1
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Levidou G, Arsenakis D, Bolovis DI, Meyer R, Brucker CVM, Papadopoulos T, Theocharis S. Clinical Significance of the Immunohistochemical Expression of Histone Deacetylases (HDACs)-2, -4, and -5 in Ovarian Adenocarcinomas. Biomedicines 2024; 12:947. [PMID: 38790909 PMCID: PMC11118868 DOI: 10.3390/biomedicines12050947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are implicated in carcinogenesis, and HDAC inhibitors (HDACis) are explored as a therapeutic tool in several tumors. The aim of this study was to evaluate the clinical significance of HDAC-2, -4, and -5 expression in epithelial ovarian carcinoma (EOC). METHODS HDAC-2, -4, and -5 immunohistochemical expression was examined in 92 EOC tissue specimens and was correlated with clinicopathological characteristics. RESULTS HDAC-2 was the most frequently (94.4%) expressed isoform, being marginally higher in serous tumors compared with other types (p = 0.08). HDAC-5 was the less frequently expressed (28.1%), being positively associated with HDAC-4. HDAC-4 positivity was associated with lower FIGO-stage (p = 0.045) and T-category (p = 0.043) and the absence of lymph node (p = 0.05) or distant metastasis (p = 0.09) in serous carcinomas. HDAC-2 positivity was correlated with the absence of lymph node metastasis in serous tumors (p = 0.045). On the contrary, HDAC-5 nuclear positivity was correlated with lymph node metastasis in the entire cohort (p = 0.048). HDAC-4 positivity was marginally associated with favorable prognosis in serous carcinomas in univariate survival analysis (p = 0.086), but this correlation was not significant in multivariate analysis. CONCLUSIONS These findings suggest a differential expression among HDAC-2, -4, and -5 in ovarian adenocarcinomas in terms of immunolocalization, positivity rate, and associations with clinicopathological parameters, providing evidence for a potential role in the pathobiology of EOC.
Collapse
Affiliation(s)
- Georgia Levidou
- Department of Pathology, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (R.M.); (T.P.)
| | - Dimitrios Arsenakis
- Department of Gynecology and Obstetrics, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (D.A.); (D.I.B.); (C.V.M.B.)
| | - Dimitrios I. Bolovis
- Department of Gynecology and Obstetrics, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (D.A.); (D.I.B.); (C.V.M.B.)
| | - Roxanne Meyer
- Department of Pathology, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (R.M.); (T.P.)
| | - Cosima V. M. Brucker
- Department of Gynecology and Obstetrics, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (D.A.); (D.I.B.); (C.V.M.B.)
| | - Thomas Papadopoulos
- Department of Pathology, Medical School, Klinikum Nuremberg, Paracelsus University, 90419 Nuremberg, Germany; (R.M.); (T.P.)
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athen, 11527 Athens, Greece;
| |
Collapse
|
3
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
4
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
5
|
Mat Lazim N, Yousaf A, Abusalah MAH, Sulong S, Mohd Ismail ZI, Mohamud R, Abu-Harirah HA, AlRamadneh TN, Hassan R, Abdullah B. The Epigenesis of Salivary Glands Carcinoma: From Field Cancerization to Carcinogenesis. Cancers (Basel) 2023; 15:2111. [PMID: 37046772 PMCID: PMC10093474 DOI: 10.3390/cancers15072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Salivary gland carcinomas (SGCs) are a diverse collection of malignant tumors with marked differences in biological activity, clinical presentation and microscopic appearance. Although the etiology is varied, secondary radiation, oncogenic viruses as well as chromosomal rearrangements have all been linked to the formation of SGCs. Epigenetic modifications may also contribute to the genesis and progression of SGCs. Epigenetic modifications are any heritable changes in gene expression that are not caused by changes in DNA sequence. It is now widely accepted that epigenetics plays an important role in SGCs development. A basic epigenetic process that has been linked to a variety of pathological as well as physiological conditions including cancer formation, is DNA methylation. Transcriptional repression is caused by CpG islands hypermethylation at gene promoters, whereas hypomethylation causes overexpression of a gene. Epigenetic changes in SGCs have been identified, and they have been linked to the genesis, progression as well as prognosis of these neoplasms. Thus, we conduct a thorough evaluation of the currently known evidence on the involvement of epigenetic processes in SGCs.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anam Yousaf
- Department of Molecular Pathology Laboratory, Pakistan Kidney and Liver Institute and Research Centre, Lahore 54000, Pakistan
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Sarina Sulong
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zul Izhar Mohd Ismail
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rohimah Mohamud
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hashem A. Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Tareq Nayef AlRamadneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Rosline Hassan
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
Nurczyk K, Nowak N, Carlson R, Skoczylas T, Wallner G. Pre-therapeutic molecular biomarkers of pathological response to neoadjuvant chemotherapy in gastric and esophago-gastric junction adenocarcinoma: A systematic review and meta-analysis. Adv Med Sci 2023; 68:138-146. [PMID: 36944288 DOI: 10.1016/j.advms.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE Multimodal treatment is the standard of care in patients with locally advanced gastric cancer. Unfortunately, the response rate after neoadjuvant treatment remains limited. The ability to predict the response has a potential to improve patient outcomes by promoting a more individualized approach. We sought to describe the current state of research in pre-treatment molecular biomarkers of response to neoadjuvant therapy in gastric adenocarcinoma available for testing before the initiation of treatment and to perform a systematic review and meta-analysis in order to summarize and evaluate the potential methods. METHODS A systematic MEDLINE, EMBASE and CENTRAL literature search was conducted to extract articles on potentially predictive molecular biomarkers of pathological response to neoadjuvant therapy in patients with gastric- and esophago-gastric junction adenocarcinoma. Fixed and random effects models were used to undertake the meta-analysis when appropriate. RESULTS Data on predictive biomarkers was reported in 38 studies. These articles described 47 biomarkers showing statistical significance. After evaluation of all reported biomarkers, 3 of them met the inclusion criteria for meta-analysis. The meta-analysis results indicate that >5 ng/mL pre-therapeutic serum concentration of carcinoembryonic antigen (CEA; norm <5 ng/mL) is significantly associated with tumor response (RR = 5.13, 95% CI 2.53-10.43, P = 0.026). CONCLUSION Previous studies describe a large number of candidate biomarkers. Our meta-analysis indicated pre-therapeutic serum concentration of CEA >5 ng/mL as a potential and easy-accessible biomarker available for use before initiation of treatment. However, it could be only an additional tool for complex qualification for neoadjuvant therapy.
Collapse
Affiliation(s)
- Kamil Nurczyk
- 2(nd) Department of General Surgery, Medical University of Lublin, Lublin, Poland.
| | - Norbert Nowak
- 2(nd) Department of General Surgery, Medical University of Lublin, Lublin, Poland
| | - Rebecca Carlson
- Health Sciences Library, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tomasz Skoczylas
- 2(nd) Department of General Surgery, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Wallner
- 2(nd) Department of General Surgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Badie A, Gaiddon C, Mellitzer G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers (Basel) 2022; 14:5472. [PMID: 36358890 PMCID: PMC9659209 DOI: 10.3390/cancers14215472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive cancers. Therapeutic treatments are based on surgery combined with chemotherapy using a combination of platinum-based agents. However, at metastatic stages of the disease, survival is extremely low due to late diagnosis and resistance mechanisms to chemotherapies. The development of new classifications has not yet identified new prognostic markers for clinical use. The studies of epigenetic processes highlighted the implication of histone acetylation status, regulated by histone acetyltransferases (HATs) and by histone deacetylases (HDACs), in cancer development. In this way, inhibitors of HDACs (HDACis) have been developed and some of them have already been clinically approved to treat T-cell lymphoma and multiple myeloma. In this review, we summarize the regulations and functions of eighteen HDACs in GC, describing their known targets, involved cellular processes, associated clinicopathological features, and impact on survival of patients. Additionally, we resume the in vitro, pre-clinical, and clinical trials of four HDACis approved by Food and Drug Administration (FDA) in cancers in the context of GC.
