finally, the effect of particle characteristics on cellular uptake and specific cytotoxicity was investigated by flow cytometry and MTT assay in HepG2 cells. Results: Transmission electron microscopy (TEM) showed that PEGylation of the lipopolymers reduces the size and changes the morphology of the nanoassembly from rod-like to spherical shape. However, PEGylation of the lipopolymer increased critical micelle concentration (CMC) and reduced the drug loading. Moreover, the particle shape changes from large rods to small spheres promoted the cellular uptake and SFB-related cytotoxicity. Conclusion: The combinatory effects of enhanced cellular uptake and reduced general cytotoxicity can present PEGylated PEI-cholesterol conjugates as a potential carrier for delivery of poorly soluble chemotherapeutic agents such as SFB in HCC that certainly requires further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
16
|
Luo C, Fan W, Jiang Y, Zhou S, Cheng W. Glucose-Related Protein 78 Expression and Its Effects on Cisplatin-Resistance in Cervical Cancer. Med Sci Monit 2018; 24:2197-2209. [PMID: 29650944 PMCID: PMC5916091 DOI: 10.12659/msm.906413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background GRP78, the 78-kDa glucose-regulated protein, occupies a significant position in endoplasmic reticulum stress. Emerging evidences have shown that GRP78 induces chemoresistance in several tumors; however, the role of GRP78 in cervical cancer (CVC) still needs to be elucidated clearly. Material/Methods In the present study, we evaluated the expression levels of GRP78 in CVC tissues collected from patients through immunocytochemistry, western blot, and real-time PCR. To explore the exact role of GRP78 in CVC cells in the presence of cisplatin, we generated GRP78 knockdown CVC cells through small interfering RNA. After transfection, the apoptosis rate was assessed by flow cytometry. Then the expression levels of caspase-3, CHOP, and Bcl-2 in GRP78 knockdown cells were determined by western blot. Results The GRP78 levels in CVC tissues were increased significantly. Three types of CVC cells HeLa, SiHa, and C33A were treated with different concentrations of cisplatin and cultured for 12 hours, 24 hours, and 48 hours respectively. And SiHa cells exhibited the highest resistance to cisplatin at all time. Specifically, after 25 μM cisplatin treatment, more than 80% of C33A cells underwent apoptosis, whereas the apoptotic rate of SiHa cells was only 30–40%. Data suggested that GRP78 silencing increased chemo-sensitivity and improved the effects of cisplatin-induced apoptosis in SiHa cells. Moreover, inhibition of GRP78 could upregulate caspase-3 and CHOP expression and downregulate Bcl-2 expression. Conclusions GRP78 may represent a key bio-marker of CVC and silencing GRP78 may strengthen the resistance against cisplatin. GRP78 may be a potential molecular target for CVC therapies in future.
Collapse
Affiliation(s)
- Chengyan Luo
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wen Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yi Jiang
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Shulin Zhou
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wenjun Cheng
- Department of Gynecology, Jiangsu Province Hospital, The first Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
17
|
γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells. Life Sci 2018; 198:25-31. [PMID: 29549912 DOI: 10.1016/j.lfs.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022]
Abstract
AIMS This study uncovered that the genetically endowed intracellular glutathione contents (iGSH) regulated by the catalytic subunit of γ‑glutamylcysteine synthetase heavy chain (γ‑GCSh) as a prime target for overcoming both the inherited and stimuli-activated chemo- and radio-resistance of hepatocellular carcinoma (HCC) cells. MAIN METHODS Reactive oxygen species (ROS) production and mitochondrial membrane potential (Δψm) were determined by the probe-based flow cytometry. The TUNEL assay was used as an index of radio-sensitivity and the MTT assay was used as an index of chemo-sensitivity against various anti-cancer agents. iGSH and γ‑GCSh activity were measured by HPLC methods. γ‑GCSh-overexpressing GCS30 cell line was established by tetracycline-controlled Tet-OFF gene expression system in SK-Hep-1 cells. KEY FINDINGS The relative radio-sensitivities of a panel of five HCC cells were found to be correlated negatively with both the contents of iGSH and their corresponding γ‑GCSh activities with an order of abundance being Hep G2 > Hep 3B > J5 > Mahlavu > SK-Hep-1, respectively. Similarly, the cytotoxicity response patterns of these HCC cells against arsenic trioxide (ATO), a ROS-producing anti-cancer drug, were exactly identical to the order of ranking instigated by the radiotherapy (RT) treatment. Next, γ‑GCSh-overexpressing GCS30 cells were found to possess excellent ability to profoundly mitigate both the drop of Δψm and apoptotic TUNEL-positive cell population engendered by ATO, cisplatin, doxorubicin, and RT treatments. SIGNIFICANCE Our data unequivocally demonstrate that γ‑GCSh may represent a prime target for overcoming anti-cancer drugs and RT resistance for HCC cells.
