1
|
Hayashi K, Kobayashi M, Mori K, Nakagawa Y, Watanabe B, Ashimori A, Higashijima F, Yoshimoto T, Sunada J, Morita T, Murai T, Kirihara-Kojima S, Kimura K. The benzoylphenylurea derivative BPU17 acts as an inhibitor of prohibitin and exhibits antifibrotic activity. Exp Cell Res 2024; 442:114221. [PMID: 39182665 DOI: 10.1016/j.yexcr.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Inflammation-induced choroidal neovascularization followed by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) is a cause of neovascular age-related macular degeneration (nAMD). RPE-derived myofibroblasts overproduce extracellular matrix, leading to subretinal fibrosis. We already have demonstrated that benzylphenylurea (BPU) derivatives inhibit the function of cancer-associated fibroblasts. Here, we investigated the anti-myofibroblast effects of BPU derivatives and examined such BPU activity on subretinal fibrosis. A BPU derivative, BPU17, exhibits the most potent anti-myofibroblast activity among dozens of BPU derivatives and inhibits subretinal fibrosis in a mouse model of retinal degeneration. Investigations with primary cultured RPEs reveal that BPU17 suppresses cell motility and collagen synthesis in RPE-derived myofibroblasts. These effects depend on repressing the serum response factor (SRF)/CArG-box-dependent transcription. BPU17 inhibits the expression of SRF cofactor, cysteine and glycine-rich protein 2 (CRP2), which activates the SRF function. Proteomics analysis reveals that BPU17 binds to prohibitin 1 (PHB1) and inhibits the PHB1-PHB2 interaction, resulting in mild defects in mitochondrial function. This impairment causes a decrease in the expression of CRP2 and suppresses collagen synthesis. Our findings suggest that BPU17 is a promising agent against nAMD and the close relationship between PHB function and EMT.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Junki Sunada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Toshiyuki Murai
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Saki Kirihara-Kojima
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
2
|
Mori K, Nakagawa Y, Watanabe B, Miyata H, Morita T, Hayashi K. Novel ability of diflubenzuron as an inhibitor of mitochondrial function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104088. [PMID: 38342197 DOI: 10.1016/j.ibmb.2024.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Compounds classified as benzoylphenylurea (BPU), such as diflubenzuron (DFB), are used as insecticides. Although BPU disrupts molting by inhibiting chitin biosynthesis and exhibits insecticidal activity, their exact mode of action remains unknown. Since epidermal cells proliferate and morphologically change from squamous to columnar cells during the early stages of insect molting, we speculate that a transition similar to that from epithelium to mesenchyme occurs and that BPU may inhibit this transition. Here, we addressed this possibility. We found that DFB decreases actin expression in insect cells (the tissue cultures of insect integument). Detailed analysis in Schneider S2 cells reveals that DFB inhibits the expression of actin isoforms (Act5C and Act42A) and the Drosophila ortholog of myocardin-related transcription factor (Mrtf), leading to cell growth suppression. Proteomics identified the Drosophila ortholog of prohibitin (Phb1D and Phb2E) as one of the DFB-binding proteins. DFB inhibits the interaction between Phb1D and Phb2E and induces mitochondrial dysfunction. The knock-down of Phb2E suppresses the expression of Act5C, Act42A, and Mrtf, leading to cell growth inhibition. Thus, the disruption of Phb function is a possible novel target of DFB.
Collapse
Affiliation(s)
- Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Hiroshi Miyata
- Department of Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
4
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
5
|
A novel inhibitory mechanism of MRTF-A/B on the ICAM-1 gene expression in vascular endothelial cells. Sci Rep 2015; 5:10627. [PMID: 26024305 PMCID: PMC4448521 DOI: 10.1038/srep10627] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
The roles of myocardin-related transcription factor A (MRTF-A) and MRTF-B in vascular endothelial cells are not completely understood. Here, we found a novel regulatory mechanism for MRTF-A/B function. MRTF-A/B tend to accumulate in the nucleus in arterial endothelial cells in vivo and human aortic endothelial cells (HAoECs) in vitro. In HAoECs, nuclear localization of MRTF-A/B was not significantly affected by Y27632 or latrunculin B, primarily due to the reduced binding of MRTF-A/B to G-actin and in part, to the low level of MRTF-A phosphorylation by ERK. MRTF-A/B downregulation by serum depletion or transfection of siRNA against MRTF-A and/or MRTF-B induced ICAM-1 expression in HAoECs. It is known that nuclear import of nuclear factor−κB (NF−κB) plays a key role in ICAM-1 gene transcription. However, nuclear accumulation of NF−κB p65 was not observed in MRTF-A/B-depleted HAoECs. Our present findings suggest that MRTF-A/B inhibit ICAM-1 mRNA expression by forming a complex with NF−κB p65 in the nucleus. Conversely, downregulation of MRTF-A/B alleviates this negative regulation without further translocation of NF−κB p65 into the nucleus. These results reveal the novel roles of MRTF-A/B in the homeostasis of vascular endothelium.
Collapse
|