1
|
Ghosh S, Tanbir SE, Mitra T, Roy SS. Unveiling stem-like traits and chemoresistance mechanisms in ovarian cancer cells through the TGFβ1-PITX2A/B signaling axis. Biochem Cell Biol 2024; 102:394-409. [PMID: 38976906 DOI: 10.1139/bcb-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy, having a high mortality rate due to its asymptomatic nature, chemoresistance, and recurrence. However, the proper mechanistic knowledge behind these phenomena is still inadequate. Cancer recurrence is commonly observed due to cancer stem cells which also show chemoresistance. We aimed to decipher the molecular mechanism behind chemoresistance and stemness in OC. Earlier studies suggested that PITX2, a homeobox transcription factor and, its different isoforms are associated with OC progression upon regulating different signaling pathways. Moreover, they regulate the expression of drug efflux transporters in kidney and colon cancer, rendering chemoresistance properties in the tumor cell. Considering these backgrounds, we decided to look for the role of PITX2 isoforms in promoting stemness and chemoresistance in OC cells. In this study, PITX2A/B has been shown to promote stemness and to enhance the transcription of ABCB1. PITX2 has been discovered to augment ABCB1 gene expression by directly binding to its promoter. To further investigate the regulatory mechanism of PITX2 gene expression, we found that TGFβ signaling could augment the PITX2A/B expression through both SMAD and non-SMAD signaling pathways. Collectively, we conclude that TGFβ1-activated PITX2A/B induces stem-like features and chemoresistance properties in the OC cells.
Collapse
Affiliation(s)
- Sampurna Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sk Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang Z, Wu D, Zhang Y, Chen W, Yang Y, Yang Y, Zu G, An Y, Yu X, Qin Y, Xu X, Chen X. PITX2 functions as a transcription factor for GPX4 and protects pancreatic cancer cells from ferroptosis. Exp Cell Res 2024; 439:114074. [PMID: 38710403 DOI: 10.1016/j.yexcr.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Di Wu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Guangchen Zu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Wu D, Chen W, Yang Y, Qin Y, Zu G, Zhang Y, An Y, Sun D, Xu X, Chen X. PITX2 in pancreatic stellate cells promotes EMT in pancreatic cancer cells via the Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1393-1403. [PMID: 37337632 PMCID: PMC10520469 DOI: 10.3724/abbs.2023118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 06/21/2023] Open
Abstract
Since the prognosis of patients with pancreatic cancer is very poor and there is a lack of treatment methods, this study is performed to investigate the function of PITX2 in pancreatic stellate cells (PSCs) in the progression of pancreatic cancer. Scientific hypotheses are proposed according to bioinformatics analysis and tissue microarray analysis. Stable knockdown of PITX2 in PSCs is achieved through lentiviral infection. The relative expressions of PITX2, α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are measured in wild-type PSCs and PITX2-knockdown PSCs. Proliferative capacity is measured by EdU assay. After coculture with PSCs, the proliferation, invasion and migration capacity of pancreatic cancer cells are tested. EMT and Wnt/β-catenin downstream genes of pancreatic cancer cells are investigated to reveal the potential mechanism. Bioinformatics analysis reveals that the PITX2 gene is highly expressed in stromal cells in pancreatic cancer and is correlated with squamous-type PDAC. Analysis of PDAC tissue microarray further demonstrates that high PITX2 level in stromal cells is correlated with poor prognosis in PDAC. After stable knockdown of PITX2 in PSCs, the relative protein levels of α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are decreased, and the proliferative capacity of PSCs is also decreased. After coculture with PSCs, in which PITX2 expression is downregulated, the proliferation, invasion and migration capacities of pancreatic cancer cells are inhibited. Thus, our results show that PITX2-silenced PSCs inhibit the growth, migration and invasion of pancreatic cancer cells via reduced EMT and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Weibo Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yang Yang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Guangchen Zu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yue Zhang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yong An
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Donglin Sun
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Xuemin Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| |
Collapse
|
4
|
Curtis AA, Yu Y, Carey M, Parfrey P, Yilmaz YE, Savas S. Multifactor dimensionality reduction method identifies novel SNP interactions in the WNT protein interaction networks that are associated with recurrence risk in colorectal cancer. Front Oncol 2023; 13:1122229. [PMID: 36998434 PMCID: PMC10043327 DOI: 10.3389/fonc.2023.1122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundInteractions among genetic variants are rarely studied but may explain a part of the variability in patient outcomes.ObjectivesIn this study, we aimed to identify 1 to 3 way interactions among SNPs from five Wnt protein interaction networks that predict the 5-year recurrence risk in a cohort of stage I-III colorectal cancer patients.Methods423 patients recruited to the Newfoundland Familial Colorectal Cancer Registry were included. Five Wnt family member proteins (Wnt1, Wnt2, Wnt5a, Wnt5b, and Wnt11) were selected. The BioGRID database was used to identify the proteins interacting with each of these proteins. Genotypes of the SNPs located in the interaction network genes were retrieved from a genome-wide SNP genotype data previously obtained in the patient cohort. The GMDR 0.9 program was utilized to examine 1-, 2-, and 3-SNP interactions using a 5-fold cross validation step. Top GMDR 0.9 models were assessed by permutation testing and, if significant, prognostic associations were verified by multivariable logistic regression models.ResultsGMDR 0.9 has identified novel 1, 2, and 3-way SNP interactions associated with 5-year recurrence risk in colorectal cancer. Nine of these interactions were multi loci interactions (2-way or 3-way). Identified interaction models were able to distinguish patients based on their 5-year recurrence-free status in multivariable regression models. The significance of interactions was the highest in the 3-SNP models. Several of the identified SNPs were eQTLs, indicating potential biological roles of the genes they were associated with in colorectal cancer recurrence.ConclusionsWe identified novel interacting genetic variants that associate with 5-year recurrence risk in colorectal cancer. A significant portion of the genes identified were previously linked to colorectal cancer pathogenesis or progression. These variants and genes are of interest for future functional and prognostic studies. Our results provide further evidence for the utility of GMDR models in identifying novel prognostic biomarkers and the biological importance of the Wnt pathways in colorectal cancer.
Collapse
Affiliation(s)
- Aaron A. Curtis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yajun Yu
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Megan Carey
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Patrick Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yildiz E. Yilmaz
- Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John’s, NL, Canada
| | - Sevtap Savas
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Sevtap Savas,
| |
Collapse
|
5
|
Jiang L, Wang X, Ma F, Wang X, Shi M, Yan Q, Liu M, Chen J, Shi C, Guan XY. PITX2C increases the stemness features of hepatocellular carcinoma cells by up-regulating key developmental factors in liver progenitor. J Exp Clin Cancer Res 2022; 41:211. [PMID: 35765089 PMCID: PMC9238105 DOI: 10.1186/s13046-022-02424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor cells exhibited phenotypic and molecular characteristics similar to their lineage progenitor cells. Liver developmental signaling pathways are showed to be associated with HCC development and oncogenesis. The similarities of expression profiling between liver progenitors (LPs) and HCC suggest that understanding the molecular mechanism during liver development could provide insights into HCC.