Collapse
|
18
|
Huang CY, Lee CH, Tu CC, Wu CH, Huang MT, Wei PL, Chang YJ. Glucose-regulated protein 94 mediates progression and metastasis of esophageal squamous cell carcinoma via mitochondrial function and the NF-kB/COX-2/VEGF axis. Oncotarget 2018; 9:9425-9441. [PMID: 29507700 PMCID: PMC5823643 DOI: 10.18632/oncotarget.24114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is a worldwide health problem with a very poor prognosis. Therefore, new diagnostic biomarkers or therapeutic strategies for identifying and managing esophageal squamous cell carcinoma (ESCC) are urgently needed. Glucose-regulated protein 94 (GRP94) is one of major endoplasmic reticulum-stress response proteins that plays a key role in cancer progression and therapeutic responses. However, the role of GRP94 in ESCC progression and metastasis remains unclear. The tissue array results indicated that higher GRP94 expression levels were associated with lower overall survival and higher lympho-node metastasis. Silencing GRP94 (GRP94-KD) reduced cell proliferation, migration and invasion in ESCC cells. In a xenotransplantation assay, silencing GRP94 reduced cell proliferation in the zebrafish embryo. Transmission electron microscopy revealed impaired mitochondria in GRP94-KD cells, which exhibited reduced basal respiration, spare respiratory capacity and ATP production and increased oxidative damage compared with scrambled control cells. Regarding the molecular mechanism underlying the effects of GRP94 knockdown, we found that silencing GRP94 may reduce the level of NF-kB, c-Jun, p38, IL-6, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) as well as activation of AKT and ERK. In conclusion, our results indicate that silencing GRP94 in ESCC cells suppressed cancer growth and the metastatic potential via mitochondrial functions and NF-kB/COX-2/VEGF in ESCC cells.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chiang Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Fu Jen Catholic University Hospital; School of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- En Chu Kong Hospital, Taipei, Taiwan
| | - Ming-Te Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Hung CS, Huang CY, Lee CH, Chen WY, Huang MT, Wei PL, Chang YJ. IGFBP2 plays an important role in heat shock protein 27-mediated cancer progression and metastasis. Oncotarget 2017; 8:54978-54992. [PMID: 28903396 PMCID: PMC5589635 DOI: 10.18632/oncotarget.18989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a key chaperone that interacts with over 200 client proteins. The expression of Hsp27 might be correlated with poor outcome in many types of cancer. Previous study indicated that Hsp27 might be an important biomarker in hepatocellular carcinoma (HCC). However, the detailed mechanism is less well understood. The shRNA-mediated silencing of Hsp27 decreased the proliferation, migration and invasion of HCC cells. In a xenograft model, the silencing of Hsp27 reduced tumor progression. We revealed that the silencing of Hsp27 led to a reduction in insulin-like growth factor binding protein 2 (IGFBP2), which might mediate proliferation and metastasis through vimentin, snail and beta-catenin. The overexpression of IGFBP2 reversed the reductions in cell growth, migration and invasion. The tissue array results showed that HCC patients with high Hsp27 expression exhibited poor prognosis and increased metastasis. The Hsp27 expression was highly correlated with IGFPB2 in CRC specimen. ChIP and luciferase assays showed that Hsp27 does not directly bind the IGFBP2 promoter region to regulate the transcription of IGFBP2. In conclusion, our study demonstrated that Hsp27 is a key mediator of HCC progression and metastasis and that Hsp27 might regulate proliferation and metastasis through IGFBP2. This pathway might provide a new direction for the development of a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ming-Te Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Yip CW, Lam CY, Poon TCW, Cheung TT, Cheung PFY, Fung SW, Wang XQ, Leung ICY, Ng LWC, Lo CM, Tsao GSW, Cheung ST. Granulin-epithelin precursor interacts with 78-kDa glucose-regulated protein in hepatocellular carcinoma. BMC Cancer 2017; 17:409. [PMID: 28601093 PMCID: PMC5466756 DOI: 10.1186/s12885-017-3399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2017] [Indexed: 02/18/2025] Open
Abstract
Background Granulin-epithelin precursor (GEP) is a secretory growth factor, which has been demonstrated to control cancer growth, invasion, drug resistance and immune escape. Our previous studies and others also demonstrated its potential in targeted therapy. Comprehensive characterization of GEP partner on cancer cells are warranted. We have previously shown that GEP interacted with heparan sulfate on the surface of liver cancer cells and the interaction is crucial for GEP-mediated signaling transduction. This study aims to characterize GEP protein partner at the cell membrane with the co-immunoprecipitation and mass spectrometry approach. Methods The membrane fraction from liver cancer model Hep3B was used for capturing binding partner with the specific monoclonal antibody against GEP. The precipitated proteins were analyzed by mass spectrometry. After identifying the GEP binding partner, this specific interaction was validated in additional liver cancer cell line HepG2 by co-immunoprecipitation using GRP78 and GEP antibodies, respectively, as the bait. GRP78 transcript levels in hepatocellular carcinoma (HCC) clinical samples (n = 77 pairs) were examined by real-time quantitative RT-PCR. GEP and GRP78 protein expressions were investigated by immunohistochemistry on paraffin sections. Results We identified the GEP-binding protein as 78-kDa glucose-regulated protein (GRP78, also named heat shock 70-kDa protein 5, HSPA5). This interaction was validated in independent HCC cell lines. Increased GRP78 mRNA levels were demonstrated in liver cancer tissues compared with the paralleled liver tissues (t-test, P = 0.002). GRP78 and GEP transcript levels were significantly correlated (Spearman’s correlation, P = 0.001), and the proteins were also detectable in the cytoplasm of liver cancer cells by immunohistochemical staining. Conclusions GRP78 and GEP are interacting protein partners in liver cancer cells and may play a role in GEP-mediated cancer progression in HCC.
Collapse
Affiliation(s)
- Chi Wai Yip
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Ching Yan Lam
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Department of Health, The Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | | | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Phyllis F Y Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze Wai Fung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Idy C Y Leung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Linda W C Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - George S W Tsao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
21
|
Lai KG, Chen CF, Ho CT, Liu JJ, Liu TZ, Chern CL. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317702649. [PMID: 28639913 DOI: 10.1177/1010428317702649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.