Collapse
Affiliation(s)
| | | | - Georg Mellitzer
- Laboratoire Streinth, Université de Strasbourg, Inserm UMR_S 1113 IRFAC, 67200 Strasbourg, France
| |
Collapse
|
8
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
9
|
Histone Deacetylase (HDAC) Inhibitors: A Promising Weapon to Tackle Therapy Resistance in Melanoma. Int J Mol Sci 2022; 23:ijms23073660. [PMID: 35409020 PMCID: PMC8998190 DOI: 10.3390/ijms23073660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is an aggressive malignant tumor, arising more commonly on the skin, while it can also occur on mucosal surfaces and the uveal tract of the eye. In the context of the unresectable and metastatic cases that account for the vast majority of melanoma-related deaths, the currently available therapeutic options are of limited value. The exponentially increasing knowledge in the field of molecular biology has identified epigenetic reprogramming and more specifically histone deacetylation (HDAC), as a crucial regulator of melanoma progression and as a key driver in the emergence of drug resistance. A variety of HDAC inhibitors (HDACi) have been developed and evaluated in multiple solid and hematologic malignancies, showing promising results. In melanoma, various experimental models have elucidated a critical role of histone deacetylases in disease pathogenesis. They could, therefore, represent a promising novel therapeutic approach for advanced disease. A number of clinical trials assessing the efficacy of HDACi have already been completed, while a few more are in progress. Despite some early promising signs, a lot of work is required in the field of clinical studies, and larger patient cohorts are needed in order for more valid conclusions to be extracted, regarding the potential of HDACi as mainstream treatment options for melanoma.
Collapse
|
10
|
Correlation Analysis of Protein Expression of 10 HDAC/Sirtuin Isoenzymes with Sensitivities of 23 Anticancer Drugs in 17 Cancer Cell Lines and Potentiation of Drug Activity by Co-Treatment with HDAC Inhibitors. Cancers (Basel) 2021; 14:cancers14010187. [PMID: 35008351 PMCID: PMC8750037 DOI: 10.3390/cancers14010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Protein expression profiles of 10 HDAC/Sirtuin isoenzymes in two panels of human cancer cell lines were compared with each other and with the potencies of various anticancer drugs by Pearson and Spearman correlation analysis to identify patterns of enzyme expression and anticancer activity. Furthermore, the NCI COMPARE database was used to identify possible correlations between the mRNA expression in a 60 cancer cell panel and the potency of the same anticancer drugs. While several interesting correlations were found within both data sets, none of these correlations were identical in the two sets of data, suggesting that protein and mRNA expression profiles are not comparable. Combination treatments with several HDAC inhibitors with a number of the anticancer drugs revealed interesting synergistic effects that were in keeping with some of the correlations predicted by our protein expression analysis. Abstract Inhibiting the activity of histone deacetylase (HDAC) is an ongoing strategy in anticancer therapy. However, to our knowledge, the relationships between the expression of HDAC proteins and the antitumor drug sensitivity of cancer cells have not been studied until now. In the current work, we investigated the relative expression profiles of 10 HDAC isoenzymes comprising the classes I–III (HDAC1/2/4/6; Sirt1/2/3/5/6/7) in a panel of 17 cancer cell lines, including the breast, cervix, oesophageal, lung, oral squamous, pancreas, as well as urinary bladder carcinoma cells. Correlations between the data of mRNA expression for these enzymes obtained from the National Cancer Institute (NCI) 60 cancer cell line program were also examined. Next, we performed univariate analysis between the expression patterns of HDAC/Sirt isoenzymes with the sensitivity of a 16 cell panel of cancer cell lines towards several antitumor drugs. In a univariate correlation analysis, we found a strong relation between Sirt2 expression and cytotoxicity caused by busulfan, etoposide, and hydroxyurea. Moreover, it was identified that Sirt5 correlates with the effects exerted by oxaliplatin or topotecan, as well as between HDAC4 expression and these two drugs. Correlations between the data of mRNA expression for enzymes with the potencies of the same anticancer agents obtained from the NCI 60 cancer cell line program were also found, but none were the same as those we found with our protein expression data. Additionally, we report here the effects upon combination of the approved HDAC inhibitor vorinostat and one other known inhibitor trichostatin A as well as newer hetero-stilbene and diazeno based sirtuin inhibitors on the potency of cisplatin, lomustine, and topotecan. For these three anticancer drugs, we found a significantly enhanced cytotoxicity when co-incubated with HDAC inhibitors, demonstrating a potentially beneficial influence of HDAC inhibition on anticancer drug treatment.
Collapse
|
11
|
Decourtye-Espiard L, Bougen-Zhukov N, Godwin T, Brew T, Schulpen E, Black MA, Guilford P. E-Cadherin-Deficient Epithelial Cells Are Sensitive to HDAC Inhibitors. Cancers (Basel) 2021; 14:cancers14010175. [PMID: 35008338 PMCID: PMC8749989 DOI: 10.3390/cancers14010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inactivating germline mutations in the CDH1 gene (encoding the E-cadherin protein) are the genetic hallmark of hereditary diffuse gastric cancer (HDGC), and somatic CDH1 mutations are an early event in the development of sporadic diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In this study, histone deacetylase (HDAC) inhibitors were tested for their ability to preferentially inhibit the growth of human cell lines (MCF10A and NCI-N87) and murine organoids lacking CDH1 expression. CDH1-/- breast and gastric cells were more sensitive to the pan-HDAC inhibitors entinostat, pracinostat, mocetinostat and vorinostat than wild-type cells, with an elevated growth inhibition that was, in part, attributable to increased apoptosis. CDH1-null cells were also sensitive to more class-specific HDAC inhibitors, but compared to the pan-inhibitors, these effects were less robust to genetic background. Increased sensitivity to entinostat was also observed in gastric organoids with both Cdh1 and Tp53 deletions. However, the deletion of Tp53 largely abrogated the sensitivity of the Cdh1-null organoids to pracinostat and mocetinostat. Finally, entinostat enhanced Cdh1 expression in heterozygous Cdh1+/- murine organoids. In conclusion, entinostat is a promising drug for the chemoprevention and/or treatment of HDGC and may also be beneficial for the treatment of sporadic CDH1-deficient cancers.
Collapse
|
12
|
Histone Deacetylase (HDAC)-1, -2, -4, and -6 in Uveal Melanomas: Associations with Clinicopathological Parameters and Patients' Survival. Cancers (Basel) 2021; 13:cancers13194763. [PMID: 34638249 PMCID: PMC8507547 DOI: 10.3390/cancers13194763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Histone Deacetylases (HDACs) have been reportedly associated with tumor development and progression in several types of human malignancy, being currently investigated as potential targets of anti-cancer therapy. The aim of this study is to assess the clinical significance and prognostic role of the of HDAC-1, -2, -4, and -6 immunohistochemical expression, in 75 uveal melanoma (UM) cases. HDACs are differentially expressed in UMs, HDAC-2 being the most frequently expressed isoform, whereas cytoplasmic expression of class I HDAC isoforms is also observed. Additionally, HDAC-1 was associated with increased tumor size, HDAC-6 with mitotic index, and HDAC-2 with epithelioid cell morphology and presence of tumor-infiltrating lymphocytes, both parameters of adverse prognosis. Moreover, our data support a significant association of HDAC-2 with patients’ improved OS. These findings suggest that HDACs, and especially HDAC-2, may be implicated in the formation and progression of UM. Abstract Background: Uveal melanoma (UM) represents the most common primary intraocular malignancy in adults, exerting high metastatic potential and poor prognosis. Histone deacetylases (HDACs) play a key role in carcinogenesis, and HDAC inhibitors (HDACIs) are currently being explored as anti-cancer agents in clinical settings. The aim of this study was to evaluate the clinical significance of HDAC-1, -2, -4, and -6 expression in UM. Methods: HDAC-1, -2, -4, and -6 expression was examined immunohistochemically in 75 UM tissue specimens and was correlated with tumors’ clinicopathological characteristics, the presence of tumor-infiltrating lymphocytes (TILS), as well as with our patients’ overall survival (OS). Results: HDAC-2 was the most frequently expressed isoform (66%), whereas we confirmed in addition to the expected nuclear expression the presence of cytoplasmic expression of class I HDAC isoforms, namely HDAC-1 (33%) and HDAC-2 (9.5%). HDAC-4 and -6 expression was cytoplasmic. HDAC-1 nuclear expression was associated with increased tumor size (p = 0.03), HDAC-6 with higher mitotic index (p = 0.03), and nuclear HDAC-2 with epithelioid cell morphology (p = 0.03) and presence of tumor-infiltrating lymphocytes (p = 0.04). The association with the remaining parameters including Monosomy 3 was not significant. Moreover, the presence as well as the nuclear expression pattern of HDAC-2 were correlated with patients’ improved OS and remained significant in multivariate survival analysis. Conclusions: These findings provide evidence for a potential role of HDACs and especially HDAC-2 in the biological mechanisms governing UM evolution and progression.