Methods
To profile the dynamic gene expression during liver development, cells from an in vitro liver differentiation model and two paired hepatocellular carcinoma (HCC) samples were analyzed using deep RNA sequencing. The expression levels of selected genes were analyzed by qRT-PCR. Moreover, the role of a key transcription factor, pituitary homeobox 2 (PITX2), was characterized via in vitro and vivo functional assays. Furthermore, molecular mechanism studies were performed to unveil how PITX2C regulate the key developmental factors in LPs, thereby increasing the stemness of HCC.
Results
PITX2 was found to exhibit a similar expression pattern to specific markers of LPs. PITX2 consists of three isoforms (PITX2A/B/C). The expression of PITX2 is associated with tumor size and overall survival rate, whereas only PITX2C expression is associated with AFP and differentiation in clinical patients. PITX2A/B/C has distinct functions in HCC tumorigenicity. PITX2C promotes HCC metastasis, self-renewal and chemoresistance. Molecular mechanism studies showed that PITX2C could up-regulate RALYL which could enhance HCC stemness via the TGF-β pathway. Furthermore, ChIP assays confirmed the role of PITX2C in regulating key developmental factors in LP.
Conclusion
PITX2C is a newly discovered transcription factor involved in hepatic differentiation and could increase HCC stemness by upregulating key transcriptional factors related to liver development.
Collapse
|
6
|
Tang W, Lu G, Ji Y, Xu Y. Long non‑coding RNA PCAT1 sponges miR‑134‑3p to regulate PITX2 expression in breast cancer. Mol Med Rep 2022; 25:75. [PMID: 35014684 DOI: 10.3892/mmr.2022.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/03/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women. Long non‑coding (lnc)RNAs and microRNAs (miRs) both regulate the expression of key genes in tumorigenesis. The present study aimed to explore the molecular mechanism of the prostate cancer‑associated transcript 1 (PCAT1)/miR‑134‑3p/pituitary homeobox 2 (PITX2) in BC. Reverse transcription‑quantitative PCR was performed to examine the expression of miR‑134‑3p. Cell proliferation, viability, cell cycle, apoptosis and migration were analyzed using Cell Counting Kit‑8, colony formation, flow cytometry, wound healing and Transwell assays. Protein expression levels were determined by western blotting. The present study demonstrated that PCAT1 was significantly highly expressed in BC cells. Knockdown of PCAT1 significantly inhibited cell proliferation, migration and invasion, but promoted apoptosis in human BC cell lines. The results of the dual‑luciferase assay showed that PCAT1 targeted miR‑134‑3p, and PITX2 was a potential target of miR‑134‑3p. Western blotting results demonstrated that PCAT1 knockdown significantly reduced the protein expression levels of anti‑apoptotic protein Bcl‑2, and significantly upregulated the protein expression levels of proapoptotic proteins, Bax, cleaved caspase‑3 and cleaved caspase‑9. Furthermore, the effect of a miR‑134‑3p inhibitor on BC progression was rescued by the knockdown of PITX2 in cells transfected with short hairpin RNA‑lncRNA PCAT1. To conclude, the results of the present study indicated that the PCAT1/miR‑134‑3p/PITX2 axis could be a promising therapeutic target in BC treatment.
Collapse
Affiliation(s)
- Weiming Tang
- Department of Clinical Laboratory, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Guang Lu
- Department of General Surgery, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yin Ji
- Department of Pathology, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yan Xu
- Department of Clinical Laboratory, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| |
Collapse
|
7
|
Huang J, Lin B, Zhang Y, Xie Z, Zheng Y, Wang Q, Xiao H. Bamboo shavings derived O-acetylated xylan alleviates loperamide-induced constipation in mice. Carbohydr Polym 2022; 276:118761. [PMID: 34823784 DOI: 10.1016/j.carbpol.2021.118761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BSH-1 is an O-acetylated xylan obtained from bamboo shavings. This study determined the protective effects of BSH-1 against loperamide (Lop)-induced constipation in mice. Mice received BSH-1 by gavage daily for 14 days. In constipated mice, BSH-1 significantly shortened the defecation time and raised the gastrointestinal (GI) transit rate, stool production, and cecal concentration of short-chain fatty acids (SCFAs). BSH-1 regulated the serum levels of gut hormones and neurotransmitters. BSH-1 also significantly altered the cecal microbiota of the constipated mice by increasing the abundance of potentially beneficial bacteria (e.g., Lactobacillus, Roseburia, and Bacteroidales_S24-7) and decreasing potentially pathogenic bacteria (e.g., Alloprevotella and Staphylococcus). Furthermore, colonic transcriptome analysis revealed that BSH-1 significantly reversed the expression changes of genes related to intestinal motility, water and ion transport, inflammation and cancer in constipated mice. Our findings indicated that BSH-1 effectively relieved Lop-induced constipation in mice and could be potentially used for constipation treatment.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China; Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenglu Xie
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Qi Wang
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA.
| |
Collapse
|
8
|
Zhao M, Jin X, Chen Z, Zhang H, Zhan C, Wang H, Wang Q. Weighted Correlation Network Analysis of Cancer Stem Cell-Related Prognostic Biomarkers in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221117003. [PMID: 35899307 PMCID: PMC9340319 DOI: 10.1177/15330338221117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The role of cancer stem cells in esophageal squamous
cell carcinoma (ESCC) remains unclear. Methods: The mRNA stemness
index (mRNAsi) of 179 ESCC patients (GSE53625) was calculated using a machine
learning algorithm based on their mRNA expression. Stemness-related genes were
identified by weighted correlation network analysis (WGCNA) and LASSO
regression, whose associations with mutation status, immune cell infiltrations,
and potential compounds were also analyzed. The role of these genes in
proliferation and their expressions was assessed in ESCC cell lines and 112
samples from our center. Results: The ESCC samples had
significantly higher mRNAsi than the normal tissues. Patients with high mRNAsi
exhibited higher worse OS. Seven stemness-related genes were identified by WGCNA
and LASSO regression, based on which a risk-predicted score model was
constructed. Among them, CST1, CILP, PITX2, F2RL2, and RIOX1 were favorable for
OS, which were adverse for DPP4 and ZFHX4 in the GSE53625 dataset. However,
RIOX1 was unfavorable for OS in patients from our center. In vitro assays showed
that CST1, CILP, PITX2, F2RL2, and RIOX1 were pro-proliferated, which were
opposite for DDP4 and ZFHX4. In addition, SMARCA4, NOTCH3, DNAH5, and KALRN were
more mutated in the low-score group. The low-score group had significantly more
memory B cells, monocytes, activated NK cells, and Tregs and less macrophages
M2, resting mast cells, and resting dendritic cells. Conclusions:
Seven stemness-related genes are significantly related to the prognosis, gene
mutations, and immune cell infiltration of ESCC. Some potential anticancer
compounds may be favorable for OS.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xing Jin
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
He Y, Gong P, Wang S, Xu Q, Chen J. The significance of homeodomain transcription factor 2 in colon cancer cells. Biomed Eng Online 2021; 20:81. [PMID: 34372865 PMCID: PMC8351361 DOI: 10.1186/s12938-021-00912-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Background Colon cancer is a serious malignant tumor. It has been reported that paired-like homeodomain transcription factor 2 (PITX2) can promote the progression of several types of cancer via regulating the Wnt/β-catenin pathway. It has also been demonstrated that high levels of long non-coding RNA (lncRNA) gastric carcinoma high expressed transcript 1 (GHET1) can also promote the development of cervical cancer via activating the Wnt/β-catenin pathway. However, whether PITX2 can affect the development of colon cancer via regulating the expression of lncRNA GHET1 remains unclear. Results The results demonstrated that PITX2 knockdown attenuated the proliferation, migration and invasion abilities of colon cancer cells. Additionally, PITX2 promoted the expression of lncRNA GHET1 via binding to its promoter. Overexpression of lncRNA GHET1 induced the expression of Wnt/β-catenin signaling-related proteins, cyclin D1, c-Myc and MMP-7. Furthermore, lncRNA GHET1 overexpression abrogated the PITX2 silencing-mediated decreased proliferation, migration and invasion abilities of colon cancer cells. Conclusion The findings of the present study suggested that PITX2 could enhance the proliferation, migration and invasion abilities of colon cancer cells via upregulating lncRNA GHET1 and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road Middle, Shanghai, 200072, People's Republic of China.,Department of Interventional Oncology, Shanghai DaHua Hospital, Shanghai, 200072, People's Republic of China
| | - Peng Gong
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road Middle, Shanghai, 200072, People's Republic of China
| | - Sitong Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road Middle, Shanghai, 200072, People's Republic of China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road Middle, Shanghai, 200072, People's Republic of China.