Collapse
Affiliation(s)
- Kun-Goung Lai
- 1 Department of Radiation Oncology, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Chi-Fen Chen
- 2 Clinical Laboratories, Yuan's General Hospital, Kaohsiung, Taiwan
- 3 Department of Medical Laboratory and Biotechnology Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- 4 Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Te Ho
- 5 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Jen Liu
- 6 School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Zon Liu
- 7 Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Liang Chern
- 8 Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Hua L, Hu B, Yan D, Liu J, Shen Y, Zhao F, Shen C, Chen B, Cui X. Upregulated expression of Nucleostemin/GNL3 is associated with poor prognosis and Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Res Pract 2017; 213:688-697. [PMID: 28476378 DOI: 10.1016/j.prp.2016.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/06/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
Nucleostemin (NS)/GNL3 protein has been recently documented to be a nucleolar protein that was abundantly expressed in stem cells and cancer cells. Herein, we showed that NS was upregulated in HCC tissues and the expression of NS was inversely correlated with that of p53. Overexpression of NS predicted significantly worsened prognosis in HCC patients, suggesting that NS might serve as a prognostic marker of HCC. In addition, we found that depletion of NS sensitized HCC cells to sorafenib-induced apoptosis. Moreover, we found that the mechanism underlying NS-mediated sorafenib resistance involved dysregulated expression of p53, and downstream Bax and Bcl-2 proteins. NS interacted with p53 in HCC cells. Depletion of NS increased the expression of p53 and Bax, whereas impaired the level of cellular Bcl-2. Interference of NS enhanced the cytotoxic effects of sorafenib in HCC cells. Furthermore, ectopic expression of NS impaired the apoptosis of HCC cells following sorafenib exposure. Therefore, NS may contribute to sorafenib resistance in HCC cells through the modulation of p53 pathway and Bcl-2 proteins. These findings indicated that the combination of silencing NS expression and sorafenib treatment is a promising therapeutic strategy in treatment of HCC.
Collapse
Affiliation(s)
- Lu Hua
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Baoying Hu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China; Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jinxia Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yifen Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Fengbo Zhao
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Chaoyan Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Buyou Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
23
|
Zheng NQ, Zheng ZH, Xu HX, Huang MX, Peng XM. Glucose-regulated protein 78 demonstrates antiviral effects but is more suitable for hepatocellular carcinoma prevention in hepatitis B. Virol J 2017; 14:77. [PMID: 28407787 PMCID: PMC5390389 DOI: 10.1186/s12985-017-0747-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma in Asia and Africa. Existing antivirals cannot cure HBV or eliminate risk of hepatocellular carcinoma. Glucose-regulated protein 78 (GRP78) can inhibit HBV replication, but promote virion secretion and hepatocellular cancer cell invasion. For these reasons, the overall effect of GRP78 on HBV production and whether to utilize the HBV replication-inhibitory effect of GRP78 up-regulation or the hepatocellular cancer cell invasion-inhibitory effect of its down-regulation were further investigated in order to improve the efficacy of current antiviral therapy. Methods GRP78 regulations in HepG2.2.15 cells were conducted by transfections of expressing vector and small interfering RNA, respectively. The changes in HBV replication, hepatitis B e antigen (HBeAg) synthesis and hepatoma cell motility were monitored. Results GRP78 overall decreased HBV production due to its HBV replication-inhibitory effect time-dependently overwhelming virion secretion-promoting effect in HepG2.2.15 cells. Unlike the parental cells (HepG2), HepG2.2.15 cells demonstrated decreased expressions of the major genes in the interferon-β1-dependent pathway. Moreover, the expressions of these genes were not affected by GRP78 regulations. However, GRP78 was found to inhibit HBeAg secretion and to increase the retro-transportation of capsid assembly-interfering HBeAg precursor from the endoplasmic reticulum into the cytosol where new viral nucleocapsids formed. Furthermore, GRP78 overexpression promoted wound healing process (the motility) of HepG2.2.15 cells. In contrast, GRP78 knockdown enhanced HBV replication and HBeAg secretion, but they were abolished by entecavir and furin inhibitor, respectively. Conclusions GRP78 mainly demonstrates anti-HBV effects, reducing HBV production and HBeAg secretion. With due regard to the hepatocellular cancer invasion risk of the overexpression and the rectifiability of the unpleasant effects of the knockdown, GRP78 down-regulation may be more suitable to serve as an additive strategy to cover the hepatocellular cancer prevention shortage of current antiviral therapy in the future.
Collapse
Affiliation(s)
- Nai Q Zheng
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi H Zheng
- Jinan University Clinic, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai X Xu
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming X Huang
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China
| | - Xiao M Peng
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
24
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
25
|
Prieto-Domínguez N, Ordóñez R, Fernández A, García-Palomo A, Muntané J, González-Gallego J, Mauriz JL. Modulation of Autophagy by Sorafenib: Effects on Treatment Response. Front Pharmacol 2016; 7:151. [PMID: 27375485 PMCID: PMC4896953 DOI: 10.3389/fphar.2016.00151] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The multikinase inhibitor sorafenib is, at present, the only drug approved for the treatment of hepatocellular carcinoma (HCC), one of the most lethal types of cancer worldwide. However, the increase in the number of sorafenib tumor resistant cells reduces efficiency. A better knowledge of the intracellular mechanism of the drug leading to reduced cell survival could help to improve the benefits of sorafenib therapy. Autophagy is a bulk cellular degradation process activated in a broad range of stress situations, which allows cells to degrade misfolded proteins or dysfunctional organelles. This cellular route can induce survival or death, depending on cell status and media signals. Sorafenib, alone or in combination with other drugs is able to induce autophagy, but cell response to the drug depends on the complex integrative crosstalk of different intracellular signals. In cancerous cells, autophagy can be regulated by different cellular pathways (Akt-related mammalian target of rapamycin (mTOR) inhibition, 5′ AMP-activated protein kinase (AMPK) induction, dissociation of B-cell lymphoma 2 (Bcl-2) family proteins from Beclin-1), or effects of some miRNAs. Inhibition of mTOR signaling by sorafenib and diminished interaction between Beclin-1 and myeloid cell leukemia 1 (Mcl-1) have been related to induction of autophagy in HCC. Furthermore, changes in some miRNAs, such as miR-30α, are able to modulate autophagy and modify sensitivity in sorafenib-resistant cells. However, although AMPK phosphorylation by sorafenib seems to play a role in the antiproliferative action of the drug, it does not relate with modulation of autophagy. In this review, we present an updated overview of the effects of sorafenib on autophagy and its related activation pathways, analyzing in detail the involvement of autophagy on sorafenib sensitivity and resistance.