Collapse
|
13
|
Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics (Basel) 2021; 11:diagnostics11081346. [PMID: 34441281 PMCID: PMC8394077 DOI: 10.3390/diagnostics11081346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have long been implicated in tumorigenesis and tumor progression demonstrating their important participation in neoplasia. Therefore, numerous studies have been performed, highlighting the mechanism of HDACs action in tumor cells and demonstrating the potential role of HDAC inhibitors in the treatment of different cancer types. The outcome of these studies further delineated and strengthened the solid role that HDACs and epigenetic modifications exert in neoplasia. These results have spread promise regarding the potential use of HDACs as prospective therapeutic targets. Nevertheless, the clinical significance of HDAC expression and their use as biomarkers in cancer has not been extensively elucidated. The aim of our study is to emphasize the clinical significance of HDAC isoforms expression in different tumor types and the correlations noted between the clinicopathological parameters of tumors and patient outcomes. We further discuss the obstacles that the next generation HDAC inhibitors need to overcome, for them to become more potent.
Collapse
|
14
|
Lu X, Yan G, Dawood M, Klauck SM, Sugimoto Y, Klinger A, Fleischer E, Shan L, Efferth T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem Pharmacol 2021; 194:114677. [PMID: 34265280 DOI: 10.1016/j.bcp.2021.114677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC1381 presented comparable affinity with HDAC1, 2, 3, 6, 8 and 11. Besides, the inhibition activity of HDACs was dose-dependently inhibited by MCC1381. Particularly, a strong binding affinity was observed between MCC1381 and HDAC6 by microscale thermophoresis analysis. MCC1381 decreased the expression of HDAC6, inversely correlated with the increase of acetylated HDAC6 substrates, acetylation p53 and α-tubulin. Furthermore, MCC1381 arrested the cell cycle at the G2/M phase, induced the generation of reactive oxygen species and collapse of the mitochondrial membrane potential. MCC1381 exhibited in vivo anti-cancer activity in xenografted zebrafish. Collectively, MCC1381 extended cytotoxicity towards P-gp-resistant leukemia cancer cells and may act as a pan-HDACs inhibitor, indicating that MCC1381 is a novel candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
15
|
Mustafa M, Abd El-Hafeez AA, Abdelhamid D, Katkar GD, Mostafa YA, Ghosh P, Hayallah AM, Abuo-Rahma GEDA. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles. Eur J Med Chem 2021; 222:113569. [PMID: 34111829 DOI: 10.1016/j.ejmech.2021.113569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
Novel 5-pyridinyl-1,2,4-triazoles were designed as dual inhibitors of histone deacetylase 2 (HDAC2) and focal adhesion kinase (FAK). Compounds 5d, 6a, 7c, and 11c were determined as potential inhibitors of both HDAC2 (IC50 = 0.09-1.40 μM) and FAK (IC50 = 12.59-36.11 nM); 6a revealed the highest activity with IC50 values of 0.09 μM and 12.59 nM for HDAC2 and FAK, respectively. Compound 6a was superior to reference drugs vorinostat and valproic acid in its ability to inhibit growth/proliferation of A-498 and Caki-1 renal cancer cells. Further investigation proved that 6a strongly arrests the cell cycle at the G2/M phase and triggers apoptosis in both A-498 and Caki-1 cells. Moreover, the enhanced Akt activity that is observed upon chronic application of HDAC inhibitors was effectively suppressed by the dual HDAC2/FAK inhibitor. Finally, the high potency and selectivity of 6a towards HDAC2 and FAK proteins were rationalized by molecular docking. Taken together, these findings highlight the potential of 6a as a promising dual-acting HDAC2/FAK inhibitor that could benefit from further optimization.
Collapse
Affiliation(s)
- Muhamad Mustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, 71526, Egypt
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA; Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA; Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Alaa M Hayallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, 71526, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt.
| |
Collapse
|
16
|
Pouloudi D, Manou M, Sarantis P, Tsoukalas N, Tsourouflis G, Dana E, Karamouzis MV, Klijanienko J, Theocharis S. Clinical Significance of Histone Deacetylase (HDAC)-1, -2, -4 and -6 Expression in Salivary Gland Tumors. Diagnostics (Basel) 2021; 11:diagnostics11030517. [PMID: 33799478 PMCID: PMC8000873 DOI: 10.3390/diagnostics11030517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Salivary gland tumors (SGTs) comprise a group of rare neoplasms. Locally aggressive, recurrent and/or metastatic SGTs are notorious for their resistance to systemic therapy, making the need for carefully designed, prospective and randomized trials with useful predictive markers mandatory to define new effective therapeutic protocols. Histone Deacetylases (HDACs), are thought to play a crucial role in carcinogenesis. They affect the DNA structure, being also able to regulate its transcription, repair, and replication. This study aimed to evaluate-to our knowledge for the first time-the HDAC-1, -2, -4 and -6 immunohistochemical expression in SGTs and their potential use as prognostic biomarkers. Medical records and archival histopathological material of 58 (36 benign and 22 malignant) SGT patients were included in this study. The H-score was statistically correlated with the clinicopathological characteristics for all cases and patients' survival rate in malignant SGTs. HDAC-2 positivity was significantly associated with more prolonged overall survival (OS) of patients with malignant SGTs (p = 0.028), while HDAC-2 positivity and no HDAC-6 expression were associated with prolonged OS of patients with HG malignant SGT (p = 0.003 and p = 0.043, respectively). Additionally, a high HDAC-2 H-score was significantly associated with longer OS for HG malignant SGT patients (p = 0.027). In our study, HDAC-2 expression is a marker for good prognosis, whereas HDAC-6 expression indicated poor prognosis; thus, an inhibitor of HDAC-6 may be used to improve patients' survival.
Collapse
Affiliation(s)
- Despoina Pouloudi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Maria Manou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Nikolaos Tsoukalas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, School of Medicine, National and Kapodistrian, University of Athens, 115 27 Athens, Greece;
| | - Eougken Dana
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
- Department of Pathology, Institut Curie, 75248 Paris, France;
- Correspondence: or ; Tel.: +30-210-7462116; Fax: +30-210-7462157
| |
Collapse
|
17
|
Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis 2020; 11:765. [PMID: 32943605 PMCID: PMC7499263 DOI: 10.1038/s41419-020-02916-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
TGFβ1 signaling is a critical driver of collagen accumulation in pulmonary fibrotic diseases and a well-characterized regulator of cancer associated fibroblasts (CAF) activation in lung cancer. Myofibroblasts induced by TGFβ1 and other factors are key players in the pathogenesis of lung fibrosis and tumor. Tremendous attention has been gained to targeting myofibroblasts in order to inhibit the progression of fibrosis and myofibroblast-induced tumor progression and metastasis. Here we determined the therapeutic efficacy of simultaneously targeting PI3K and HDAC pathways in lung myofibroblasts and CAF with a single agent and to evaluate biomarkers of treatment response. CUDC-907 is a first-in-class compound, functioning as a dual inhibitor of HDACs and PI3K/AKT pathway. We investigated its effects in counteracting the activity of TGFβ1-induced myofibroblasts/CAF in regard to cell proliferation, migration, invasion, apoptosis in vitro antifibrosis efficiency in vivo. We found that CUDC-907 inhibited myofibroblasts/CAF cell proliferation, migration and apoptosis in a dose-dependent manner and caused cell cycle arrest at G1-S phase. CUDC-907 not only inhibited myofibroblasts markers expression, but also significantly inhibited the phosphorylation level of AKT, mTOR, Smad2/3, and promoted acetylation of histones. Furthermore, the observed inhibitory effect was also confirmed in bleomycin-induced mice lung fibrosis and nude mouse transplanted tumor model. Overall, these data suggest that dual inhibition of HDAC and the tyrosine kinase signaling pathways with CUDC-907 is a promising treatment strategy for TGFβ1-induced lung and tumor fibrosis.