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road Middle, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
10
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
11
|
Huang J, Li S, Wang Q, Guan X, Qian L, Li J, Zheng Y, Lin B. Pediococcus pentosaceus B49 from human colostrum ameliorates constipation in mice. Food Funct 2021; 11:5607-5620. [PMID: 32525185 DOI: 10.1039/d0fo00208a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a prevalent and burdensome gastrointestinal (GI) disorder that seriously affects the quality of human life. This study evaluated the effects of the P. pentosaceus B49 (from human colostrum) on loperamide (Lop)-induced constipation in mice. Mice were given P. pentosaceus B49 (5 × 109 CFU or 5 × 1010 CFU) by gavage daily for 14 days. The result shows that P. pentosaceus B49 treatment relieved constipation in mice by shortening the defecation time, increasing the GI transit rate and stool production. Compared with the constipation control group, the P. pentosaceus B49-treated groups showed decreased serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide and nitric oxide), increased serum levels of excitatory neurotransmitters (acetylcholinesterase, motilin, and gastrin), and elevated cecal concentration of short chain fatty acids (SCFAs). Analysis of cecal microbiota reveals that P. pentosaceus B49 was colonized in the intestine of constipated mice, and altered the cecal microbiota by increasing beneficial SCFAs-producing bacteria (i.e., Lactobacillus, Ruminococcaceae_UCG-014, and Bacteroidales_S24-7) and decreasing potential pathogenic bacteria (i.e., Staphylococcus and Helicobacter). Moreover, transcriptome analysis of the colon tissue shows that P. pentosaceus B49 partly normalized the expression of genes related to GI peristalsis (i.e., Ache, Chrm2, Slc18a3, Grp, and Vip), water and electrolyte absorption and transport (i.e., Aqp4, Aqp8, and Atp12a), while down-regulating the expression of pro-inflammatory and pro-oncogenic genes (i.e., Lbp, Lgals2, Bcl2, Bcl2l15, Gsdmc2, and Olfm4) in constipated mice. Our findings indicate that P. pentosaceus B49 effectively relieves constipation in mice and is a promising candidate for treating constipation.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Xuefang Guan
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China. and Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, P.R. China
| | - Lei Qian
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Jie Li
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, P.R. China.
| |
Collapse
|
12
|
Motalebzadeh J, Eskandari E. Syntrophin beta 1 (SNTB1): Candidate as a new marker for colorectal cancer metastasis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Díez-Villanueva A, Sanz-Pamplona R, Carreras-Torres R, Moratalla-Navarro F, Alonso M, Paré-Brunet L, Aussó S, Guinó E, Solé X, Cordero D, Salazar R, Berdasco M, Peinado MA, Moreno V. DNA methylation events in transcription factors and gene expression changes in colon cancer. Epigenomics 2020; 12:1593-1610. [DOI: 10.2217/epi-2020-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: Gain insight about the role of DNA methylation in the malignant growth of colon cancer. Patients & methods: Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content. Results: No differences in methylation were found between adjacent and healthy tissues, but clear differences were found between adjacent and tumor samples. We identified hypermethylated CpG islands located in promoter regions that drive differential gene expression of transcription factors and their target genes. Conclusion: Changes in methylation of a few genes provoke important changes in gene expression, by expanding the signal through transcription activation/repression.
Collapse
Affiliation(s)
- Anna Díez-Villanueva
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - M Henar Alonso
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Laia Paré-Brunet
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Susanna Aussó
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Xavier Solé
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - David Cordero
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ramón Salazar
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Cancer (CIBERONC), 28029 Madrid, Spain
- Medical Oncology Service, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Berdasco
- Cancer Epigenetics & Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Epigenetic Therapies Group, Experimental & Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, 08916 Badalona, Barcelona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| |
Collapse
|
14
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs ) increase and the L-type Ca2+ current (ICaL ) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. METHODS The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. RESULTS The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. CONCLUSIONS Electrical remodeling (IKs and ICaL ) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Lee WK, Thévenod F. Oncogenic PITX2 facilitates tumor cell drug resistance by inverse regulation of hOCT3/SLC22A3 and ABC drug transporters in colon and kidney cancers. Cancer Lett 2019; 449:237-251. [PMID: 30742940 DOI: 10.1016/j.canlet.2019.01.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/18/2023]
Abstract
Oncogenic pituitary homeobox 2 (PITX2), a de facto master regulator of developmental organ asymmetry, previously upregulated multidrug resistance (MDR) P-glycoprotein ABCB1 in A498 renal cell carcinoma (RCC) cells. The role of PITX2 isoforms in MDR cancers was investigated. Data mining correlated elevated PITX2 in >30% of cancers analyzed, maximally in colon (4.4-fold), confirmed in co-immunostaining of colon and renal cancer microarrays wherein ABCB1 concomitantly increased in RCC. Drug-resistant colorectal adenocarcinoma Colo320DM cells exhibited increased nuclear PITX2 (40-fold), PITX2 promoter activity (27-fold) and ABCB1 (8000-fold) compared to drug-sensitive Colo205. ABCB1 inhibitor PSC833/valspodar or PITX2 siRNA reversed doxorubicin resistance. Nuclei from Colo320DM and A498 cells harbored PITX2A/B1 and PITX2A/B1/B2/Cα/Cβ, respectively. ChIP-qPCR evidenced PITX2 promoter binding in drug exporters ABCB1, ABCC1, ABCG2 and importer hOCT3/SLC22A3. In A498, 786-O, Caki-1, Colo320DM, and Caco2 cells, PITX2 siRNA diminished exporters, increased hOCT3/SLC22A3 expression and activity, and reverted vincristine resistance. Heterologous PITX2 expression induced ABCB1, repressed hOCT3/SLC22A3, enhanced vincristine resistance and diminished proliferation inhibition wherein PITX2A and PITX2C were most effective. Furthermore, PITX2 activity and MDR depended on phosphorylation by GSK3 in A498 cells. Conclusively, oncogenic PITX2 limits sensitizing drug uptake and potentiates cytoprotective drug efflux, contributing to MDR phenotype.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology, Pathophysiology and Toxicology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 12, Witten, Germany.