Collapse
Affiliation(s)
- Nestor Prieto-Domínguez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Institute of Biomedicine (IBIOMED), University of LeónLeón, Spain
| | - Raquel Ordóñez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Institute of Biomedicine (IBIOMED), University of LeónLeón, Spain
| | - Anna Fernández
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Institute of Biomedicine (IBIOMED), University of LeónLeón, Spain
| | - Andres García-Palomo
- Service of Clinical Oncology, Complejo Asistencial Universitario de León (Hospital of León) León, Spain
| | - Jordi Muntané
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Department of General Surgery"Virgen del Rocío"-"Virgen Macarena" University Hospital/IBiS/CSIC/Universidad de Sevilla, Spain
| | - Javier González-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Institute of Biomedicine (IBIOMED), University of LeónLeón, Spain
| | - José L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)León, Spain; Institute of Biomedicine (IBIOMED), University of LeónLeón, Spain
| |
Collapse
|
26
|
Gifford JB, Huang W, Zeleniak AE, Hindoyan A, Wu H, Donahue TR, Hill R. Expression of GRP78, Master Regulator of the Unfolded Protein Response, Increases Chemoresistance in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2016; 15:1043-52. [PMID: 26939701 DOI: 10.1158/1535-7163.mct-15-0774] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) is dismal. Although gemcitabine (GEM) is the standard chemotherapeutic agent for adjuvant therapy of resectable PDAC, recurrent disease is observed in an alarming number of GEM-treated patients. Regardless of the adjuvant therapy, the vast majority of patients treated with chemotherapy after surgical resection show tumor recurrence. A better understanding of the molecular mechanisms that contribute to chemoresistance would aid the development of more effective treatment strategies. GRP78 is an endoplasmic reticulum (ER) chaperone protein that primarily resides in the lumen of the ER and is the master regulator of the unfolded protein response (UPR). Here, we report that expression of GRP78 is significantly higher in GEM-resistant PDAC compared to GEM-sensitive PDAC patient samples. We show that GRP78 induces chemoresistance in PDAC cells. Our results also show that knockdown of GRP78 reduces chemoresistance in PDAC. Finally, we found that IT-139, a ruthenium-based anticancer drug, can overcome GRP78-mediated chemoresistance. In vitro, IT-139 restores sensitivity to cytotoxic drugs in drug-resistant PDAC cells and induces twice as much cell death in combination treatment compared with GEM alone. In vivo, a single weekly IT-139 treatment in combination with GEM caused a 35% increase in median survival and a 25% increase in overall survival compared to GEM alone. Collectively, our data show that GRP78 expression promotes chemoresistance in PDAC and therapeutic strategies, blocking the activity of GRP78 increases the efficacy of currently available therapies. Mol Cancer Ther; 15(5); 1043-52. ©2016 AACR.
Collapse
Affiliation(s)
- Jenifer B Gifford
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Wei Huang
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Ann E Zeleniak
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana. Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, Indiana
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles California
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles California. School of Life Sciences, Peking University, Beijing, China
| | - Timothy R Donahue
- Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Reginald Hill
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana.
| |
Collapse
|
27
|
Glucose-regulated protein 94 mediates metastasis by CCT8 and the JNK pathway in hepatocellular carcinoma. Tumour Biol 2015; 37:8219-27. [PMID: 26718209 DOI: 10.1007/s13277-015-4669-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer metastasis is a major obstacle in clinical cancer therapy. The mechanisms underlying the metastasis of HCC remain unclear. Glucose-regulated protein 94 (GRP94) is a key protein involved in mediating cancer progression, and it is highly expressed in HCC specimens. However, the role of GRP94 in cancer metastasis is unclear. A specific short hairpin RNA (shRNA) was employed to knock down GRP94 gene expression in HCC cell lines. Wound-healing migration, transwell migration, and invasion assays were performed to determine the migration and invasive ability of HCC cells. We demonstrated that silencing GRP94 inhibited HCC cell wound healing, migration, and invasion. Furthermore, our findings indicated that GRP94 knockdown might attenuate HCC cell metastasis by inhibiting CCT8/c-Jun/EMT signaling. Our study indicated that silencing GRP94 significantly reduced the migration and invasion abilities of HCC cells. Moreover, depleting GRP94 inhibited cell migration and invasion by downregulating CCT8/c-Jun signaling. Thus, our data suggest that the GRP94/CCT8/c-Jun/EMT signaling cascade might be a new therapeutic target for HCC.
Collapse
|
28
|
Glucose-regulated protein 94 mediates cancer progression via AKT and eNOS in hepatocellular carcinoma. Tumour Biol 2015; 37:4295-304. [PMID: 26493996 DOI: 10.1007/s13277-015-4254-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a crucial health issue worldwide. High glucose-regulated protein 94 (GRP94) expression has been observed in different types of cancer, suggesting a link between tumor progression and GRP94 expression. However, the mechanisms underlying the role of GRP94 in HCC progression remain unclear. We used specific small hairpin RNA (shRNA) to manipulate GRP94 expression in HCC cells. Tissue arrays, MTT assays, xCELLigence assays, and in vivo xenograft model were performed to identify clinicopathological correlations and to analyze cell growth. We found that high GRP94 expression reflected a poor response and a lower survival rate. In vitro and in vivo studies showed that silencing GRP94 suppressed cancer progression. Mechanistically, GRP94 knockdown reduced AKT, phospho-AKT, and eNOS levels but did not influence the AMPK pathway. Our results demonstrated that GRP94 is a key molecule in HCC progression that modulates the AKT pathway and eNOS levels. Our findings suggest that GRP94 may be a new prognostic and therapeutic target for HCC.
