1
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
2
|
Sun B, Gillard M, Wu Y, Wu P, Xu ZP, Gu W. Bisphosphonate Stabilized Calcium Phosphate Nanoparticles for Effective Delivery of Plasmid DNA to Macrophages. ACS APPLIED BIO MATERIALS 2020; 3:986-996. [DOI: 10.1021/acsabm.9b00994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peihong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Beheshti A, Ghaffari S, Farahani H. Determination of Cholesterol and its Derivatives in Nanoliposomes as Drug Delivery Conveyances by HPLC-UV: A Simple, Accurate and Cost-Effective Method Development and Validation Approach. J Chromatogr Sci 2019; 57:469-475. [PMID: 30926982 DOI: 10.1093/chromsci/bmz021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 11/12/2022]
Abstract
Nanoliposomes are extensively used as ideal vehicles in drug delivery systems due to their unique biocompatibility and biodegradability properties. They can be used as sustained release and target selective conveyances to deliver the encapsulated drugs at specific cells or tissues by improving their efficacy along with reducing the side effects. As an analytical perspective, the determination of various lipid components in the final formulation is one of the practical issues while the agents are applied in an industrial-scale. Herein, the maximum ultra violet (UV) absorbances for the most of the lipids are within 200-210 nm that cause significant cut-off conflicts with the general solvents or additives of high-performance liquid chromatography (HPLC) during its method development procedure. In this study, a simple, accurate and cost-effective isocratic HPLC-UV method has been successfully developed for the simultaneous determination of α-(3-O-cholesteryloxy)-δ-(N-ethylmorpholine)-succineamide (MoChol), cholesteryl-hemisuccinate (Chems) and Cholesterol in nanoliposomes drug carriers containing an active pharmaceutical ingredient (anti-BCL-2 DNA oligonucleotide). The isocratic mobile phase consisted of ethanol/acetonitrile/water including trifluoroacetic acid (60/30/10 with 0.1% v/v, respectively) at a flow rate of 1.0 mL min-1 was run through a commercial reverse-phase C18 analytical column while UV detector was set at 202 nm. To confirm the applicability, a full validation of the proposed method was performed according to the International Council for Harmonization (ICH) guidelines.
Collapse
Affiliation(s)
- Abolghasem Beheshti
- Department of Chemistry, Payame Noor University, Tehran, Iran.,Research and Development Department, Quality Control Labs, Tofigh Daru Research and Engineering Co, Tehran, Iran
| | - Solmaz Ghaffari
- Research and Development Department, Quality Control Labs, Tofigh Daru Research and Engineering Co, Tehran, Iran.,Young Researchers and Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.,Department of Medical Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.,Pharmaceutical Science Research Center, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
4
|
Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018; 10:E444. [PMID: 30966479 PMCID: PMC6415274 DOI: 10.3390/polym10040444] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA) or its downregulation (for siRNA or microRNA). This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome ("proton sponge" effect), unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC). Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan's structural features (Mw and degree of acetylation, DA%) on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players in the translation of research to the clinic.
Collapse
Affiliation(s)
| | - Elena Fernández Fernández
- Lung Biology Group, Department Clinical Microbiology, RCSI, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | |
Collapse
|
5
|
Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1275-1289. [PMID: 28532005 DOI: 10.1016/j.msec.2017.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
The success of gene therapy relies on efficient gene transfer and stable transgene expression. The in vivo efficiency is determined by the delivery vector, route of administration, therapeutic gene, and target cells. While some requirements are common to several strategies, others depend on the target disease and transgene product. Consequently, it is unlikely that a single system is suitable for all applications. This review examines current gene therapy strategies, focusing on non-viral approaches and the use of natural polymers with the eye, and particularly the retina, as their gene delivery target.