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology and Toxicology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 12, Witten, Germany.
| |
Collapse
|
16
|
PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:96. [PMID: 31043858 PMCID: PMC6460850 DOI: 10.1186/s12935-019-0800-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background The homeodomain transcription factor, PITX2 is associated with tumorigenesis of multiple cancers. In this research, we aimed to study the expression, function and mechanism of PITX2 in lung adenocarcinoma (LUAD). Methods The TCGA dataset was used to analyze the expression and clinical significance of PITX2 in LUAD. The expression of PITX2 in tumor samples and LUAD cell lines was examined by quantitative real-time PCR (qRT-PCR) and western blotting. Small interfering RNAs (siRNAs) were constructed to knockdown PITX2 and to determine the physiological function of PITX2 in vitro. Xenograft model was used to confirm the role of PITX2 in vivo. Results PITX2 was overexpressed in LUAD and patients with high level of PITX2 had a worse overall survival and an advanced clinical stage. Knockdown of PITX2 inhibited cell proliferation, migration and invasion of LUAD cells. Further study revealed that the oncogenic role of PITX2 was dependent on activating Wnt/β-catenin signaling pathway, especially by transcriptionally regulating the Wnt gene family member, WNT3A. Lastly, we identified miR-140-5p as a negative mediator of PITX2 by binding its 3′UTR and ectopic expression of miR-140-5p inhibited progression of LUAD cells via suppressing the expression of PITX2. Conclusions Up-regulation of PITX2 acts as an oncogene in LUAD by activating Wnt/β-catenin signaling pathway, suggesting that PITX2 may serve as a novel diagnostic and prognostic biomarker in LUAD. Electronic supplementary material The online version of this article (10.1186/s12935-019-0800-7) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Semaan A, Uhl B, Branchi V, Lingohr P, Bootz F, Kristiansen G, Kalff JC, Matthaei H, Pantelis D, Dietrich D. Significance of PITX2 Promoter Methylation in Colorectal Carcinoma Prognosis. Clin Colorectal Cancer 2018; 17:e385-e393. [PMID: 29580650 DOI: 10.1016/j.clcc.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND New treatment modalities and a growing understanding of the complex genetic tumor landscape have improved the outcome of colorectal cancer (CRC) patients. Nonetheless, more individualized treatment regimens, taking individual tumor characteristics into account, have been recently postulated and prognostic biomarkers are needed. We therefore evaluated the prognostic potential of paired-like homeodomain transcription factor 2 (PITX2) promoter methylation in CRC patients. MATERIALS AND METHODS Data of 2 independent cohorts were investigated. Tissue specimens of cohort A (n = 179) were analyzed for their methylation in the PITX2 promoter region using quantitative methylation-specific polymerase chain reaction and compared with publicly available data (PITX2 promoter methylation and PITX2 mRNA expression levels) from "The Cancer Genome Atlas Research Network" (cohort B, n = 443). Data were correlated with clinicopathological parameters and outcome. RESULTS Tumor samples of both cohorts showed a decreased PITX2 promoter methylation level (both P < .001) compared with nonmalignant tissue. Additionally, PITX2 promoter hypomethylation was prognostic in univariate and multivariate analysis (hazard ratio [HR], 1.97 [95% confidence interval (CI), 1.12-3.47], P = .018 and HR, 1.89 [95% CI, 1.09-3.29], P = .023), and Kaplan-Meier analysis (median overall survival, 53.2 vs. 70.4 months, P = .004). Subanalysis of high-risk vs. low-risk stage II CRC patients also showed a PITX2 hypomethylation of the promoter region in the high-risk group (P = .006). CONCLUSION Our results suggest a prognostic role of PITX2 promoter methylation in CRC as biomarker for risk stratification in stage II CRC patients although the results need to be independently validated.
Collapse
Affiliation(s)
- Alexander Semaan
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| | - Barbara Uhl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Jörg C Kalff
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Dimitrios Pantelis
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Zheng Y, Yang C, Tong S, Ding Y, Deng W, Song D, Xiao K. Genetic variation of long non-coding RNA TINCR contribute to the susceptibility and progression of colorectal cancer. Oncotarget 2018; 8:33536-33543. [PMID: 28418933 PMCID: PMC5464888 DOI: 10.18632/oncotarget.16538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) accounts for the leading causes of cancer-related morbidity and mortality. However, a large part of heritable factors are warranted to be explored. Long non-coding RNAs (lncRNAs) serve critical roles in cancer development and progression. Herein, we explored effect of genetic variants of Tissue differentiation-inducing non-protein coding RNA (TINCR), a key lncRNA required for somatic tissue differentiation and tumor progression, on risk and progression of CRC. Three tagSNPs, including rs2288947, rs8105637, and rs12610531, were evaluated in in a two-stage, case-control study. Two SNPs, rs2288947 and rs8105637, were significantly associated with susceptibility of CRC in both stages. When pooled together, the allele G was significantly associated with 23% decreased risk of CRC (OR=0.77; 95% CI=0.67-0.88; P value = 1.2×10-4)for SNP rs2288947. While for SNP rs8105637, the allele A was significantly associated with 22% increased risk of CRC (OR=1.22; 95% CI=1.09-1.37; P value = 6.2×10-4). The two SNPs were also statistically associated with occurrence of lymph node metastasis of CRC. The carriers of allele G are less likely to get lymph node metastasis (OR=0.77; 95% CI=0.63-0.94; P value = 0.011) for rs2288947, and the carriers of allele A are more likely to get lymph node metastasis (OR=1.22; 95% CI=1.03-1.43; P value = 0.019) for rs8105637. These results suggest that lncRNA TINCR polymorphisms may be implicated in the development and progression of CRC.