Collapse
|
29
|
Huang CY, Chang YJ, Luo SD, Uyanga B, Lin FY, Tai CJ, Huang MT. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumour Biol 2015; 37:4075-82. [PMID: 26490978 DOI: 10.1007/s13277-015-4083-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/13/2015] [Indexed: 12/25/2022] Open
Abstract
Androgen deprivation therapy has constituted the main treatment for prostate cancer; however, tumors ultimately progress to hormone-independent prostate cancer (HIPC), and suitable therapeutic strategies for HIPC are not available. Maspin, which is also known as mammary serine protease inhibitor, has been suggested to be a valuable focus for targeted cancer therapy. Specifically, maspin has been shown to be upregulated after androgen ablation therapy. Gemcitabine is used as a first-line therapy for metastatic castration-resistant prostate cancer, but its disease control rate is low. Furthermore, the role of maspin in the therapeutic efficacy of gemcitabine for HIPC remains unclear. The expression levels of maspin in PC-3 and DU145 cells were determined by real-time PCR and Western blotting. Furthermore, the expression of maspin was silenced using shRNA technology to generate maspin-KD cells. The cytotoxicity of gemcitabine to prostate cancer cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide (MTT) assays, whereas flow cytometry analyses and annexin V-propidium iodide (PI) apoptosis assays were used to assess the ability of gemcitabine to induce apoptosis in maspin-KD and control cells. Additionally, the expression patterns of anti-apoptosis proteins (myeloid cell leukemia 1 (Mcl-1) and B cell lymphoma 2 (Bcl-2)) and pro-apoptosis proteins (Bcl-2-associated death promoter (Bad) and Bcl-2-associated X protein (Bax)) were determined by Western blotting. In this study, PC-3 cells were more resistant to gemcitabine administration than DU145 cells, which correlated with the higher expression levels of maspin observed in PC-3 cells. Furthermore, maspin knockdown enhanced gemcitabine-induced cell death, as evidenced by the increased number of apoptotic cells. Gemcitabine treatment upregulated the levels of anti-apoptosis proteins (Mcl-2 and Bcl-2) in both scrambled control and maspin-KD cells; however, the fold changes in Mcl-1 and Bcl-2 expression were larger in gemcitabine-treated scrambled control cells than in maspin-KD cells. Finally, our findings indicate for the first time that maspin may mediate the therapeutic efficacy of gemcitabine in HIPC. Our results demonstrate that maspin knockdown enhanced the sensitivity of androgen-independent prostate cancer cells to gemcitabine. Therefore, combining gemcitabine with a drug that targets maspin might constitute a valuable strategy for prostate cancer treatment.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Batzorig Uyanga
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Jeng Tai
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
30
|
The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415269. [PMID: 26557666 PMCID: PMC4628761 DOI: 10.1155/2015/415269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/09/2023]
Abstract
Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer.
Collapse
|
31
|
Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367:1-11. [PMID: 26170167 DOI: 10.1016/j.canlet.2015.06.019] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Diyu Huang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Chen WY, Huang CY, Cheng WL, Hung CS, Huang MT, Tai CJ, Liu YN, Chen CL, Chang YJ. Alpha 7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to 5-fluorouracil. Tumour Biol 2015; 36:9537-44. [PMID: 26136123 DOI: 10.1007/s13277-015-3668-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
|
33
|
Kuo LJ, Huang CY, Cheng WL, Hung CS, Wu CT, Lin FY, Chang YJ, Huang MT. Glucose-regulated protein 78 mediates the anticancer efficacy of shikonin in hormone-refractory prostate cancer cells. Tumour Biol 2015; 36:5063-70. [PMID: 25669168 DOI: 10.1007/s13277-015-3157-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
|
34
|
Glucose-regulated protein 78 mediates the therapeutic efficacy of 17-DMAG in colon cancer cells. Tumour Biol 2015; 36:4367-76. [PMID: 25618598 DOI: 10.1007/s13277-015-3076-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 02/02/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is expressed as part of the molecular response to endoplasmic reticulum (ER) stress and mediates protein folding within the cell. GRP78 is also an important biomarker of cancer progression and the therapeutic response of patients with different cancer types. However, the role of GRP78 in the cytotoxic effect of 17-DMAG in colon cancer cells remains unclear. GRP78 expression was knocked down by small interfering RNA (siRNA). The anticancer effects of 17-DMAG were assessed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a flow cytometric cell-cycle analysis, and an Annexin V-propidium iodide (PI) apoptotic assay. We found that HT-29 cells expressed a lower level of GRP78 compared with DLD-1 cells. The MTT assay revealed that HT-29 cells were more sensitive to 17-DMAG treatment than DLD-1 cells. GRP78 knock down (GRP78KD) cells demonstrated an increased sensitivity to 17-DMAG treatment compared with the scrambled control cells. Based on the cell-cycle analysis and Annexin V-PI apoptotic assay, apoptosis dramatically increased in GRP78KD cells compared with scrambled control DLD-1 cells after these cells were treated with 17-DMAG. Finally, we observed a decrease in the level of Bcl-2 and an increase in the levels of Bad and Bax in GRP78KD cells treated with 17-DMAG. These results are consistent with an increased sensitivity to 17-DMAG after knock down of GRP78. The level of GRP78 expression may determine the therapeutic efficacy of 17-DMAG against colon cancer cells.