Collapse
Affiliation(s)
- Ana V Oliveira
- Center for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| | - Ana M Rosa da Costa
- Department of Chemistry and Pharmacy, University of Algarve, Faro 8005-139, Portugal; Algarve Chemistry Research Centre (CIQA), University of Algarve, Faro 8005-139, Portugal
| | - Gabriela A Silva
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
6
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Peptide GE11-Polyethylene Glycol-Polyethylenimine for targeted gene delivery in laryngeal cancer. Med Oncol 2015; 32:185. [PMID: 26008151 DOI: 10.1007/s12032-015-0624-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 02/02/2023]
Abstract
The objective of this study was to evaluate the possibility of using GE11-polyethylene glycol-polyethylenimine (GE11-PEG-PEI) for targeted gene delivery to treat epidermal growth factor receptor (EGFR)-overexpressing laryngeal cancer. This study described the design, characterization, and in vitro and in vivo study of the nanocarrier GE11-PEG-PEI for gene delivery to treat laryngeal cancer. Analysis of the sizes and zeta potentials indicated that the formation of PEGylated complexes was dependent on the N/P ratio, and these complexes were capable of binding plasmid DNA and condensing DNA into small positively charged nanoparticles. The results also revealed that GE11-PEG-PEI had a weaker effect on cell survival in vitro. Gene transfection was performed on human laryngeal cancer Hep-2 cells in vitro and in vivo. Both the in vitro and in vivo results demonstrated that GE11-PEG-PEI had greater transfection efficiency than mPEG-PEI. Compared with mPEG-PEI/pORF-hTRAIL and saline, GE11-PEG-PEI/pORFh-TRAIL significantly (p < 0.05) reduced tumor growth in nude mice with laryngeal cancer. Moreover, the GE11-PEG-PEI/pORF-hTRAIL-treated groups showed more apoptosis than the mPEG-PEI/pORF-hTRAIL-treated groups. Therefore, our results showed that the peptide GE11 conjugated to PEG-PEI delivered significantly more genes to EGFR-overexpressing laryngeal cancer cells in vivo, indicating that GE11-PEG-PEI may be a suitable gene vector for treating EGFR-overexpressing laryngeal cancer.
Collapse
|
8
|
Nakamura S, Maehara T, Watanabe S, Ishihara M, Sato M. Liver lobe and strain difference in gene expression after hydrodynamics-based gene delivery in mice. Anim Biotechnol 2015; 26:51-7. [PMID: 25153456 DOI: 10.1080/10495398.2014.886583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrodynamics-based gene delivery (HGD) is a widely recognized technique for delivering exogenous DNA with high efficiency to murine hepatocytes. In this study, we investigated stimulation of exogenous DNA uptake and expression using a commercially available reagent for HGD. We also examined which mouse strain and mouse liver lobe would achieve the best gene delivery performance. Mice were injected with a solution containing reporter plasmid DNA or DNA and a gene delivery reagent. One day after the HGD procedure, liver samples were isolated and subjected to biochemical and histochemical analyses. The reporter plasmid DNA showed the strongest signal when the DNA was dissolved in TransIT-EE Hydrodynamic Delivery Solution (Takara Bio Inc., Shiga, Japan). Evaluation of transgene expression in each hepatic lobe in ICR, C57BL/6N, Balb/cA, and B6C3F1 mice showed that ICR mice exhibited the best gene transfer and that the right median lobe had the highest level of transgene expression. These findings suggest the importance of choice in mouse strains and liver lobes when performing gene-based manipulations of the liver.
Collapse
Affiliation(s)
- Shingo Nakamura
- a Department of Surgery II , National Defense Medical College , Saitama , Japan
| | | | | | | | | |
Collapse
|
9
|
Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomed Pharmacother 2014; 68:775-83. [DOI: 10.1016/j.biopha.2014.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022] Open
|
10
|
Improvement of hydrodynamics-based gene transfer of nonviral DNA targeted to murine hepatocytes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:928790. [PMID: 23586064 PMCID: PMC3613052 DOI: 10.1155/2013/928790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 11/24/2022]
Abstract
The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD) is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI-) based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct) and pTR/NCre (a liver-specific Cre expression vector) resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.
Collapse
|
11
|
DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur J Pharm Sci 2013; 49:157-65. [PMID: 23454134 DOI: 10.1016/j.ejps.2013.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 12/26/2022]
Abstract
In recent years the use of solid lipid nanoparticles (SLNs) as transport systems for the delivery of drugs and biomolecules has become particularly important. The use of cationic SLNs developed by the technique of microemulsion, which are complexed with DNA in order to study their application as non-viral vectors in gene therapy, is reported. The nanoparticles are characterized by scanning electron microscopy and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). Furthermore, the process of lyophilization of the samples and their stability was studied. The nanoparticles obtained presented a particle size of 340 nm with a positive surface charge of 44 mV and the capability of forming lipoplexes with DNA plasmids was stated.