Collapse
Affiliation(s)
- Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chao Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shilun Tong
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu Ding
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Wenhong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Dan Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Kuang Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
19
|
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther 2017; 10:3249-3259. [PMID: 28721076 PMCID: PMC5501640 DOI: 10.2147/ott.s139639] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. It is a complicated and often fatal cancer, and is related to a high disease-related mortality. Around 90% of mortalities are caused by the metastasis of CRC. Current treatment statistics shows a less than 5% 5-year survival for patients with metastatic disease. The development and metastasis of CRC involve multiple factors and mechanisms. The Hedgehog (Hh) signaling plays an important role in embryogenesis and somatic development. Abnormal activation of the Hh pathway has been proven to be related to several types of human cancers. The role of Hh signaling in CRC, however, remains controversial. In this review, we will go through previous literature on the Hh signaling and its functions in the formation, proliferation, and metastasis of CRC. We will also discuss the potential of targeting Hh signaling pathway in the treatment, prognosis, and prevention of CRC.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zhang JX, Chen ZH, Xu Y, Chen JW, Weng HW, Yun M, Zheng ZS, Chen C, Wu BL, Li EM, Fu JH, Ye S, Xie D. Downregulation of MicroRNA-644a Promotes Esophageal Squamous Cell Carcinoma Aggressiveness and Stem Cell-like Phenotype via Dysregulation of PITX2. Clin Cancer Res 2017; 23:298-310. [PMID: 27407092 DOI: 10.1158/1078-0432.ccr-16-0414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE We previously reported the oncogenic role of paired-like homeodomain 2 (PITX2) in esophageal squamous cell carcinoma (ESCC). In this study, we aimed to identify the miRNA regulators of PITX2 and the mechanism underlying the pathogenesis of ESCC. EXPERIMENTAL DESIGN Using miRNA profiling and bioinformatics analyses, we identified miR-644a as a negative mediator of PITX2 in ESCC. A series of in vivo and in vitro assays were performed to confirm the effect of miR-644a on PITX2-mediated ESCC malignancy. RESULTS ESCC cells and tissues expressed less miR-644a than normal epithelial controls. In patient samples, lower expression of miR-644a in ESCC tissues was significantly correlated with tumor recurrence and/or metastasis, such that miR-644a, PITX2, and the combination of the two were independent prognostic indicators for ESCC patient's survival (P < 0.05). Gain- and loss-of-function studies demonstrated that miR-644a inhibited ESCC cell growth, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo In addition, miR-644a dramatically suppressed self-renewal and stem cell-like traits in ESCC cells. Furthermore, the effect of upregulation of miR-644a was similar to that of PITX2 knockdown in ESCC cells. Mechanistic studies revealed that miR-644a attenuates ESCC cells' malignancy and stem cell-associated phenotype, at least partially, by inactivation of the Akt/GSK-3β/β-catenin signaling pathway through PITX2. Furthermore, promoter hypermethylation caused downregulation of miR-644a in ESCC. CONCLUSIONS Downregulation of miR-644a plays an important role in promoting both aggressiveness and stem-like traits of ESCC cells, suggesting that miR-644a may be useful as a novel prognostic biomarker or therapeutic target for the disease. Clin Cancer Res; 23(1); 298-310. ©2016 AACR.
Collapse
Affiliation(s)
- Jia-Xing Zhang
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
| | - Zhen-Hua Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jie-Wei Chen
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Hui-Wen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Miao Yun
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zou-San Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Jian-Hua Fu
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Dan Xie
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China.
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
21
|
Sailer V, Holmes EE, Gevensleben H, Goltz D, Dröge F, de Vos L, Franzen A, Schröck F, Bootz F, Kristiansen G, Schröck A, Dietrich D. PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma. Oncotarget 2016; 7:75827-75838. [PMID: 27716615 PMCID: PMC5342781 DOI: 10.18632/oncotarget.12417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck region (HNSCC) is a common malignant disease accompanied by a high risk of local or distant recurrence after curative-intent treatment. Biomarkers that allow for the prediction of disease outcome can guide clinicians with respect to treatment and surveillance strategies. Here, the methylation status of PITX2 and an adjacent lncRNA (PANCR) were evaluated for their ability to predict overall survival in HNSCC patients. RESULTS PITX2 hypermethylation was associated with a better overall survival (hazard ratio, HR = 0.51, 95%CI: 0.35-0.74, p<0.001), while PANCR hypermethylation was significantly associated with an increased risk of death (HR = 1.64, 95%CI: 1.12-2.39, p=0.010). METHODS Quantitative, methylation-specific real-time PCR assays for PITX2 and PANCR were employed to measure bisulfite-converted DNA from formalin-fixed, paraffin-embedded (FFPE) tissues in a cohort of 399 patients with localized or locally advanced HNSCC who received curative-intent treatment (surgery with optional adjuvant radiochemotherapy or definite radiochemotherapy). CONCLUSIONS PITX2 and PANCR methylation status were shown to be independent predictors for overall survival in HNSCC patients. Tissue-based methylation testing could therefore potentially be employed to identify patients with a high risk for death who might benefit from a more radical or alternative treatment.
Collapse
Affiliation(s)
- Verena Sailer
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, New York, NY, USA
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Englander Institute for Precision Medicine, New York, NY, USA
| | - Emily Eva Holmes
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | | | - Diane Goltz
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Freya Dröge
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luka de Vos
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Alina Franzen
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Friederike Schröck
- Department of Addictive Disorders and Addiction Medicine, LVR Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Andreas Schröck
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| |
Collapse
|
22
|
Chen F, Yao H, Wang M, Yu B, Liu Q, Li J, He Z, Hu YP. Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs. Int J Biochem Cell Biol 2016; 80:154-162. [PMID: 27697592 DOI: 10.1016/j.biocel.2016.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
Abstract
Induced hepatic stem cells (iHepSCs) have great potential as donors for liver cell therapy due to their abilities for self-renewal and bi-potential differentiation. However, the molecular mechanism regulating proliferation and differentiation of iHepSCs is poorly understood. In this study, we provide evidence that the homeodomain transcription factor, Pitx2, is essential to maintain iHepSCs stem cell characteristics. Suppressing Pitx2 expression in iHepSCs by lentivirus mediated specific shRNA markedly reduced the expression of the hepatic stem cell-associated genes (Lgr5, EpCAM, and Sox9) with concomitant inhibition of proliferation by blocking the G1/S phase transition, and these phenotypic changes were reversed upon re-expression of Pitx2. Pitx2 knockdown also resulted in up-regulation of the p53-induced Cdk inhibitor p21, and down-regulation of its downstream effector CDK2-Cyclin E kinase complex. Furthermore, we observed that iHepSCs were more efficiently induced to differentiate into both hepatocytes and cholangiocytes when Pitx2 expression was suppressed, as compared to unmanipulated iHepSCs. These findings reveal that Pitx2 expression may be leveraged to control the status of iHepSCs during expansion in vitro to provide a strategy for further application of iHepSCs in liver cell therapy.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Hao Yao
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Jianxiu Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Zhiying He
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China.
| |
Collapse
|
23
|
Uhl B, Dietrich D, Branchi V, Semaan A, Schaefer P, Gevensleben H, Rostamzadeh B, Lingohr P, Schäfer N, Kalff JC, Kristiansen G, Matthaei H. DNA Methylation of PITX2 and PANCR Is Prognostic for Overall Survival in Patients with Resected Adenocarcinomas of the Biliary Tract. PLoS One 2016; 11:e0165769. [PMID: 27798672 PMCID: PMC5087948 DOI: 10.1371/journal.pone.0165769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTC) are rare but highly aggressive malignant epithelial tumors. In order to improve the outcome in this lethal disease, novel biomarkers for diagnosis, prognosis, and therapy response prediction are urgently needed. DNA promoter methylation of PITX2 variants (PITX2ab, PITX2c) and intragenic methylation of the PITX2 adjacent non-coding RNA (PANCR) were investigated by methylations-specific qPCR assays in formalin-fixed paraffin-embedded tissue from 80 patients after resection for BTC. Results were correlated with clinicopathologic data and outcome. PITX2 variants and PANCR showed significant hypermethylation in tumor vs. normal adjacent tissue (p < 0.001 and p = 0.015), respectively. In survival analysis, dichotomized DNA methylation of variant PITX2c and PANCR were significantly associated with overall survival (OS). Patients with high tumor methylation levels of PITX2c had a shorter OS compared to patients with low methylation (12 vs. 40 months OS; HR 2.48 [1.38-4.48], p = 0.002). In contrast, PANCR hypermethylation was associated with prolonged survival (25 vs. 19 months OS; HR 0.54 [0.30-0.94], p = 0.015) and qualified as an independent prognostic factor on multivariate analysis. The biomarkers investigated in this study may help to identify BTC subpopulations at risk for worse survival. Further studies are needed to evaluate if PITX2 might be a clinically useful biomarker for an optimized and individualized treatment.