Collapse
|
18
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
19
|
Li H, Li H, Waresijiang Y, Chen Y, Li Y, Yu L, Li Y, Liu L. Clinical significance of HDAC1, -2 and -3 expression levels in esophageal squamous cell carcinoma. Exp Ther Med 2020; 20:315-324. [PMID: 32536999 PMCID: PMC7282189 DOI: 10.3892/etm.2020.8697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
The present study analyzed the expression of the histone deacetylase (HDAC) 1, 2 and 3 in primary esophageal squamous cell carcinoma (ESCC) samples and how their levels correlate with clinicopathological parameters. ESCC patients (n=88) in the present study had received no previous treatment before undergoing surgical excision. The mRNA expression of HDAC1, -2 and -3 were detected by semi-quantified PCR in ESCC samples and distal normal samples. The relationship of HDAC1, -2 and -3 expression with clinicopathological parameters was analyzed by χ2 test. The correlation among these HDACs was analyzed by Pearson's correlation test. Compared with distal normal tissues, ESCC samples had higher expression of HDAC1, but not HDAC2 or HDAC3 (P<0.05). The expression of HDACs was different between Kazak and Han ethnicities. The expression of HDAC2 was correlated with invasion depth (P<0.05), but not with sex, age, metastasis, or the degree of tumor differentiation (P>0.05). There was no association between HDAC1 or HDAC3 and clinicopathological parameters (P>0.05). For the Kazak and Han ethnicities, HDAC1 expression was present in male patients, patients with well/moderate differentiated ESCC and T3 and T4 ESCC (P<0.01). HDAC1 in patients aged <60 was associated with ethnicity (P<0.05). HDAC2 expression was different in positive LN metastasis, well/moderate differentiation and T3 and T4 ESCC (P<0.01). HDAC3 expression in male patients, patients with negative LN metastasis and well/moderate differentiation ESCC was associated with ethnicity (P<0.05). Additionally, the expression levels of HDAC1, -2 and -3 did not correlate with each other. Thus, HDAC1 expression may be used as a risk factor for ESCC and HDAC2 levels may be used to predict invasion depth. The expression of HDAC1, -2 and -3 has ethnic differences.
Collapse
Affiliation(s)
- Huiwu Li
- Medical Research Center, Yubei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Hui Li
- Department of Central Laboratory, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yibulayin Waresijiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yan Chen
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Li
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Liang Yu
- Medical Research Center, Yubei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Yike Li
- First Clinical Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ling Liu
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
20
|
Amnekar RV, Khan SA, Rashid M, Khade B, Thorat R, Gera P, Shrikhande SV, Smoot DT, Ashktorab H, Gupta S. Histone deacetylase inhibitor pre-treatment enhances the efficacy of DNA-interacting chemotherapeutic drugs in gastric cancer. World J Gastroenterol 2020; 26:598-613. [PMID: 32103870 PMCID: PMC7029347 DOI: 10.3748/wjg.v26.i6.598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of gastric cancer continues to remain poor, and epigenetic drugs like histone deacetylase inhibitors (HDACi) have been envisaged as potential therapeutic agents. Nevertheless, clinical trials are facing issues with toxicity and efficacy against solid tumors, which may be partly due to the lack of patient stratification for effective treatments.
AIM To study the need of patient stratification before HDACi treatment, and the efficacy of pre-treatment of HDACi as a chemotherapeutic drug sensitizer.
METHODS The expression activity of class 1 HDACs and histone acetylation was examined in human gastric cancer cells and tissues. The potential combinatorial regime of HDACi and chemotherapy drugs was defined on the basis of observed drug binding assays, chromatin remodeling and cell death.
RESULTS In the present study, the data suggest that the differential increase in HDAC activity and the expression of class 1 HDACs are associated with hypo-acetylation of histone proteins in tumors compared to normal adjacent mucosa tissue samples of gastric cancer. The data highlights for the first time that pre-treatment of HDACi results in an increased amount of DNA-bound drugs associated with enhanced histone acetylation, chromatin relaxation and cell cycle arrest. Fraction-affected plots and combination index-based analysis show that pre-HDACi chemo drug combinatorial regimes, including valproic acid with cisplatin or oxaliplatin and trichostatin A with epirubicin, exhibit synergism with maximum cytotoxic potential due to higher cell death at low combined doses in gastric cancer cell lines.
CONCLUSION Expression or activity of class 1 HDACs among gastric cancer patients present an effective approach for patient stratification. Furthermore, HDACi therapy in pre-treatment regimes is more effective with chemotherapy drugs, and may aid in predicting individual patient prognosis.
Collapse
Affiliation(s)
- Ramchandra Vigay Amnekar
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Shafqat Ali Khan
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO 63130, United States
| | - Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Rahul Thorat
- Animal House Facility, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Poonam Gera
- Biorepository Lab, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shailesh V Shrikhande
- Gastrointestinal and Hepato-Pancreato-Biliary Service, Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, College of Medicine, Howard University, Washington DC, WA 20060, United States
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400085, India
| |
Collapse
|
21
|
Wu S, Wu E, Wang D, Niu Y, Yue H, Zhang D, Luo J, Chen R. LncRNA HRCEG, regulated by HDAC1, inhibits cells proliferation and epithelial-mesenchymal-transition in gastric cancer. Cancer Genet 2020; 241:25-33. [PMID: 31964588 DOI: 10.1016/j.cancergen.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Recently, a number of long noncoding RNAs (lncRNAs) have been reported to play significant roles in human tumorigenesis. However, only few gastric cancer related lncRNAs have been well characterized. Here, we identified one lncRNA HRCEG, whose expression was decreased in the gastric cancer tissues compared with adjacent normal tissues. Overexpression of HRCEG significantly promoted cell apoptosis and inhibited cell proliferation. Importantly, we demonstrated that HRCEG levels inversely correlated with EMT process and HRCEG was regulated by the histone deacetylase 1 (HDAC1) in gastric cancer. These findings suggest that HRCEG might be regulated by HDAC1 to inhibit gastric cancer progress and metastatic capability via EMT pathway.
Collapse
Affiliation(s)
- Shuheng Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongpeng Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China.
| |
Collapse
|
22
|
Schizas D, Mastoraki A, Naar L, Tsilimigras DI, Katsaros I, Fragkiadaki V, Karachaliou GS, Arkadopoulos N, Liakakos T, Moris D. Histone Deacetylases (HDACs) in Gastric Cancer: An Update of their Emerging Prognostic and Therapeutic Role. Curr Med Chem 2020; 27:6099-6111. [PMID: 31309879 DOI: 10.2174/0929867326666190712160842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy resistance is a rising concern in Gastric Cancer (GC) and has led to the investigation of various cellular compounds. Α functional equilibrium of histone acetylation and deacetylation was discovered in all cells, regulated by Histone Acetyltransferases and Deacetylases (HDACs), controlling chromatin coiling status and changing gene expression appropriately. In accordance with recent research, this equilibrium can be dysregulated in cancer cells aiding in the process of carcinogenesis and tumor progression by altering histone and non-histone proteins affecting gene expression, cell cycle control, differentiation, and apoptosis in various malignancies. In addition, increased HDAC expression in GC cells has been associated with increased stage, tumor invasion, nodal metastases, increased distant metastatic potential, and decreased overall survival. HDAC inhibitors could be used as treatment regimens for GC patients and could develop important synergistic interactions with chemotherapy drugs. The aim of this article is to review the molecular identity and mechanism of action of HDAC inhibitors, as well as highlight their potential utility as anti-cancer agents in GC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aikaterini Mastoraki
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Leon Naar
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio, United States
| | - Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Georgia-Sofia Karachaliou
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
23
|
Spaety ME, Gries A, Badie A, Venkatasamy A, Romain B, Orvain C, Yanagihara K, Okamoto K, Jung AC, Mellitzer G, Pfeffer S, Gaiddon C. HDAC4 Levels Control Sensibility toward Cisplatin in Gastric Cancer via the p53-p73/BIK Pathway. Cancers (Basel) 2019; 11:cancers11111747. [PMID: 31703394 PMCID: PMC6896094 DOI: 10.3390/cancers11111747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) remains a health issue due to the low efficiency of therapies, such as cisplatin. This unsatisfactory situation highlights the necessity of finding factors impacting GC sensibility to therapies. We analyzed the cisplatin pangenomic response in cancer cells and found HDAC4 as a major epigenetic regulator being inhibited. HDAC4 mRNA repression was partly mediated by the cisplatin-induced expression of miR-140. At a functional level, HDAC4 inhibition favored cisplatin cytotoxicity and reduced tumor growth. Inversely, overexpression of HDAC4 inhibits cisplatin cytotoxicity. Importantly, HDAC4 expression was found to be elevated in gastric tumors compared to healthy tissues, and in particular in specific molecular subgroups. Furthermore, mutations in HDAC4 correlate with good prognosis. Pathway analysis of genes whose expression in patients correlated strongly with HDAC4 highlighted DNA damage, p53 stabilization, and apoptosis as processes downregulated by HDAC4. This was further confirmed by silencing of HDAC4, which favored cisplatin-induced apoptosis characterized by cleavage of caspase 3 and induction of proapoptotic genes, such as BIK, in part via a p53-dependent mechanism. Altogether, these results reveal HDAC4 as a resistance factor for cisplatin in GC cells that impacts on patients' survival.