Collapse
|
35
|
Liver Cancer (Hepatocellular Carcinoma). EPIGENETIC CANCER THERAPY 2015. [DOI: 10.1016/b978-0-12-800206-3.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol 2014; 36:1859-69. [PMID: 25431258 DOI: 10.1007/s13277-014-2788-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is a key chaperone and stress response protein. Previous studies have demonstrated that high GRP78 expression may be correlated with cancer progression and therapeutic response. However, the role of GRP78 in the metastasis of colon cancer is unclear. In this study, we used small interfering RNA (siRNA) to knock down GRP78 expression in colon cancer cells (HT-29 and DLD-1 cells). In wound-healing migration assays, we found that GRP78-knockdown (GRP78KD) cells showed better wound-healing ability than control cells. We also found that GRP78KD cells displayed a better migratory ability than control cells in migration and invasion assays. As we further dissected the underlying molecular mechanism, we found that silencing GRP78 may cause an increase in vimentin expression and a decrease in the E-cadherin level, which was correlated with the increase in migratory ability. In addition, we found that GRP78KD may activate the NRF-2/HO-1 pathway, and this activation was also correlated with the increase in cell invasiveness. Furthermore, we examined GRP78 expression in a tissue array and found that the GRP78 expression in metastatic adenocarcinoma in lymph nodes tended to be weaker than that in primary colonic adenocarcinoma. In conclusion, a low level of GRP78 may cause an increase in metastasis ability in colon cancer cells by altering E-cadherin and vimentin expression and activating the NRF-2/HO-1 signaling pathway. Our study demonstrates that low expression of GRP78 may correlate with a high risk of metastasis in colon cancer.
Collapse
|
37
|
GRP78 mediates the therapeutic efficacy of curcumin on colon cancer. Tumour Biol 2014; 36:633-41. [PMID: 25277658 DOI: 10.1007/s13277-014-2640-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
|
38
|
Chen HA, Chang YW, Tseng CF, Chiu CF, Hong CC, Wang W, Wang MY, Hsiao M, Ma JT, Chen CH, Jiang SS, Wu CH, Hung MC, Huang MT, Su JL. E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer. Ann Surg Oncol 2014; 22:889-98. [PMID: 25212833 DOI: 10.1245/s10434-014-4061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is defined by reduced expression of the estrogen receptor, progesterone receptor, and HER2. TNBC is an especially aggressive group of breast cancers with poor prognosis. There are currently no validated molecular targets to effectively treat this disease. Thus, it is necessary to identify effective molecular targets and therapeutic strategies for TNBC patients. METHODS The expression of HSPA5 in patients with breast cancer was examined by immunohistochemistry. The association of HSPA5 expression with tumor grade and metastatic events in TNBC patients was analyzed using the Oncomine database. The knockdown and overexpression of HSPA5 protein were performed to investigate the effects on E1A-suppressed cell migration/invasion of TNBC using in vitro transwell assays and tumor growth/experimental metastasis studies in animal models. RESULTS The expression of HSPA5 was positively correlated with high-grade tumors, metastatic events, and poor overall survival in breast cancer patients with TNBC. E1A-inhibited HSPA5 expression suppressed cell migration/invasive ability of TNBC cell lines. Moreover, E1A significantly abolished lung metastases from breast cancer cells by inhibiting HSPA5 expression in a xenograft tumor model. CONCLUSIONS The overexpression of HSPA5 is critical for high-risk metastasis of breast cancer and TNBC. The results of our study suggest that HSPA5 may be a crucial mediator of E1A-suppressed metastatic ability of breast cancer cells. Thus, E1A may be a potential target for diagnosis and individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Hsin-An Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silencing survivin activates autophagy as an alternative survival pathway in HCC cells. Tumour Biol 2014; 35:9957-66. [PMID: 25008566 DOI: 10.1007/s13277-014-2257-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
|
40
|
Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma. PLoS One 2014; 9:e97739. [PMID: 24905462 PMCID: PMC4048189 DOI: 10.1371/journal.pone.0097739] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
The mitotic spindle checkpoint (SAC) genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC) therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA) in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8%) of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.
Collapse
|
41
|
Silencing glucose-regulated protein 78 induced renal cell carcinoma cell line G1 cell-cycle arrest and resistance to conventional chemotherapy. Urol Oncol 2014; 32:29.e1-11. [DOI: 10.1016/j.urolonc.2012.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022]
|
42
|
Wei PL, Tu CC, Chen CH, Ho YS, Wu CT, Su HY, Chen WY, Liu JJ, Chang YJ. Shikonin suppresses the migratory ability of hepatocellular carcinoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8191-8197. [PMID: 23899086 DOI: 10.1021/jf4009586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shikonin is a traditional Oriental medical herb extracted from Lithospermum erythrorhizon. Many studies have shown that shikonin possesses anticancer ability against many different cancers, including hepatocellular carcinoma (HCC). Recently, tumor metastasis has been become an important clinical obstacle. However, the effect of shikonin on metastasis by HCC is unknown. The 50% inhibitory concentration (IC50) of shikonin on HCC cells was determined by an MTT assay and the xCELLigence biosensor system. The migratory ability of HCC cells was detected by a transwell migration assay and the xCELLigence biosensor system. Matrix metalloproteinase-2 and -9 (MMP-2 and -9) expression levels were determined by Western blotting, and the activities of MMP-2 and -9 were determined by gelatin zymography. We found that IC50 values of HepJ5 and Mahlavu cells to shikonin treatment were around 2 μM. Exposure to a low dose of shikonin (0-0.4 μM) did not influence the survival of HCC cells. Interestingly, exposure to a low dose of shikonin inhibited the migratory ability on HepJ5 and Mahlavu cells. To further dissect the mechanism, we found that treatment with a low dose of shikonin reduced the activities and expression levels of MMP-2 and -9, which were correlated with the decreased cell migratory ability of HCC cells. In addition, we found a decrease of vimnetin expression, but no influence on the expression levels of N-cadherin, TWIST, or GRP78. In mechanism dissecting, we found that shikonin treatment may suppress the phosphorylation of AKT and then reduce the NF-κB (NF = nuclear factor) levels, but has no influence on the levels of c-Fos and c-Jun. Furthermore, we also found that shikonin may also reduce the phosphorylation of IκB. We concluded that a low dose of shikonin can suppress the migratory ability of HCC cells through downregulation of expression levels of vimentin and MMP-2 and -9. Our findings suggest that shikonin may be a new compound to prevent the migration of HCC cells.