Collapse
Affiliation(s)
- Barbara Uhl
- Institute of Pathology, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn, Bonn, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Germany
| | | | | | | | | | - Babak Rostamzadeh
- Department of Neuroradiology, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Nico Schäfer
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Jörg C. Kalff
- Department of Surgery, University of Bonn, Bonn, Germany
| | | | - Hanno Matthaei
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Worsham MJ, Chen KM, Datta I, Stephen JK, Chitale D, Gothard A, Divine G. The biological significance of methylome differences in human papilloma virus associated head and neck cancer. Oncol Lett 2016; 12:4949-4956. [PMID: 28101231 PMCID: PMC5228097 DOI: 10.3892/ol.2016.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/26/2016] [Indexed: 01/02/2023] Open
Abstract
In recent years, studies have suggested that promoter methylation in human papilloma virus (HPV) positive head and neck squamous cell carcinoma (HNSCC) has a mechanistic role and has the potential to improve patient survival. The present study aimed to replicate key molecular findings from previous analyses of the methylomes of HPV positive and HPV negative HNSCC in an independent cohort, to assess the reliability of differentially methylated markers in HPV-associated tumors. HPV was measured using real-time quantitative PCR and the biological significance of methylation differences was assessed by Ingenuity Pathway Analysis (IPA). Using an identical experimental design of a 450K methylation platform, 7 of the 11 genes were detected to be significantly differentially methylated and all 11 genes were either hypo- or hypermethylated, which was in agreement with the results of a previous study. IPA's enriched networks analysis identified one network with msh homeobox 2 (MSX2) as a central node. Locally dense interactions between genes in networks tend to reflect significant biology; therefore MSX2 was selected as an important gene. Sequestration in the top four canonical pathways was noted for 5-hydroxytryptamine receptor 1E (serotonin signaling), collapsin response mediator protein 1 (semaphorin signaling) and paired like homeodomain 2 (bone morphogenic protein and transforming growth factor-β signaling). Placement of 9 of the 11 genes in highly ranked pathways and bionetworks identified key biological processes to further emphasize differences between HNSCC HPV positive and negative pathogenesis.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Kang Mei Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Josena K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
25
|
Chen G, Han N, Li G, Li X, Li G, Li Z, Li Q. Time course analysis based on gene expression profile and identification of target molecules for colorectal cancer. Cancer Cell Int 2016; 16:22. [PMID: 27013928 PMCID: PMC4806509 DOI: 10.1186/s12935-016-0296-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The study aimed to investigate the expression changes of genes in colorectal cancer (CRC) and screen the potential molecular targets. METHODS The GSE37178 of mRNA expression profile including the CRC samples extracted by surgical resection and the paired normal samples was downloaded from Gene Expression Omnibus database. The genes whose expressions were changed at four different time points were screened and clustered using Mfuzz package. Then DAVID was used to perform the functional and pathway enrichment analysis for genes in different clusters. The protein-protein interaction (PPI) networks were constructed for genes in the clusters according to the STRING database. Furthermore, the related-transcription factors (TFs) and microRNAs (miRNAs) were obtained based on the resources in databases and then were combined with the PPI networks in each cluster to construct the integrated network containing genes, TFs and miRNAs. RESULTS As a result, 314 genes were clustered into four groups. Genes in cluster 1 and cluster 2 showed a decreasing trend, while genes in cluster 3 and cluster 4 presented an increasing trend. Then 18 TFs (e.g., TCF4, MEF2C and FOS) and 18 miRNAs (e.g., miR-382, miR-217, miR-1184, miR-326 and miR-330-5p) were identified and three integrated networks for cluster 1, 3, and 4 were constructed. CONCLUSIONS The results implied that expression of PITX2, VSNL1, TCF4, MEF2C and FOS are time-related and associated with CRC development, accompanied by several miRNAs including miR-382, miR-217, miR-21, miR-1184, miR-326 and miR-330-5p. All of them might be used as potential diagnostic or therapeutic target molecules for CRC.
Collapse
Affiliation(s)
- Guoting Chen
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Ning Han
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Guofeng Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Xin Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Guang Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Zengchun Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| | - Qinchuan Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Shanghai, 200120 China
| |
Collapse
|
26
|
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, Zang Y, Zhang J, Wang L. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 2016; 7:11208-22. [PMID: 26848620 PMCID: PMC4905467 DOI: 10.18632/oncotarget.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhe Shen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - He Jiang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
27
|
Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS. Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-β and Activin-A. Mol Cancer 2015; 14:162. [PMID: 26298390 PMCID: PMC4546816 DOI: 10.1186/s12943-015-0433-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer. METHODS The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells. RESULTS Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells. CONCLUSIONS Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future.
Collapse
Affiliation(s)
- Moitri Basu
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Rahul Bhattacharya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Uttara Chatterjee
- Department of Pathology, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
29
|
García-Muñoz A, Rodríguez MA, Licéaga-Escalera C, Licéaga-Reyes R, Carreón-Burciaga RG, González-González R, Bologna-Molina R. Expression of the transcription factor PITX2 in ameloblastic carcinoma. Arch Oral Biol 2015; 60:799-803. [PMID: 25791324 DOI: 10.1016/j.archoralbio.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/06/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Ameloblastic carcinoma is a rare odontogenic tumour that combines the histological features of ameloblastoma with cytological atypia. Until 2005, the incidence of ameloblastic carcinoma was unknown, and since then, fewer than 60 cases have been reported. These tumours may originate from pre-existing tumours or cysts, or they arise de novo from the activation or transformation of embryological cells. PITX2 is a transcription factor that is a product and regulator of the WNT cell signalling pathway, which has been involved in development of several tumours. To analyse whether PITX2 could be involved in the biological behaviour of ameloblastic carcinoma, we analysed the expression of this transcription factor in a sample of this tumour and nine benign ameloblastomas to compare. The results of Western blotting and RT-PCR analyses were positive, and considering the hundreds of genes that PITX2 regulates, we believe that its expression could be intimately linked to the behaviour of ameloblastic carcinoma and possibly other odontogenic lesions.