Collapse
Affiliation(s)
- Marie-Elodie Spaety
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France;
| | - Alexandre Gries
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
| | - Amandine Badie
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
| | - Aina Venkatasamy
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Radiology Department, Centre Hospitalier Universitaire (CHU) Hautepierre, 67200 Strasbourg, France
| | - Benoit Romain
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Digestive Surgery department, CHU Hautepierre, 67200 Strasbourg, France
| | - Christophe Orvain
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
| | | | - Koji Okamoto
- National Cancer Research Center, Tokyo 104_0045, Japan; (K.Y.); (K.O.)
| | - Alain C. Jung
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Centre de Lutte contre le Cancer Paul Strauss (CLCC), 67065 Strasbourg, France
| | - Georg Mellitzer
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Centre de Lutte contre le Cancer Paul Strauss (CLCC), 67065 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France;
| | - Christian Gaiddon
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC UMR_S1113, Université de Strasbourg, 3 av. Molière, 67200 Strasbourg, France; (M.-E.S.); (A.G.); (A.B.); (A.V.); (B.R.); (C.O.); (A.C.J.); (G.M.)
- Centre de Lutte contre le Cancer Paul Strauss (CLCC), 67065 Strasbourg, France
- Correspondence:
| |
Collapse
|
24
|
Identification of HDAC9 as a viable therapeutic target for the treatment of gastric cancer. Exp Mol Med 2019; 51:1-15. [PMID: 31451695 PMCID: PMC6802628 DOI: 10.1038/s12276-019-0301-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a new class of anticancer drugs confirmed to have good therapeutic effects against gastric cancer (GC) in preclinical experiments, but most HDACis are non-selective (pan-HDACis), with highly toxic side effects. Therefore, it is necessary to screen HDAC family members that play key roles in GC as therapeutic targets to reduce toxic side effects. In this study, we evaluated the targeting specificity of the HDACi suberoylanilide hydroxamic acid (SAHA) for GC via fluorescence molecular imaging (FMI). In vitro FMI results showed that SAHA had higher binding affinity for GC cells than for normal gastric cells. In vivo FMI of gastric tumor-bearing mice confirmed that SAHA can be enriched in GC tissues. However, there was also a high-concentration distribution in normal organs such as the stomach and lungs, suggesting potential side effects. In addition, we found that among the HDAC family members, HDAC9 was the most significantly upregulated in GC cells, and we verified this upregulation in GC tissues. Further experiments confirmed that knockdown of HDAC9 inhibits cell growth, reduces colony formation, and induces apoptosis and cell cycle arrest. These results suggest that HDAC9 has an oncogenic role in GC. Moreover, HDAC9 siRNA suppressed GC tumor growth and enhanced the antitumor efficacy of cisplatin in GC treatment by inhibiting the proliferation and inducing the apoptosis of GC cells in vitro and in vivo. Our findings suggest that the development of HDAC9-selective HDACis is a potential approach to improve the efficacy of chemotherapy and reduce systemic toxicity. Inhibiting histone deacetylase 9 (HDAC9), a protein that regulates gene expression, reduces stomach cancer cell growth. The efficacy of current treatments for stomach cancer is limited. Although HDACs have emerged as promising therapeutic targets, non-selective HDAC inhibitors can cause severe side effects. Shigang Ding at Peking University Third Hospital in Beijing, China, and colleagues found that human stomach cancer cells have significantly higher levels of HDAC9 than other members of the HDAC family and that high HDAC9 levels are associated with reduced patient survival. Interfering with the production of HDAC9 protein improved the efficacy of the chemotherapeutic drug cisplatin in mice with stomach cancer. The authors suggest that selective HDAC9 inhibitors could help to improve the survival of patients with this type of cancer.
Collapse
|
25
|
Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncol Lett 2019; 17:3296-3304. [PMID: 30867763 PMCID: PMC6396103 DOI: 10.3892/ol.2019.9962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is a common life-threatening cancer type worldwide, with an increasing prevalence and a high rate of mortality. Due to limitations in clinical treatment, surgery has become the most efficient strategy for the treatment of GC. It is urgent to identify novel biomarkers, which are useful for the diagnosis of GC and for improving the survival rate of patients with GC. HDACs are multi-functional proteins and are involved in regulating gene expression, cell proliferation and the epigenetic regulation. However, the precise role of HDACs in the progression of GC remains unknown. The present study demonstrated that HDAC1 is involved in the promotion of GC cell proliferation, possibly by upregulating the expression of the lncRNAs, BC01600 and AF116637, in the tissues of patients with GC. Abnormal expression profiles of lncRNAs were observed in the tissues of patients with GC. lncRNAs were analyzed in the GSE64951 and GSE19826 databases, and it was revealed that BC01600 and AF116637 were two typically upregulated lncRNAs. Furthermore, it was revealed that BC01600 and AF116637 are regulated by HDAC1, as evidenced by decreased expression of these two lncRNAs in HDAC1-knockout SC-M1 cell lines, and by reduced expression of HDAC1 in these two lncRNA-knockout SC-M1 cell lines. Silencing of HDAC1 decreased the proliferation and increased the apoptosis of SC-M1 cell lines, but had no effect on the migration of the SC-M1 cell lines. The present study provided evidence of the importance of HDAC1 in the progression of SC-M1, and the association between HDAC1 and the expression of lncRNAs. The results of the present study indicated that HDAC1 may be a promising target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Zeng
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Liu
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ziqi Yu
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jianyong Chen
- Department of Gastroenterology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
27
|
HDAC2-mediated upregulation of IL-6 triggers the migration of osteosarcoma cells. Cell Biol Toxicol 2019; 35:423-433. [DOI: 10.1007/s10565-019-09459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
|
28
|
Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep 2018; 45:2275-2282. [PMID: 30250993 DOI: 10.1007/s11033-018-4389-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) development can be attributed to several risk factors including atrophic gastritis (AG), intestinal metaplasia (IM), and the presence of Helicobacter pylori (HP). Also, histone modification is an epigenetic mechanism that plays a pivotal role in GC carcinogenesis. In this preliminary study, we aimed to describe the expression profiles of histone modification in the AG, IM, and GC patient groups. A total of 80 patients with AG (n = 27), IM (n = 25), and GC (n = 28) with an additional 20 control subjects were included in the study. Expression profiles of three histone phosphorylation genes (PAK1, NEK6, and AURKA) and five histone deacetylation genes (HDACs 1, 2, 3, 5, and 7) were examined based on the results of Real Time qPCR method. It was observed that AURKA and HDAC2 genes were significantly overexpressed in all groups compared to the control (P < 0.05). In GC patients, overexpression of HDAC2 gene was detected in the absence of metastasis, and overexpression of AURKA, HDAC2, and NEK6 genes was detected in the presence of metastasis. When cancer involvements were compared, significant overexpression of the HDAC2 gene was noted in overall and corpus involvements (P < 0.05). In addition, overexpression of AURKA, NEK6, HDAC1, and HDAC2 genes and underexpression of HDAC5 gene were detected in the antrum involvement (P < 0.05). In conclusion, decreased expression of HDAC5 in GC is reported for the first time in this study, while supporting the existing literature in AURKA, NEK6, HDAC1, and HDAC2 up regulations during GC development.