Collapse
|
12
|
Galling N, Kobelt D, Aumann J, Schmidt M, Wittig B, Schlag PM, Walther W. Intratumoral dispersion, retention, systemic biodistribution and clearance of a small-size TNF-α expressing MIDGE vector following nonviral in vivo jet-injection gene transfer. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Wang HS, Chen ZJ, Zhang G, Ou XL, Yang XL, Wong CKC, Giesy JP, Du J, Chen SY. A novel micro-linear vector for in vitro and in vivo gene delivery and its application for EBV positive tumors. PLoS One 2012; 7:e47159. [PMID: 23077563 PMCID: PMC3471901 DOI: 10.1371/journal.pone.0047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/10/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The gene delivery vector for DNA-based therapy should ensure its transfection efficiency and safety for clinical application. The Micro-Linear vector (MiLV) was developed to improve the limitations of traditional vectors such as viral vectors and plasmids. METHODS The MiLV which contained only the gene expression cassette was amplified by polymerase chain reaction (PCR). Its cytotoxicity, transfection efficiency in vitro and in vivo, duration of expression, pro-inflammatory responses and potential application for Epstein-Barr virus (EBV) positive tumors were evaluated. RESULTS Transfection efficiency for exogenous genes transferred by MiLV was at least comparable with or even greater than their corresponding plasmids in eukaryotic cell lines. MiLV elevated the expression and prolonged the duration of genes in vitro and in vivo when compared with that of the plasmid. The in vivo pro-inflammatory response of MiLV group was lower than that of the plasmid group. The MEKK1 gene transferred by MiLV significantly elevated the sensitivity of B95-8 cells and transplanted tumor to the treatment of Ganciclovir (GCV) and sodium butyrate (NaB). CONCLUSIONS The present study provides a safer, more efficient and stable MiLV gene delivery vector than plasmid. These advantages encourage further development and the preferential use of this novel vector type for clinical gene therapy studies.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (JD); (HSW)
| | - Zhuo-Jia Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xue-Ling Ou
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangzhou, People’s Republic of China
| | - Xiang-Ling Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, People’s Republic of China
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences & Toxicological Center, University of Saskatchewan, Saskatchewan, Canada
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (JD); (HSW)
| | - Shou-Yi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
14
|
Watcharanurak K, Nishikawa M, Takahashi Y, Takakura Y. Controlling the kinetics of interferon transgene expression for improved gene therapy. J Drug Target 2012; 20:764-9. [PMID: 22994266 DOI: 10.3109/1061186x.2012.716848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Galling N, Kobelt D, Aumann J, Schmidt M, Wittig B, Schlag PM, Walther W. Intratumoral dispersion, retention, systemic biodistribution, and clearance of a small-size tumor necrosis factor-α-expressing MIDGE vector after nonviral in vivo jet-injection gene transfer. Hum Gene Ther Methods 2012; 23:264-70. [PMID: 22924532 DOI: 10.1089/hgtb.2012.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
For nonviral applications of therapeutic DNA, highly efficient and safe vector systems are of crucial importance. In the majority of nonviral approaches plasmid vectors are in use. A novel minimalistic gene expression vector (MIDGE) has been developed to overcome the limitations of plasmid vectors. This small-size double-stranded linear DNA vector has shown improved transgene expression. However, only limited knowledge on uptake, biodistribution, and clearance of this vector exists. In this study we investigated the intratumoral and systemic biodistribution, clearance, and expression kinetics of the tumor necrosis factor (TNF)-α-carrying MIDGE-CMVhTNF vector in NMRI-nu/nu mice with subcutaneously xenotransplanted human A375 melanoma. Biodistribution was analyzed by quantitative real-time PCR in tumors, blood, and organs 0 to 60 min and 3 to 48 hr after intratumoral jet-injection of 50 μg of MIDGE-CMVhTNF. We examined TNF mRNA expression in tumor tissue and organs, using real-time RT-PCR and TNF-specific ELISA. High levels of MIDGE DNA in the tumor tissue demonstrated efficient gene transfer of the small-size vector, resulting in inhomogeneous DNA dispersion and efficient transgene expression. Intratumoral jet-injection of the vector DNA was accompanied by leakage into the blood circuit and appearance in peripheral organs within 5 min to 6 hr. However, this did not lead to TNF-α expression and was followed by rapid vector clearance resulting in the disappearance of MIDGE DNA 24 hr after gene transfer. These data provide important new information for the kinetics of intratumoral and systemic biodistribution and rapid clearance of the jet-injected small-size MIDGE vector.