Collapse
Affiliation(s)
- Alejandro García-Muñoz
- School of Dentistry, Universidad Juárez del Estado de Durango, Durango, Mexico; Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, México, D.F., Mexico
| | - Mario A Rodríguez
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, México, D.F., Mexico
| | | | | | | | | | - Ronell Bologna-Molina
- School of Dentistry, Universidad Juárez del Estado de Durango, Durango, Mexico; Molecular Pathology, School of Dentistry, Universidad de la República (UDELAR), Montevideo, Uruguay.
| |
Collapse
|
30
|
Liu Y, Huang Y, Fan J, Zhu GZ. PITX2 associates with PTIP-containing histone H3 lysine 4 methyltransferase complex. Biochem Biophys Res Commun 2014; 444:634-7. [PMID: 24486544 PMCID: PMC3963365 DOI: 10.1016/j.bbrc.2014.01.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
Pituitary homeobox 2 (PITX2), a Paired-like homeodomain transcription factor and a downstream effector of Wnt/β-catenin signaling, plays substantial roles in embryonic development and human disorders. The mechanism of its functions, however, is not fully understood. In this study, we demonstrated that PITX2 associated with histone H3 lysine 4 (H3K4) methyltransferase (HKMT) mixed-lineage leukemia 4 (MLL4/KMT2D), Pax transactivation domain-interacting protein (PTIP), and other H3K4·HKMT core subunits. This association of PITX2 with H3K4·HKMT complex was dependent on PITX2's homeodomain. Consistently, the PITX2 protein complex was shown to possess H3K4·HKMT activity. Furthermore, the chromatin immunoprecipitation result revealed co-occupancy of PITX2 and PTIP on the promoter of the PITX2's transcriptional target. Taken together, our data provide new mechanistic perspectives on PITX2's functions and its related biological processes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China
| | - Yue Huang
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Jun Fan
- Department of Biochemistry and Microbiology, Genomic Core Facility, School of Medicine, Marshall University, Huntington, WV, USA
| | - Guo-Zhang Zhu
- Department of Biological Sciences, Marshall University, Huntington, WV, USA.
| |
Collapse
|
31
|
Basu M, Mukhopadhyay S, Chatterjee U, Roy SS. FGF16 promotes invasive behavior of SKOV-3 ovarian cancer cells through activation of mitogen-activated protein kinase (MAPK) signaling pathway. J Biol Chem 2014; 289:1415-28. [PMID: 24253043 PMCID: PMC3894325 DOI: 10.1074/jbc.m113.535427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled cell growth and tissue invasion define the characteristic features of cancer. Several growth factors regulate these processes by inducing specific signaling pathways. We show that FGF16, a novel factor, is expressed in human ovary, and its expression is markedly increased in ovarian tumors. This finding indicated possible involvement of FGF16 in ovarian cancer progression. We observed that FGF16 stimulates the proliferation of human ovarian adenocarcinoma cells, SKOV-3 and OAW-42. Furthermore, through the activation of FGF receptor-mediated intracellular MAPK pathway, FGF16 regulates the expression of MMP2, MMP9, SNAI1, and CDH1 and thus facilitates cellular invasion. Inhibition of FGFR as well as MAPK pathway reduces the proliferative and invasive behavior of ovarian cancer cells. Moreover, ovarian tumors with up-regulated PITX2 expression also showed activation of Wnt/β-catenin pathway that prompted us to investigate possible interaction among FGF16, PITX2, and Wnt pathway. We identified that PITX2 homeodomain transcription factor interacts with and regulates FGF16 expression. Furthermore, activation of the Wnt/β-catenin pathway induces FGF16 expression. Moreover, FGF16 promoter possesses the binding elements of PITX2 as well as T-cell factor (Wnt-responsive), in close proximity, where PITX2 and β-catenin binds to and synergistically activates the same. A detail study showed that both PITX2 and T-cell factor elements and the interaction with their binding partners are necessary for target gene expression. Taken together, our findings indicate that FGF16 in conjunction with Wnt pathway contributes to the cancer phenotype of ovarian cells and suggests that modulation of its expression in ovarian cells might be a promising therapeutic strategy for the treatment of invasive ovarian cancers.
Collapse
Affiliation(s)
- Moitri Basu
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| | | | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, 244 AJC Bose Road, Kolkata 700020, India
| | - Sib Sankar Roy
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| |
Collapse
|
32
|
Stem Cell Signaling Pathways in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Liu Y, Huang Y, Zhu GZ. Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma. Mol Cell Biochem 2013; 384:221-7. [PMID: 24002705 DOI: 10.1007/s11010-013-1801-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Physiological expression of cyclin A1, a unique cell cycle regulator essential for spermatogenesis, is predominantly restricted in male germ cells. Outstandingly, previous studies have also demonstrated the abnormal expression of cyclin A1 in various human tumors. How male germ cell-specific cyclin A1 is transcriptionally activated in tumor cells, however, is elusive. To begin to understand the molecular mechanisms governing the ectopic expression of cyclin A1, we searched for transcription factors and cis-regulatory DNA elements. We found that overexpression of PITX2, a paired-like homeodomain transcription factor and a downstream effector of Wnt/β-catenin signaling, resulted in upregulation of cyclin A1 in HEK293 cells and TPC-1 thyroid cancer cells. On the other hand, PITX2 knockdown in TPC-1 cells caused reduced cyclin A1. Promoter reporter assays with a series of deletion constructs determined that the DNA element from -102 to -96 bp of the cyclin A1 promoter is responsible for PITX2-induced gene expression. The result of chromatin immunoprecipitation revealed the occupancy of PITX2 on the cyclin A1 promoter. Taken together, these findings demonstrate that cyclin A1 is a transcriptional target of PITX2. Consistently, our immunohistochemistry result showed up-regulation of cyclin A1 in human papillary thyroid carcinoma, where overexpressed PITX2 has been endorsed in our recent report. Thus, our study provides new evidence on the regulation of cyclin A1 gene expression and offers a PITX2-cycin A1 pathway for cell cycle regulation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | | | | |
Collapse
|
34
|
Lee WK, Chakraborty PK, Thévenod F. Pituitary homeobox 2 (PITX2) protects renal cancer cell lines against doxorubicin toxicity by transcriptional activation of the multidrug transporter ABCB1. Int J Cancer 2013; 133:556-67. [PMID: 23354914 DOI: 10.1002/ijc.28060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/16/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022]
Abstract
The multidrug resistance (MDR) P-glycoprotein ABCB1 plays a major role in MDR of malignant cells and is regulated by various transcription factors, including Wnt/β-catenin/TCF4. The transcription factor PITX2 (Pituitary homeobox-2) is essential for embryonic development. PITX2 operates by recruiting and interacting with β-catenin to increase the expression of growth-regulating genes, such as cyclin D1/2 and c-Myc. The importance of PITX2 in malignancy is not yet known. Here we demonstrate that in the renal cancer cell lines ACHN and A498, the level of ABCB1 expression and function correlate with nuclear PITX2 localization and PITX2-luciferase reporter gene activity (A498 > ACHN). In A498 cells, doxorubicin toxicity is augmented by the ABCB1 inhibitor, PSC833. PITX2 overexpression increases ABCB1 expression and cell survival in ACHN cells. Silencing of PITX2 by siRNA downregulates ABCB1 and induces a greater chemotherapeutic response to doxorubicin in A498 cells, as determined by MTT cell viability and clonogenic survival assays. Two PITX2 binding sequences were identified in the ABCB1 promoter sequence. PITX2 binding was confirmed by chromatin immunoprecipitation. β-Catenin is not required for PITX2 upregulation of ABCB1 because ABCB1 mRNA increased and doxorubicin toxicity decreased upon PITX2 overexpression in β-catenin(-/-) cells. The data show for the first time that ABCB1 is a target gene of PITX2 transcriptional activity, promoting MDR and cell survival of cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Cell Line, Tumor
- Cell Survival
- Chromatin Immunoprecipitation
- Cyclosporins/pharmacology
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Kidney Neoplasms/drug therapy
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- beta Catenin/genetics
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology and Pathophysiology, ZBAF, Witten/Herdecke University, Witten, North-Rhine Westphalia, Germany
| | | | | |
Collapse
|
35
|
Budinska E, Popovici V, Tejpar S, D'Ario G, Lapique N, Sikora KO, Di Narzo AF, Yan P, Hodgson JG, Weinrich S, Bosman F, Roth A, Delorenzi M. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol 2013; 231:63-76. [PMID: 23836465 PMCID: PMC3840702 DOI: 10.1002/path.4212] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes, and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like, lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided molecular information beyond that contained in these variables. Morphological features significantly differed between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026.