Collapse
|
29
|
Cao LL, Yue Z, Liu L, Pei L, Yin Y, Qin L, Zhao J, Liu H, Wang H, Jia M. The expression of histone deacetylase HDAC1 correlates with the progression and prognosis of gastrointestinal malignancy. Oncotarget 2018; 8:39241-39253. [PMID: 28424407 PMCID: PMC5503610 DOI: 10.18632/oncotarget.16843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 01/30/2023] Open
Abstract
Gastrointestinal malignancy is a severe public health threat worldwide, and survival for most types of gastrointestinal cancer is very poor. Therefore, finding better cancer biomarkers to diagnose gastrointestinal malignancy and predict patient survival is essential. HDAC1 has been reported to be closely associated with several types of cancer, but the precise role of HDAC1 in gastrointestinal cancer is not clear. Recently, quite a few studies have investigated the correlation between HDAC1 expression and clinical features or prognosis in multiple types of gastrointestinal malignancies, but the results were inconsistent. In this study, we systematically reviewed the association between HDAC1 and gastrointestinal malignancy using meta-analysis methods, and 28 eligible studies were analyzed. We found that the expression level of HDAC1 in gastrointestinal malignancies, especially in colorectal cancer (OR = 10.84, 95% CI = 5.33-22.07, P< 0.00001), was higher than that in noncancerous tissue, and HDAC1 expression was closely associated with some clinical features of gastrointestinal cancer patients, such as tumor stage (OR = 1.62, 95% CI = 1.28-2.05, P < 0.0001) and tumor grade (OR = 1.75, 95% CI = 1.03-2.95, P = 0.04). In addition, we also found that patients with low HDAC1 expression showed better overall survival than those with high HDAC1 expression in gastrointestinal malignancy, especially in gastric cancer (HR = 1.88, 95% CI = 1.14-3.12, P = 0.01). Our results strongly suggest that HDAC1 may serve as a good diagnostic and prognostic marker for gastrointestinal malignancy.
Collapse
Affiliation(s)
- Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Lianhua Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Jie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Huixin Liu
- Research Office, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, People's Republic of China
| |
Collapse
|
30
|
Kamarulzaman NS, Dewadas HD, Leow CY, Yaacob NS, Mokhtar NF. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int 2017; 17:74. [PMID: 28785170 PMCID: PMC5540501 DOI: 10.1186/s12935-017-0442-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Collapse
Affiliation(s)
- Nur Sabrina Kamarulzaman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Hemaniswarri Dewi Dewadas
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
31
|
|
32
|
Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Sci Rep 2017; 7:43864. [PMID: 28262837 PMCID: PMC5338333 DOI: 10.1038/srep43864] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in the world. Elevated glucose metabolism in the availability of oxygen, a phenomenon called the Warburg effect, is important for cancer cell growth. Fructose-1,6-bisphosphatase (FBP1) is a rate-limiting enzyme in gluconeogenesis and is frequently lost in various types of cancer. Here, we demonstrated that expression of FBP1 was downregulated in HCC patient specimens and decreased expression of FBP1 associated with poor prognosis. Low expression of FBP1 correlated with high levels of histone deacetylase 1 (HDAC1) and HDAC2 proteins in HCC patient tissues. Treatment of HCC cells with HDAC inhibitors or knockdown of HDAC1 and/or HDAC2 restored FBP1 expression and inhibited HCC cell growth. HDAC-mediated suppression of FBP1 expression correlated with decreased histone H3 lysine 27 acetylation (H3K27Ac) in the FBP1 enhancer. Restored expression of FBP1 decreased glucose reduction and lactate secretion and inhibited HCC cell growth in vitro and tumor growth in mice. Our data reveal that loss of FBP1 due to histone deacetylation associates with poor prognosis of HCC and restored FBP1 expression by HDAC inhibitors suppresses HCC growth. Our findings suggest that repression of FBP1 by HDACs has important implications for HCC prognosis and treatment.
Collapse
|
33
|
He JC, Yao W, Wang JM, Schemmer P, Yang Y, Liu Y, Qian YW, Qi WP, Zhang J, Shen Q, Yang T. TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors. Oncotarget 2016; 7:75441-75456. [PMID: 27705912 PMCID: PMC5342751 DOI: 10.18632/oncotarget.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023] Open
Abstract
Histone deacetylases (HDACs) have been implicated in multiple malignant tumors, and HDAC inhibitors (HDACIs) exert anti-cancer effects. However, the expression of HDACs and the anti-tumor mechanism of HDACIs in cholangiocarcinoma (CCA) have not yet been elucidated. In this study, we found that expression of HDACs 2, 3, and 8 were up-regulated in CCA tissues and those patients with high expression of HDAC2 and/or HDAC3 had a worse prognosis. In CCA cells, two HDACIs, trichostatin (TSA) and vorinostat (SAHA), suppressed proliferation and induced apoptosis and G2/M cycle arrest. Microarray analysis revealed that TACC3 mRNA was down-regulated in CCA cells treated with TSA. TACC3 was highly expressed in CCA tissues and predicted a poor prognosis in CCA patients. TACC3 knockdown induced G2/M cycle arrest and suppressed the invasion, metastasis, and proliferation of CCA cells, both in vitro and in vivo. TACC3 overexpression reversed the effects of its knockdown. These findings suggest TACC3 may be a useful prognostic biomarker for CCA and is a potential therapeutic target for HDACIs.
Collapse
Affiliation(s)
- Jun-chuang He
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-ming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Yan Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya-wei Qian
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-peng Qi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qi Shen
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
34
|
Chen H, Xie GH, Wang WW, Yuan XL, Xing WM, Liu HJ, Chen J, Dou M, Shen LS. Epigenetically downregulated Semaphorin 3E contributes to gastric cancer. Oncotarget 2016; 6:20449-65. [PMID: 26036259 PMCID: PMC4653017 DOI: 10.18632/oncotarget.3936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
Axon guidance protein Semaphorin 3E (Sema3E) promotes tumor metastasis and suppresses tumor cell death. Here, we demonstrated that Sema3E was decreased in gastric cancer. Its levels were inversely associated with tumor progression. Levels of Sema3E were associated with low p300 and high class I histone deacetylase (class I HDAC). Ectopic expression of Sema3E inhibited proliferation and colony formation of gastric cancer cell lines in vitro and xenografts in vivo. Sema3E overexpression inhibited migration and invasion of gastric cancer cells, which was associated with induction of E-cadherin and reduction of Akt and ERK1/2 phosphorylation. We suggest that silencing of Sema3E contributes to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guo-Hua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Wei Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang-Liang Yuan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wen-Ming Xing
- Department of Academy, Shanghai Association for Science & Technology, Shanghai 200020, China
| | - Hong-Jing Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jin Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Min Dou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li-Song Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
35
|
Blank S, Knebel P, Haag GM, Bruckner T, Klaiber U, Burian M, Schaible A, Sisic L, Schmidt T, Diener MK, Ott K. Immediate tumor resection in patients with locally advanced gastroesophageal adenocarcinoma with nonresponse to chemotherapy after 4 weeks of treatment versus resection after completion of chemotherapy (OPTITREAT trial, DRKS00004668): study protocol for a randomized controlled pilot trial. Pilot Feasibility Stud 2016; 2:18. [PMID: 27965838 PMCID: PMC5153833 DOI: 10.1186/s40814-016-0059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Neoadjuvant chemotherapy is a standard of care for patients with adenocarcinoma of the esophagus and stomach in Europe, but still only 20–40 % respond to therapy and the critical issue; how to treat nonresponding patients is still unclear. So far, there is no randomized trial evaluating the impact of early termination of neoadjuvant chemotherapy and immediate tumor resection in nonresponding patients with locally advanced gastroesophageal cancer on postoperative outcome. With this exploratory pilot trial, we want to get first estimates about the effect of discontinuation of chemotherapy with the aim to plan and conduct a further definitive trial. Methods/design OPTITREAT is designed as a single-center, randomized controlled pilot trial with two parallel study groups. Four weeks after starting neoadjuvant chemotherapy in all patients, clinical response will be assessed by endoscopy and endosonographic ultrasound. Then, nonresponding patients (n = 84) will be randomized in a 1:1 ratio to intervention group with stopping chemotherapy and immediate tumor resection or control group with completion of chemotherapy before surgery. Outcome measures are overall survival, R0 resection rate, perioperative morbidity and mortality, histopathological response, and quality of life. Statistical analysis will be based on the intention-to-treat population. Due to the study design as an explorative pilot trial, no formal sample size calculation was performed. The planned total sample size of 120 patients is considered ethical and large enough to show the feasibility and safety of the concept. First data on differences between the study groups in the defined endpoints will also be generated. Discussion Individualized therapy is of utmost interest in the treatment of locally advanced gastroesophageal adenocarcinoma as less than half of the patients show objective response to current chemotherapy regimens. The findings of the OPTITREAT trial will help to get first data about clinical response evaluation followed by immediate tumor resection in nonresponding patients after 4 weeks of neoadjuvant chemotherapy. Based on the results of this pilot study, a future confirmatory trial will be planned to prove efficacy and evaluate significance. Trial registration German Clinical Trial Register number: DRKS00004668