Collapse
Affiliation(s)
- Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tai CJ, Wang JW, Su HY, Tai CJ, Wang CK, Wu CT, Lien YC, Chang YJ. Glucose-regulated protein 94 modulates the therapeutic efficacy to taxane in cervical cancer cells. Tumour Biol 2013; 35:403-10. [PMID: 23929391 DOI: 10.1007/s13277-013-1056-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/24/2013] [Indexed: 11/26/2022] Open
Abstract
Cervical cancer is an important health issue for women worldwide, and the endoplasmic reticulum stress pathway is important for determining the chemotherapeutic response to cancer. However, the role of glucose-regulated protein 94 (GRP94) in taxane therapy for cervical cancer remains unclear. In this study, we generated GRP94 knockdown (GRP94-KD) Hela cells using short hairpin RNAs and found that GRP94-KD cells were resistant to taxane treatment in an MTT assay. Scrambled control cells demonstrated higher levels of apoptosis when treated with taxanes in comparison to GRP94-KD cells, as determined by cell cycle profiling, 4',6-diamidino-2-phenylindole staining, and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. Caspase 3 and caspase 7 activity was also higher in scrambled control cells treated with taxane in comparison to GRP94-KD cells. Moreover, we found that depletion of GRP94 altered the levels of the apoptosis-related proteins Bcl2 and Bad, leading to sensitivity to taxane. Exposure to taxane also induced the expression of Bad in scrambled cells but not in GRP94-KD cells. In addition, the expression of Bcl2 was increased dramatically in GRP94-KD cells, whereas only a small increase was observed in scrambled cells. Therefore, we conclude that silencing GRP94 may increase resistance to taxane treatment in cervical cancer cells by altering the activation of the apoptosis pathway. In addition, GRP94 may represent a key biomarker for determining the therapeutic efficacy of taxane treatment in cervical cancer patients.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen LM, Wang W, Lee JC, Chiu FH, Wu CT, Tai CJ, Wang CK, Tai CJ, Huang MT, Chang YJ. Thrombomodulin mediates the progression of epithelial ovarian cancer cells. Tumour Biol 2013; 34:3743-51. [PMID: 23918310 DOI: 10.1007/s13277-013-0958-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023] Open
|
45
|
Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol 2013; 5:345-352. [PMID: 23898367 PMCID: PMC3724962 DOI: 10.4254/wjh.v5.i7.345] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 02/06/2023] Open
Abstract
Sorafenib, the unique drug as first-line treatment for advanced hepatocellular carcinoma (HCC), has opened a window of hope after searching for effective agents to combat HCC for decades. However, the overall outcomes are far from satisfactory. One of the explanations is the genetic heterogeneity of HCC, which has led to identifying predictive biomarkers for primary resistance to sorafenib, and then applying the concept of personalized medicine, or seeking therapeutic strategies such as combining sorafenib with other anticancer agents. Some of the combinations have demonstrated a better effectiveness than sorafenib alone, with good tolerance. The acquired resistance to sorafenib has also drawn attention. As a multikinase inhibitor, sorafenib targets several cellular signaling pathways but simultaneously or sequentially the addiction switches and compensatory pathways are activated. Several mechanisms are involved in the acquired resistance to sorafenib, such as crosstalks involving PI3K/Akt and JAK-STAT pathways, hypoxia-inducible pathways, epithelial-mesenchymal transition, etc. Based on the investigated mechanisms, some other molecular targeted drugs have been applied as second-line treatment for treat HCC after the failure of sorafenib therapy and more are under evaluation in clinical trials. However, the exact mechanisms accounting for sorafenib resistance remains unclear. Further investigation on the crosstalk and relationship of associated pathways will better our understanding of the mechanisms and help to find effective strategies for overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Bo Zhai
- Bo Zhai, Xue-Ying Sun, The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | | |
Collapse
|
46
|
Tai CJ, Cheng CW, Su HY, Chen WY, Wu CT, Lin FY, Wang CK, Tai CJ, Wei PL. Thrombomodulin mediates the migration of cervical cancer cells through the regulation of epithelial-mesenchymal transition biomarkers. Tumour Biol 2013; 35:47-54. [PMID: 23881386 DOI: 10.1007/s13277-013-1005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/05/2013] [Indexed: 01/28/2023] Open
Abstract
Thrombomodulin (TM) has been shown to regulate many physiological and pathological processes, including inflammation, thrombosis, and tumor progression. TM is also a natural anticoagulant that maintains circulatory homeostasis in endothelial cells. However, little is known regarding the role of TM in the progression and metastasis of cervical cancer. TM-specific RNA interference and a cDNA expression vector were used to manipulate TM expression in cervical cancer cells. Cell growth and cell migration were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, transwell migration assays, and a biosensor system. TM silencing did not affect the growth rate of the cells. However, cell migration was dramatically enhanced after silencing of TM in HeLa cells. The overexpression of TM in cervical cancer cells only slightly influenced their proliferative capacity. After overexpression of TM in HeLa cells, their migratory capability was suppressed. Furthermore, we found that the decreased expression of E-cadherin and increase of zeb-1 and snail expression in TM-silenced cells which may be correlated with the results of knocking-down TM increases the migratory ability in this study. Our results