Collapse
Affiliation(s)
- Nele Galling
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2012; 2:1485-516. [PMID: 22826876 DOI: 10.4155/tde.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.
Collapse
|
17
|
A potential skin substitute constructed with hEGF gene modified HaCaT cells for treatment of burn wounds in a rat model. Burns 2012; 38:702-12. [DOI: 10.1016/j.burns.2011.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 12/28/2022]
|
18
|
Miyamoto H, Baba S, Nakajima S, Mine T, Yoshikawa N, Fumoto S, Nishida K. Pretreatment with epidermal growth factor enhances naked plasmid DNA transfer onto gastric serosal surface in mice. Biol Pharm Bull 2012; 35:903-8. [PMID: 22687482 DOI: 10.1248/bpb.35.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a simple administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA) in experimental animals. The purpose of this study was to improve gastric gene transfer efficiency by pre-treatment with a macropinocytosis enhancer, such as fetuin or epidermal growth factor (EGF), in mice. A series of concentrations of fetuin were instilled onto gastric serosal surface prior to instillation of naked pDNA in mice; however, fetuin did not improve transgene expression in the stomach 6 h after administration of pDNA. EGF also did not affect transgene expression in the stomach when pDNA was instilled immediately after EGF instillation. On the other hand, when pDNA was instilled onto gastric serosal surface 24 h after EGF treatment, transgene expression in the stomach was significantly improved by 2.6-fold. In addition, transgene-positive cells were increased 5.3-fold by EGF pre-treatment. High transgene expression in the stomach lasted for 48 h in the EGF pre-treatment group in comparison with that in the no pre-treatment group. These findings are valuable to develop an effective method of in vivo gene transfer to the stomach.
Collapse
|
19
|
Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Bioorg Med Chem 2012; 20:1425-33. [PMID: 22277591 DOI: 10.1016/j.bmc.2011.12.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 11/22/2022]
Abstract
Nonviral gene delivery suffers from a number of limitations including short transgene expression times and low transfection efficiency. In this study, we examined whether polypseudorotaxanes (PPRXs) of polyethylene glycol (PEG, molecular weight: 2,000)-grafted α-cyclodextrin (α-CyD)/polyamidoamine dendrimer conjugate (PEG-α-CDE) with CyDs have the potential for the novel sustained release systems for plasmid DNA (pDNA). The PEG-α-CDE/pDNA complex formed PPRXs with α-CyD and γ-CyD solutions, but not with β-CyD solution. In the PEG-α-CDE/CyDs PPRX systems, 20.6mol of α-CyD and 11.8mol of γ-CyD were involved in the PPRXs formation with one PEG chain by α-CyD and γ-CyD, respectively, consistent with in the PEG-dendrimer/CyDs systems. PEG-α-CDE/pDNA/α-CyD PPRX and PEG-α-CDE/pDNA/γ-CyD PPRX formed hexagonal and tetragonal columnar channels in the crystalline phase, respectively. In addition, the CyDs PPRX provided the sustained release of pDNA from PEG-α-CDE complex with pDNA at least 72 h in vitro. The release of pDNA from CyDs PPRX retarded as the volume of dissolution medium decreased. Furthermore, the PEG-α-CDE/γ-CyD PPRX system showed sustained transfection efficiency after intramuscular injection to mice at least for 14days. These results suggest that the PEG-α-CDE/CyD PPRX systems are useful for novel sustained DNA release systems.