Collapse
Affiliation(s)
- Susanne Blank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Phillip Knebel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany.,Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Georg-Martin Haag
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, 69120 Germany
| | - Thomas Bruckner
- Institute of Medical Statistics and Informatics, University of Heidelberg, Im Neuenheimer Feld 305, Heidelberg, 69120 Germany
| | - Ulla Klaiber
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Maria Burian
- Department of General Visceral and Transplantation Surgery, Endoscopic Center, University of Gießen, Rudolf-Buchheimstr. 7, Gießen, 35392 Germany
| | - Anja Schaible
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany.,Interdisciplinary Endoscopic Center, University of Heidelberg, Im Neuenheimer Feld 460, Heidelberg, 69120 Germany
| | - Leila Sisic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Markus K Diener
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany.,Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, 69120 Germany
| | - Katja Ott
- Department of Surgery, RoMed Klinikum, Pettenkoferstr. 10, Rosenheim, 83022 Germany
| |
Collapse
|
36
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
37
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
38
|
Ma J, Guo X, Zhang S, Liu H, Lu J, Dong Z, Liu K, Ming L. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Mol Med Rep 2015; 11:4525-31. [PMID: 25634603 DOI: 10.3892/mmr.2015.3268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Histone deacetylase (HDAC)‑mediated epigenetic modification plays crucial roles in numerous biological processes, including cell cycle regulation, cell proliferation and apoptosis. HDAC inhibitors demonstrate antitumor effects in various cancers, including glioblastoma and breast cancer. HDAC inhibitors are therefore promising antitumor drugs for these tumors. The tumorigenesis and development of esophageal squamous cell carcinoma (ESCC) involve genetic and epigenetic mechanisms. However, the effects of the HDAC inhibitor on ESCC are not fully investigated. In the present study, ESCC cells were treated with trichostatin A (TSA) and its antitumor effects and related mechanisms were investigated. The results indicated that TSA suppressed the proliferation of ESCCs and caused G1 phase arrest by inducing the expression of p21 and p27. TSA also induced cell apoptosis by enhancing the expression of pro‑apoptotic protein Bax and decreasing the expression of anti‑apoptotic protein Bcl‑2. Furthermore, TSA inhibited the expression of phosphatidylinositol‑3‑kinase (PI3K) and reduced the phosphorylation of Akt and extracellular signal‑regulated kinase (ERK)1/2 in EC9706 and EC1 cell lines. High levels of acetylated histone H4 were detected in TSA‑treated ESCC cell lines. Overall, these results indicate that TSA suppresses ESCC cell growth by inhibiting the activation of the PI3K/Akt and ERK1/2 pathways. TSA also promotes cell apoptosis through epigenetic regulation of the expression of apoptosis‑related protein.
Collapse
Affiliation(s)
- Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaobing Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
39
|
Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR. Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 2015; 1238:79-101. [PMID: 25421656 DOI: 10.1007/978-1-4939-1804-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.
Collapse
Affiliation(s)
- Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Guamá, CEP 66073-000 Belém, PA, Brazil,
| | | | | |
Collapse
|
40
|
Abstract
Epigenetic changes frequently occur in human gastric cancer. Gene promoter region hypermethylation, genomic global hypomethylation, histone modifications, and alterations of noncoding RNAs are major epigenetic changes in gastric cancer. As a key risk factor of gastric cancer, H. pylori infection is an independent predictive indicator of gene methylation. A growing number of epigenetic studies in gastric cancer have provided lots of potential diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China,
| | | |
Collapse
|
41
|
Colarossi L, Memeo L, Colarossi C, Aiello E, Iuppa A, Espina V, Liotta L, Mueller C. Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells. Proteomics Clin Appl 2014; 8:924-931. [DOI: 10.1002/prca.201400058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lorenzo Colarossi
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
- Fondazione IOM; Viagrande Catania Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
- IOM Ricerca srl; Viagrande Catania Italy
| | - Cristina Colarossi
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Eleonora Aiello
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Antonio Iuppa
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| |
Collapse
|
42
|
Liu Z, Tong Y, Liu Y, Liu H, Li C, Zhao Y, Zhang Y. Effects of suberoylanilide hydroxamic acid (SAHA) combined with paclitaxel (PTX) on paclitaxel-resistant ovarian cancer cells and insights into the underlying mechanisms. Cancer Cell Int 2014; 14:112. [PMID: 25546354 PMCID: PMC4276091 DOI: 10.1186/s12935-014-0112-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Suberoylanilide hydroxamic acid (SAHA) is a member of the hydroxamic acid class of the newly developed histone deacetylase inhibitors. Recently, Suberoylanilide hydroxamic acid has attracted increasing attention because of its antitumor activity and synergistic effects in combination with a variety of traditional chemotherapeutic drugs. Paclitaxel (PTX), is a natural anticancer drugs; however, resistance to paclitaxel has become a major challenge to the efficacy of this agent. The purpose of this study was to investigate the effects of the combined application of these two drugs on the paclitaxel-resistant ovarian cancer OC3/P cell line. Methods In the present study, the effects of Suberoylanilide hydroxamic acid or/and paclitaxel on OC3/P cells cultured in vitro were analyzed in terms of cell viability, migration, cell-cycle progression and apoptosis by CCK-8, wound healing and flow cytometry assays. Changes in cell ultrastructure were observed by transmission electron microscopy. The expression of genes and proteins related to proliferation, apoptosis and drug resistance were analyzed by quantitative real-time polymerase chain reaction and Western blot analyses. Results There was no cross-resistance of the paclitaxel-resistant ovarian cancer OC3/P cells to Suberoylanilide hydroxamic acid. Suberoylanilide hydroxamic acid combined with paclitaxel significantly inhibited cell growth and reduced the migration of OC3/P cells compared with the effects of Suberoylanilide hydroxamic acid or paclitaxel alone. Q-PCR showed the combination of Suberoylanilide hydroxamic acid and paclitaxel reduced intracellular bcl-2 and c-myc gene expression and increased bax gene expression more distinctly than the application of SAHA or paclitaxel alone. Moreover, the level of mdr1 gene expression in cells treated with Suberoylanilide hydroxamic acid was lower than that of the control group (P <0.05). Western blot analysis showed that Suberoylanilide hydroxamic acid alone or in combination with paclitaxel enhanced caspase-3 protein expression and degraded ID1 protein expression in OC3/P cells. Conclusion Suberoylanilide hydroxamic acid inhibited the growth of paclitaxel-resistant ovarian cancer OC3/P cells and reduced migration by the induction of cell-cycle arrest, apoptosis and autophagy. These observations indicate the possible synergistic antitumor effects of sequential Suberoylanilide hydroxamic acid and paclitaxel treatment.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Obstetrics and Gynecology, Air Force General Hospital, Beijing, 100142 China
| | - Ying Tong
- Department of Obstetrics and Gynecology, Air Force General Hospital, Beijing, 100142 China
| | - Yuanlin Liu
- Department of Cell Biology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, 100850 China
| | - Huaping Liu
- Department of Obstetrics and Gynecology, Air Force General Hospital, Beijing, 100142 China
| | - Chundong Li
- Department of Obstetrics and Gynecology, Air Force General Hospital, Beijing, 100142 China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Air Force General Hospital, Beijing, 100142 China
| | - Yi Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, 100850 China
| |
Collapse
|
43
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|
44
|
Kang ZH, Wang CY, Zhang WL, Zhang JT, Yuan CH, Zhao PW, Lin YY, Hong S, Li CY, Wang L. Histone deacetylase HDAC4 promotes gastric cancer SGC-7901 cells progression via p21 repression. PLoS One 2014; 9:e98894. [PMID: 24896240 PMCID: PMC4045860 DOI: 10.1371/journal.pone.0098894] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer death in the world. The role of histone deacetylase 4 (HDAC4) in specific cell and tissue types has been identified. However, its biological roles in the development of gastric cancer remain largely unexplored. Quantitative real time PCR (qRT-PCR) and western blot were used to analyze the expression of HDAC4 in the clinical samples. siRNA and overexpression of HDAC4 and siRNA p21 were used to study functional effects in a proliferation, a colony formation, a adenosine 5'-triphosphate (ATP) assay and reactive oxygen species(ROS) generation, cell cycle, cell apoptosis rates, and autophagy assays. HDAC4 was up-regulated in gastric cancer tissues and several gastric cancer cell lines. The proliferation, colony formation ability and ATP level were enhanced in HDAC4 overexpression SGC-7901 cells, but inhibited in HDAC4 knockdown SGC-7901 cells. HDAC4 knockdown led to G0/G1 phase cell arrest and caused apoptosis and ROS increase. Moreover, HDAC4 was found to inhibit p21 expression in gastric cancer SGC-7901 cells. p21 knockdown dramatically attenuated cell proliferation inhibition, cell cycle arrest, cell apoptosis promotion and autophagy up-regulation in HDAC4-siRNA SGC-7901 cells. We demonstrated that HDAC4 promotes gastric cancer cell progression mediated through the repression of p21. Our results provide an experimental basis for understanding the pro-tumor mechanism of HDAC4 as treatment for gastric cancer.