Collapse
Affiliation(s)
- Eva Budinska
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang JX, Tong ZT, Yang L, Wang F, Chai HP, Zhang F, Xie MR, Zhang AL, Wu LM, Hong H, Yin L, Wang H, Wang HY, Zhao Y. PITX2: a promising predictive biomarker of patients' prognosis and chemoradioresistance in esophageal squamous cell carcinoma. Int J Cancer 2013; 132:2567-77. [PMID: 23132660 DOI: 10.1002/ijc.27930] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022]
Abstract
The paired-like homeodomain transcription factor 2 (PITX2), a downstream effector of wnt/β-catenin signaling, is well known to play critical role during normal embryonic development. However, the possible involvement of PITX2 in human tumorigenesis remains unclear. In this study, we extend its function in human esophageal squamous cell carcinoma (ESCC). The real-time PCR, Western blotting and immunohistochemistry (IHC) methods were applied to examine expression pattern of PITX2 in two different cohorts of ESCC cases treated with definitive chemoradiotherapy (CRT). Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff point for PITX2 high expression in the training cohort. The ROC-derived cutoff point was then subjected to analyze the association of PITX2 expression with patients' survival and clinical characteristics in training and validation cohort, respectively. The expression level of PITX2 was significantly higher in ESCCs than that in normal esophageal mucosa. There was a positive correlation between PITX2 expression and clinical aggressiveness of ESCC. Importantly, high expression of PITX2 was observed more frequently in CRT resistant group than that in CRT effective group (p < 0.05). Furthermore, high expression of PITX2 was associated with poor disease-specific survival (p < 0.05) in ESCC. Then, the MTS, clonogenic survival fraction and cell apoptosis experiments showed that knockdown of PITX2 substantially increased ESCC cells sensitivity to ionizing radiation (IR) or cisplatin in vitro. Thus, the expression of PITX2, as detected by IHC, may be a useful tool for predicting CRT resistance and serves as an independent molecular marker for poor prognosis of ESCC patients treated with definite CRT.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/therapy
- Case-Control Studies
- Cell Proliferation
- Chemoradiotherapy
- Cisplatin/pharmacology
- Cohort Studies
- Drug Resistance, Neoplasm
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/therapy
- Esophagus/metabolism
- Female
- Flow Cytometry
- Follow-Up Studies
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Radiation Tolerance
- Radiation, Ionizing
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Jia-Xing Zhang
- Department of Radiotherapy, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Basu M, Roy SS. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem 2013; 288:4355-67. [PMID: 23250740 PMCID: PMC3567686 DOI: 10.1074/jbc.m112.409102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
Pituitary homeobox-2 (PITX2) plays a substantial role in the development of pituitary, heart, and brain. Although the role of PITX2 isoforms in embryonic development has been extensively studied, its possible involvement in regulating the Wnt signaling pathway has not been reported. Because the Wnt pathway is strongly involved in ovarian development and cancer, we focused on the possible association between PITX2 and Wnt pathway in ovarian carcinoma cells. Remarkably, we found that PITX2 interacts and regulates WNT2/5A/9A/6/2B genes of the canonical, noncanonical, or other pathways in the human ovarian cancer cell SKOV-3. Chromatin immunoprecipitation and promoter-reporter assays further indicated the significant association of PITX2 with WNT2 and WNT5A promoters. Detailed study further reveals that the PITX2 isoform specifically activates the canonical Wnt signaling pathway either directly or through Wnt ligands. Thus, the activated Wnt pathway subsequently enhances cell proliferation. Moreover, we found the activation of Wnt pathway reduces the expression of different FZD receptors that limit further Wnt activation, demonstrating the existence of an auto-regulatory feedback loop. In contrast, PITX2 could not activate the noncanonical pathway as the Wnt5A-specific ROR2 receptor does not express in SKOV-3 cells. Collectively, our findings demonstrated that, despite being a target of the canonical Wnt signaling pathway, PITX2 itself induces the same, thus leading to the activation of the cell cycle regulating genes as well as the proliferation of SKOV-3 cells. Collectively, we highlighted that the PITX2 and Wnt pathway exerts a positive feedback regulation, whereas frizzled receptors generate a negative feedback in this pathway. Our findings will help to understand the molecular mechanism of proliferation in ovarian cancer cells.
Collapse
Affiliation(s)
- Moitri Basu
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja Subodh Chandra Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja Subodh Chandra Mullick Road, Kolkata 700032, India
| |
Collapse
|
38
|
Dietrich D, Hasinger O, Liebenberg V, Field JK, Kristiansen G, Soltermann A. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2012; 21:93-104. [PMID: 22555092 DOI: 10.1097/pdm.0b013e318240503b] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomarkers that facilitate prediction of disease progression in lung cancer patients might be clinically valuable in optimizing individualized therapy. In this study, the ability of the DNA methylation biomarkers PITX2 and SHOX2 to predict disease outcome in lung cancer patients has been evaluated. Quantitative, methylation-specific (HeavyMethyl), real-time polymerase chain reaction assays were used to measure DNA methylation of PITX2 and SHOX2 in bisulfite-converted DNA from formalin-fixed, paraffin-embedded tissues from 474 non-small-cell lung cancer patients. In univariate Cox Proportional Hazard analysis, high methylation of SHOX2 and PITX2 was a significant predictor of progression-free survival [SHOX2: n=465, hazard ratio (HR)=1.395 (1.130 to 1.721), P=0.002; PITX2: n=445, HR=1.312 (1.059 to 1.625), P=0.013]. Patients with low methylation of either PITX2 and/or SHOX2 (n=319) showed a significantly higher risk of disease progression as compared with patients with higher methylation of both genes [n=126; HR=1.555 (1.210 to 1.999), P=0.001]. This was particularly true for the subgroup of patients receiving no adjuvant radiotherapy or chemotherapy [n=258, HR=1.838 (1.252 to 2.698), P=0.002]. In multivariate analysis, both biomarkers added significant independent prognostic information to pT, pN, pM, and grade. Another interesting finding of this study was that SHOX2 and PITX2 DNA methylation was shown to be inversely correlated with TTF1 (also known as NKX2-1) expression (PITX2: P=0.018, SHOX2: P<0.001). TFF1 expression was previously found to be associated with improved survival in the same patient cohort. DNA methylation of PITX2 and SHOX2 is an independent prognostic biomarker for disease progression in non-small-cell lung cancer patients.
Collapse
Affiliation(s)
- Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|