Collapse
|
20
|
Motoyama K, Hayashida K, Arima H. Potential Use of Polypseudorotaxanes of Pegylated Polyamidoamine Dendrimer with Cyclodextrins as Novel Sustained Release Systems for DNA. Chem Pharm Bull (Tokyo) 2011; 59:476-9. [DOI: 10.1248/cpb.59.476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
21
|
Nishikawa M, Takahashi Y, Takakura Y. [Optimization of gene therapy effect by spaciotemporal control of expressed proteins]. YAKUGAKU ZASSHI 2010; 130:1505-1511. [PMID: 21048410 DOI: 10.1248/yakushi.130.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Therapeutic effects of in vivo gene therapy, which aims to treat diseases by administering therapeutic genes to patients, are obtained via proteins expressed from the gene administered. Therefore, to optimize the therapeutic effects of such therapy, it is important to control not only the tissue distribution of gene vectors but also that of proteins expressed from the vector. Studies using protein pharmaceuticals have clearly demonstrated that the therapeutic effect depends largely on the spatiotemporal distribution of proteins, such as area under the curve and mean residence time. These results strongly suggest that precise control of the spatiotemporal distribution of proteins increases the efficacy of in vivo gene therapy. Based on these considerations, we tried to increase the therapeutic effect of plasmid DNA-based gene therapy by controlling the profile of proteins expressed form vectors. To increase the residence time of proteins, we developed plasmids with few CpG motifs and achieved sustained expression of proteins at therapeutic levels for as long as several months. Sustained expression of murine interferon γ was highly effective in inhibiting metastatic tumor growth and atopic dermatitis in mouse models. Thus, designing plasmid vectors is a promising approach not only to controlling the spatiotemporal distribution of proteins, but also to increasing the therapeutic potency of in vivo gene therapy.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
22
|
Kosovac D, Wild J, Ludwig C, Meissner S, Bauer AP, Wagner R. Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design. Gene Ther 2010; 18:189-98. [DOI: 10.1038/gt.2010.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
DNA-based nano-sized systems for pharmaceutical and biomedical applications. Adv Drug Deliv Rev 2010; 62:626-32. [PMID: 20230867 DOI: 10.1016/j.addr.2010.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/03/2010] [Indexed: 12/26/2022]
Abstract
DNA is one of the most important components for all living organisms and many species, including humans, use DNA to store and transmit genetic information to new generations. Recent advances in the handling of DNA have made it possible to use DNA as a building block of nano-sized materials with precisely designed architectures. Although various approaches have been proposed to obtain DNA assemblies with designed architecture in the nano- to micrometer range, there is little information about their interaction with biological components, including target molecules. Understanding the interaction between DNA assemblies and the body is highly important for successful pharmaceutical and biomedical applications. Here, we first review the basic aspects of externally administered DNA molecules, including the stability, permeability and delivery issues. Then, we discuss the unique responses observed in the interaction of structured DNA assemblies and cells expressing Toll-like receptor-9, the receptor responsible for the recognition of unmethylated CpG dinucleotides that are abundant in the DNA of invading pathogens, such as bacteria and viruses.
Collapse
|
24
|
Gene therapy: a pharmacokinetic/pharmacodynamic modelling overview. Pharm Res 2010; 27:1487-97. [PMID: 20387096 DOI: 10.1007/s11095-010-0136-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022]
Abstract
Since gene therapy started over 20 years ago, more than one-thousand clinical trials have been carried out. Nonviral vectors present interesting properties for their clinical application, but their efficiency in vivo is relatively low, and further improvements in these vectors are needed. Elucidating how nonviral vectors behave at the intracellular level is enlightening for vector improvement and optimization. Model-based approach is a powerful tool to understand and describe the different processes that gene transfer systems should overcome inside the body. Model-based approach allows for proposing and predicting the effect of parameter changes on the overall gene therapy response, as well as the known application of the pharmacokinetic/pharmacodynamic modelling in conventional therapies. The objective of this paper is to critically review the works in which the time-course of naked or formulated DNA have been quantitatively studied or modelled.