Collapse
Affiliation(s)
- Zhen-Hua Kang
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Chun-Yan Wang
- The Tumor Research Institute of JiLin Province, Changchun, P. R. China
| | - Wen-Liang Zhang
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Jian-Tao Zhang
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Chun-Hua Yuan
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Ping-Wei Zhao
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Yu-Yang Lin
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Sen Hong
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Chen-Yao Li
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| | - Lei Wang
- Department of Colorectal and Anus Surgery, First Hospital, Jilin University, Changchun, P. R. China
| |
Collapse
|
45
|
Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC, Pontes TB, Rasmussen LT, Payão SLM, Assumpção PP, Lourenço LG, Demachki S, Artigiani R, Burbano RR, Smith MC. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol 2014; 35:6373-81. [PMID: 24668547 DOI: 10.1007/s13277-014-1841-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell line.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sriraksa R, Limpaiboon T. Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma - cell line findings. Asian Pac J Cancer Prev 2013; 14:2503-8. [PMID: 23725164 DOI: 10.7314/apjcp.2013.14.4.2503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Histone deacetylation mediated by histone deacetylases (HDACs) has been reported as one of the epigenetic mechanisms associated with tumorigenesis. The poor responsiveness of anticancer drugs found with cholangiocarcinoma (CCA) leads to short survival rate. We aimed to investigate mRNA expression of HDACs class I and II, and the effect of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), in CCA in vitro. Expression of HDACs was studied in CCA cell lines (M213, M214 and KKU-100) and an immortal cholangiocyte (MMNK1) by semi-quantitative reverse transcription-PCR. SAHA and VPA, as well as a classical chemotherapeutic drug 5-fluorouracil (5-FU) were used in this study. Cell proliferation was determined by sulforhodamine assay. IC50 and IC20 were then analyzed for each agent and cell line. Moreover, synergistic potential of VPA or SAHA in combination with 5-FU at subtoxic dose (IC20) of each agent was also evaluated. Statistic difference of HDACs expression or cell proliferation in each experimental condition was analyzed by Student's t-test. The result demonstrated that HDACs were expressed in all studied cell types. Both SAHA and VPA inhibited cell proliferation in a dose-dependent manner. Interestingly, KKU-100 which was less sensitive to classical chemotherapeutic 5-FU was highly sensitive to HDAC inhibitors. Simultaneous combination of subtoxic doses of HDAC inhibitors and 5-FU significantly inhibited cell proliferation in CCA cell lines compared to single agent treatment (P ≤ 0.01), while sequentially combined treatments were less effective. The present study showed inhibitory effects of HDACIs on cell proliferation in CCA cell lines, with synergistic antitumor potential demonstrated by simultaneous combination of VPA or SAHA with 5-FU, suggesting a novel alternative therapeutic strategy in effective treatment of CCA.
Collapse
Affiliation(s)
- Ruethairat Sriraksa
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
47
|
Zhu Y, Das K, Wu J, Lee MH, Tan P. RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells. Oncogene 2013; 33:1527-37. [PMID: 23584480 DOI: 10.1038/onc.2013.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
Histone deacetylase inhibitors (HDACis) are a promising class of anticancer epigenetic drugs, however, molecular factors influencing the responses of individual tumors to HDACi therapies remain obscure. Here, we sought to identify genes associated with HDACi resistance in gastric cancer. Treating a panel of 17 gastric cancer cell lines with multiple HDACi compounds (trichostatin A, SAHA and MS275), we identified two distinct classes of lines exhibiting either HDACi sensitivity or resistance. Genomic comparisons between the sensitive and resistant classes using two independent microarray platforms identified RNH1, encoding a ribonuclease inhibitor, as a gene highly expressed in HDACi-resistant lines. Using genetic knockdown and overexpression assays, we show that RNH1 is both necessary and sufficient to induce HDACi resistance, and that RNH1 is likely to mediate this resistance through the dampening of HDACi-induced reactive oxygen species (ROS) in cancer cells. The discovery of RNH1 as a regulator of HDACi resistance in gastric cancer highlights a functional role for ROS induction in the cellular effects of this important drug class.
Collapse
Affiliation(s)
- Y Zhu
- 1] Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore [2] Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - K Das
- Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore
| | - J Wu
- Cellular and Molecular Research, National Cancer Centre, Singapore
| | - M H Lee
- Cellular and Molecular Research, National Cancer Centre, Singapore
| | - P Tan
- 1] Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore [2] Cellular and Molecular Research, National Cancer Centre, Singapore [3] Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore [4] Genome Institute of Singapore, Singapore
| |
Collapse
|
48
|
Tunceroglu A, Jabbour SK. Gastric cancer: past accomplishments, present approaches and future aspirations. CLINICAL PRACTICE 2013; 10:47-77. [DOI: 10.2217/cpr.12.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Lee YJ, Won AJ, Lee J, Jung JH, Yoon S, Lee BM, Kim HS. Molecular mechanism of SAHA on regulation of autophagic cell death in tamoxifen-resistant MCF-7 breast cancer cells. Int J Med Sci 2012; 9:881-893. [PMID: 23155362 PMCID: PMC3498753 DOI: 10.7150/ijms.5011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Tamoxifen is currently used for the treatment of estrogen receptor-positive breast cancer patients, but acquired resistance to tamoxifen is a critical problem in breast cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is a prototype of the newly developed HDAC inhibitor. The aim of this study is to investigate the anticancer effects of SAHA in tamoxifen-resistant MCF-7 (TAMR/MCF-7) cells. METHODS Cytotoxicity, apoptosis and autophagic cell death induced by SAHA were studied. A TAMR/MCF-7 cells xenograft model was established to investigate the inhibitory effect of SAHA on tumor growth in vivo. RESULTS SAHA inhibited the proliferation of TAMR/MCF-7 cells in a dose-dependent manner. SAHA significantly reduced the expression of HDAC1, 2, 3, 4 and 7 and increased acetylated histone H3 and H4. Although SAHA induced G2/M phase arrest of cell cycle, apoptotic cell death was very low, which is correlated with the slight change in the activation of caspases and PARP cleavage. Interestingly, expression of the autophagic cell death markers, LC3-II and beclin-1, was significantly increased in TAMR/MCF-7 cells treated with SAHA. Autophagic cell death induced by SAHA was confirmed by acridine orange staining and transmission electron microscopy (TEM) in TAMR/MCF-7 cells. In mice bearing the TAMR/MCF-7 cell xenografts, SAHA significantly reduced the tumor growth and weight, without apparent side effects. CONCLUSION These results suggest that SAHA can induce caspase-independent autophagic cell death rather than apoptotic cell death in TAMR/MCF-7 cells. SAHA-mediated autophagic cell death is a promising new strategy to treatment of tamoxifen-resistant human breast cancer.
Collapse
Affiliation(s)
- Young Ju Lee
- 1. Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea
| | - A Jin Won
- 1. Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea
| | - Jaewon Lee
- 1. Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea
| | - Jee H. Jung
- 1. Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea
| | - Sungpil Yoon
- 2. Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byung Mu Lee
- 3. Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyung Sik Kim
- 1. Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea
| |
Collapse
|
50
|
Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MAC. Epigenetic mechanisms in gastric cancer. Epigenomics 2012; 4:279-94. [PMID: 22690664 DOI: 10.2217/epi.12.22] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered one of the major health issues worldwide, and gastric cancer accounted for 8% of total cases and 10% of total deaths in 2008. Gastric cancer is considered an age-related disease, and the total number of newly diagnosed cases has been increasing as a result of the higher life expectancy. Therefore, the basic mechanisms underlying gastric tumorigenesis is worth investigation. This review provides an overview of the epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling complex and miRNA, involved in gastric cancer. As the studies in gastric cancer continue, the mapping of an epigenome code is not far for this disease. In conclusion, an epigenetic therapy might appear in the not too distant future.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Escola Paulista de Medicina/Universidade Federal de São Paulo, Rua Botucatu 740, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|