demonstrate that TM may slightly regulate the growth but played the important role in the migratory ability of cervical cancer cells, suggesting that TM could potentially serve as a novel prognostic and therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liang HH, Wei PL, Hung CS, Wu CT, Wang W, Huang MT, Chang YJ. MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells. Tumour Biol 2013; 34:3209-18. [PMID: 23760980 DOI: 10.1007/s13277-013-0891-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) play an essential role in regulating gene expression in normal and malignant cells. Expression of the microRNA-200 (miR-200) family has been correlated with malignancy in cancers. However, whether miR-200a/b plays a role in curcumin-mediated treatment of hepatocellular carcinoma (HCC) is unknown. We performed miRNA array analyses in two different HCC cell lines (HepG2 and HepJ5). The expression patterns of miR-200 family members were assessed with real-time PCR. We overexpressed miR-200 family members using a lentiviral system and selected stably transduced clones with antibiotics. The anticancer effects of curcumin on J5-200a, J5-200b, and J5-control cells were assessed by MTT assay, flow cytometry cell cycle analysis, and TUNEL assay. We found that HepG2 cells, which were more resistant to curcumin treatment than HepJ5 cells, expressed higher levels of miR-200a/b. The MTT assay revealed that the overexpression of miR-200a/b in HepJ5 cells conferred enhanced resistance to curcumin treatment compared with the control cells. By cell cycle analysis and TUNEL assay, we found that apoptosis was increased dramatically in J5-control cells compared with J5-200a and J5-200b cells after curcumin treatment. Finally, we evaluated the levels of Bcl-2, Bax, and Bad, and found a decrease of Bcl-2 levels and increase of Bad levels in the J5-control cells treated with curcumin. The expression levels of miR-200a/b might determine the therapeutic efficacy of curcumin on HCC cells.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Jiang X, Kanda T, Tanaka T, Wu S, Nakamoto S, Imazeki F, Yokosuka O. Lipopolysaccharide blocks induction of unfolded protein response in human hepatoma cell lines. Immunol Lett 2013; 152:8-15. [PMID: 23578665 DOI: 10.1016/j.imlet.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/15/2023]
Abstract
In the present study, we examined whether unfolded protein response (UPR) determined the hepatic cell damage induced by an innate immune response including TLR signaling pathways. We observed that lipopolysaccharide (LPS) transcriptionally downregulates 78-kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein (GRP78/Bip), known to confer resistance to apoptosis. We also observed that LPS blocked the induction of UPR and led to poly(ADP-ribose) polymerase (PARP) cleavage in hepatocytes. We also demonstrated that overexpression of GRP78 rescued HepG2 cells treated with LPS from PARP cleavage. These data suggest that UPR downregulation could be a collateral effect of the LPS treatment. We speculate that UPR is an important factor of hepatic cell damage induced by an innate immune response.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang C, Jiang K, Gao D, Kang X, Sun C, Zhang Q, Li Y, Sun L, Zhang S, Guo K, Liu Y. Clusterin protects hepatocellular carcinoma cells from endoplasmic reticulum stress induced apoptosis through GRP78. PLoS One 2013; 8:e55981. [PMID: 23457489 PMCID: PMC3573055 DOI: 10.1371/journal.pone.0055981] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/03/2013] [Indexed: 01/26/2023] Open
Abstract
Clusterin (CLU) is a stress-activated chaperone, which plays an important role in cancer development and progression through promoting cell survival. However, the exact mechanism of how CLU exerts its cell protective role under ER stress condition is still unclear. Therefore, in order to explore the molecular mechanisms by which CLU inhibited ER stress-induced apoptosis, HCC cell lines were treated with tunicamycin (TN), an ER stress inducer. We found that the expressions of both CLU and GRP78 were increased after TN treatment. Knockdown of CLU expression in SMMC7721 and HCCLM3 cells inhibited GRP78 expression after TN treatment and enhanced ER stress-induced apoptosis, whereas over-expression of CLU in HepG2 cells increased GRP78 expression after TN induction and abolished the effect of TN on cell apoptosis. Furthermore, knockdown of GRP78 expression in CLU-HepG2 cells abrogated the protective role of CLU under ER stress condition. Co-immunoprecipitation (co-IP) and confocal microscopy experiments confirmed the direct interaction between CLU and GRP78 under ER stress condition. The effect of CLU knockdown on GRP78 expression and cell apoptosis in HCC tumors were further determined in orthotopic xenograft tumor model. Knockdown of CLU expression in HCCLM3 cells inhibited GRP78 expression in tumor tissues, accompanied with increased number of apoptotic cancer cells. Moreover, the correlation between CLU and GRP78 expression was further determined in clinical HCC specimens. Taken together, these findings reveal that CLU protects HCC cells from ER stress induced apoptosis at least partially through interacting with GRP78.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiaonan Kang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chun Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qinle Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Wu CH, Uen YH, Ho CT, Tseng YT, Liu TZ, Chiou JF, Leung SW. Constitutive Overexpression of Bcl-2, Survivin and ER Stress Chaperone GRP-78 Confers Intrinsic Radioresistance in Human Hepatocellular Carcinoma Cells: Insight into the Mechanistic Pathways Involved. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.42a048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|