Collapse
|
25
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Lu Y, Madu CO. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv 2010; 7:19-35. [PMID: 19947888 DOI: 10.1517/17425240903419608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IMPORTANCE OF THE FIELD Cancer is both a major health concern and a care-cost issue in the US and the rest of the world. It is estimated that there will be a total of 1,479,350 new cancer cases and 562,340 cancer deaths in 2009 within the US alone. One of the major obstacles in cancer therapy is the ability to target specifically cancer cells. Most existing chemotherapies and other routine therapies (such as radiation therapy and hormonal manipulation) use indiscriminate approaches in which both cancer cells and non-cancerous surrounding cells are treated equally by the toxic treatment. As a result, either the cancer cell escapes the toxic dosage necessary for cell death and consequently resumes replication, or an adequate lethal dose that kills the cancer cell also causes the cancer patient to perish. Owing to this dilemma, cancer- or organ/tissue-specific targeting is greatly desired for effective cancer treatment and the reduction of side effect cytotoxicity within the patient. AREAS COVERED IN THIS REVIEW In this review, the strategies of targeted cancer therapy are discussed, with an emphasis on viral-based gene delivery and regulated gene expression. WHAT THE READER WILL GAIN Numerous approaches and updates in this field are presented for several common cancer types. TAKE HOME MESSAGE A summary of existing challenges and future directions is also included.
Collapse
Affiliation(s)
- Yi Lu
- University of Tennessee Health Science Center, Department of Pathology and Laboratory Medicine, Cancer Research Building, Room 218, 19 South Manassas Street, Memphis, TN 38163, USA.
| | | |
Collapse
|
27
|
Abstract
Cystic fibrosis (CF) is characterised by respiratory and pancreatic deficiencies that stem from the loss of fully functional CFTR (CF transmembrane conductance regulator) at the membrane of epithelial cells. Current treatment modalities aim to delay the deterioration in lung function, Which is mostly responsible for the relatively short life expectancy of CF sufferers; however none have so far successfully dealt with the underlying molecular defect. Novel pharmacological approaches to ameliorate the lack of active CFTR in respiratory epithelial cells are beginning to address more of the pathophysiological defects caused by CFTR mutations. However, CFTR gene replacement by gene therapy remains the most likely option for addressing the basic defects, including ion transport and inflammatory functions of CFTR. In this chapter, We will review the latest preclinical and clinical advances in pharmacotherapy and gene therapy for CF lung disease.
Collapse
|
28
|
Mizuno Y, Naoi T, Nishikawa M, Rattanakiat S, Hamaguchi N, Hashida M, Takakura Y. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice. J Control Release 2010; 141:252-9. [DOI: 10.1016/j.jconrel.2009.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|
29
|
|
30
|
Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 2009; 61:760-6. [PMID: 19386274 DOI: 10.1016/j.addr.2009.04.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/05/2009] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a potent and specific gene silencing event in which small interfering RNA (siRNA) degrades target mRNA. Therefore, RNAi is of potential use as a therapeutic approach for the treatment of a variety of diseases in which aberrant expression of mRNA causes a problem. RNAi can be achieved by delivering siRNA or vectors that transcribe siRNA or short-hairpin RNA (shRNA). The aim of this review is to examine the potential of nonviral vector-mediated RNAi technology in treating diseases. The characteristics of plasmid DNA expressing shRNA were compared with those of siRNA, focusing on the duration of gene silencing, delivery to target cells and target specificity. Recent progresses in prolonging the RNAi effect, improving the delivery to target cells and increasing the specificity of RNAi in vivo are also reviewed.
Collapse
|
31
|
Mitsui M, Nishikawa M, Zang L, Ando M, Hattori K, Takahashi Y, Watanabe Y, Takakura Y. Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression. J Gene Med 2009; 11:435-43. [PMID: 19291673 DOI: 10.1002/jgm.1317] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nonviral gene transfer generally suffers from short-term expression of transgenes. We have previously demonstrated that plasmids with reduced CpG content exhibited a more prolonged expression of murine interferon (IFN)-beta or IFN-gamma, which was effective in inhibiting metastatic tumor growth. A further extension of the duration of transgene expression could be achieved by controlling the number and location of CpG motifs in plasmid DNA. METHODS Luciferase-expressing plasmids with differing CpG content were injected into the tail vein of mice by the hydrodynamic injection method. The effects of CpG content on the duration of transgene expression were examined, focusing on cytosine methylation and pro-inflammatory cytokines. Based on the findings, IFN-gamma-expressing plasmids were constructed and their transgene expression and inhibitory effect on pulmonary metastasis were evaluated. RESULTS Plasmids with a few CpG motifs showed a prolonged luciferase activity in the liver. Methylation of CpG motifs in plasmids reduced the expression and the extent of this reduction was greater for plasmids with a high CpG content. Pro-inflammatory cytokines hardly affected the expression. pCpG-Mu gamma, the IFN-gamma-expressing plasmid, which contains 20 CpG motifs only in the cDNA region, exhibited a sustained IFN-gamma concentration at therapeutic levels, and had a great inhibitory effect on the pulmonary metastasis of tumor cells. CONCLUSIONS The duration of transgene expression of IFN-gamma was successfully increased by reducing the CpG content of IFN-expressing plasmid vector, which resulted in an increased anticancer activity of IFN gene transfer.
Collapse
Affiliation(s)
- Masaru Mitsui
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer. Adv Drug Deliv Rev 2009; 61:572-88. [PMID: 19393705 DOI: 10.1016/j.addr.2009.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/10/2009] [Indexed: 01/08/2023]
Abstract
Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.
Collapse
|
33
|
Zhang G, Liu T, Chen YH, Chen Y, Xu M, Peng J, Yu S, Yuan J, Zhang X. Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo. Clin Cancer Res 2009; 15:201-7. [PMID: 19118047 DOI: 10.1158/1078-0432.ccr-08-1094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE This study aimed to develop an efficient and safe strategy to introduce suicide genes into colon cancer cells. EXPERIMENTAL DESIGN In this study, we fused an enhanced carcinoembryonic antigen promoter (CEA) to a suicide gene, cytosine deaminase (CD). This construct was delivered into colon cancer cells using calcium phosphate nanoparticles (CPNP). The cells were then treated with the prodrug 5-FC. The therapeutic effect was evaluated in vitro and in vivo. RESULTS Our study showed that the CEA promoter-driven, CPNP-delivered suicide gene was only expressed in CEA-positive colon cancer cells, and resulted in significant cytotoxicity after administration of the prodrug 5-FC in vitro. Moreover, our in vivo study showed that CPNP-mediated CEA-CD delivery, together with 5-FC treatment, resulted in significant tumor growth delay in xenograft human colon carcinoma. CONCLUSIONS Our study indicates that the combination of CPNP and CEA-CD gene expression represents a novel approach for CEA-positive tumor gene therapy.
Collapse
Affiliation(s)
- Guiying Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Hunan Province, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Highly stomach-selective gene transfer following gastric serosal surface instillation of naked plasmid DNA in rats. J Gastroenterol 2009; 43:912-9. [PMID: 19107334 DOI: 10.1007/s00535-008-2301-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/13/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The purpose of this study was to achieve stomach-selective gene transfer in rats by our simple and novel administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA). METHODS Naked pDNA encoding firefly luciferase as a reporter gene was instilled onto the gastric serosal surface in male Wistar rats. As controls, we performed intraperitoneal, intragastric and intravenous administration of naked pDNA. At appropriate time intervals, we measured luciferase activities in the stomach and other tissues. RESULTS Gene expression in the stomach 6 h after gastric serosal surface instillation of naked pDNA (5 microg) was significantly higher than that after using other administration methods. The present study is the first report on stomach-selective gene transfer following instillation of naked pDNA onto the gastric serosal surface in rats. Also, the gene expression level in the stomach 6 h after gastric serosal surface instillation of naked pDNA was markedly higher than that in other tissues. In a dose-dependent study, the gene expression level was saturated over 5 microg. Gene expression in the stomach was detected 3 h after gastric serosal surface instillation of naked pDNA. The gene expression level peaked 12-24 h after instillation of naked pDNA, then decreased to a level similar to 3 h at 48 h. CONCLUSIONS Gastric serosal surface in stillation of naked pDNA can be a highly stomach-selective gene transfer method in rats.
Collapse
Affiliation(s)
- Junya Nishi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vorhies JS, Nemunaitis JJ. Synthetic vs. natural/biodegradable polymers for delivery of shRNA-based cancer therapies. Methods Mol Biol 2009; 480:11-29. [PMID: 19085121 DOI: 10.1007/978-1-59745-429-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA vector-based short hairpin RNA (shRNA) as a means of effecting RNA interference (RNAi) is a promising mechanism for the precise disruption of gene expression to achieve a therapeutic effect. The clinical usage of shRNA therapeutics in cancer is limited by obstacles related to effective delivery into the nuclei of target cancer cells. Significant pre-clinical data have been amassed about biodegradable and non-biodegradable polymeric delivery vehicles that are relevant for shRNA delivery into humans. Here, we will review some leading candidates for clinical usage with a focus on studies relating to their potential for usage in cancer shRNA therapeutics and discuss some of the advantages and disadvantages of using biodegradable and non-biodegradable delivery vehicles.
Collapse
|
36
|
Ye J, Wang A, Liu C, Chen Z, Zhang N. Anionic solid lipid nanoparticles supported on protamine/DNA complexes. NANOTECHNOLOGY 2008; 19:285708. [PMID: 21828742 DOI: 10.1088/0957-4484/19/28/285708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.
Collapse
Affiliation(s)
- Jiesheng Ye
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, Ji'nan, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Okura Y, Matsumoto Y. DNA vaccine therapy for Alzheimer's disease: present status and future direction. Rejuvenation Res 2008; 11:301-8. [PMID: 18442321 DOI: 10.1089/rej.2007.0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia characterized by progressive neurodegeneration. Based on the amyloid cascade hypothesis, a vaccine therapy for Alzheimer's disease (AD) was developed as a curative treatment. In 1999, the amyloid beta (Abeta) reduction in AD model transgenic mice with active vaccination with Abeta peptide was first reported. Although the clinical trials of active vaccination for AD patients were halted due to the development of meningoencephalitis in some patients, from the analysis of the clinical and pathological findings of treated patients, the vaccine therapy is thought to be effective. Based on such information, the vaccines for clinical application of human AD have been improved to control excessive immune reaction. Recently, we have developed non-viral DNA vaccines and obtained substantial Abeta reduction in transgenic mice without side effects. DNA vaccines have many advantages over conventional active or passive immunization. In this article, we review conventional vaccine therapies and further explain our non-viral DNA vaccine therapy. Finally, we show some data regarding the mechanisms of Abeta reduction after administration of DNA vaccines. DNA vaccination may open up new avenues of vaccine therapy for AD.
Collapse
Affiliation(s)
- Yoshio Okura
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | |
Collapse
|
38
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Improved stomach selectivity of gene expression following microinstillation of plasmid DNA onto the gastric serosal surface in mice. Eur J Pharm Biopharm 2008; 69:633-9. [DOI: 10.1016/j.ejpb.2007.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 09/01/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022]
|
39
|
Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99:856-62. [PMID: 18294288 PMCID: PMC11158855 DOI: 10.1111/j.1349-7006.2008.00774.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer gene therapy, in which pharmacologically active compounds are administered to cancer patients in a genetic form, has been examined not only in animals but also in cancer patients. Viral vector-induced severe side effects in patients have greatly underscored the importance of non-viral gene transfer methods. Even though the importance of pharmacokinetics is undoubtedly understood in the development of anticancer therapies, its importance has been less well recognized in non-viral cancer gene therapy. When transgene products express their activity within transduced cells, such as herpes simplex virus type 1 thymidine kinase and short hairpin RNA, the pharmacokinetics of the vectors and the expression profiles of the transgenes will determine the efficacy of gene transfer. The percentage of cells transduced is highly important if few by-stander effects are expected. If transgene products are secreted from cells into the blood circulation, such as interferons and interleukins, the pharmacokinetics of transgenes becomes a matter of significant importance. Then, any approach to increasing the level and duration of transgene expression will increase the therapeutic effects of cancer gene therapy. Here we review the pharmacokinetics of both non-viral vectors and transgene products, and discuss what should be done to achieve safer and more effective non-viral cancer gene therapy.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
40
|
Abstract
Both DNA and mRNA can be used as vehicles for gene therapy. Because the immune system is naturally activated by foreign nucleic acids thanks to the presence of Toll-like Receptors (TLR) in endosomes (TLR3, 7, and 8 detect exogenous RNA, while TLR9 can detect exogenous DNA), the delivery of foreign nucleic acids usually induces an immune response directed against the encoded protein. Many preclinical and clinical studies were performed using DNA-based experimental vaccines. However, no such products are yet approved for the human population. Meanwhile, the naturally transient and cytosolically active mRNA molecules are seen as a possibly safer and more potent alternative to DNA for gene vaccination. Optimized mRNA (improved for codon usage, stability, antigen-processing characteristics of the encoded protein, etc.) were demonstrated to be potent gene vaccination vehicles when delivered naked, in liposomes, coated on particles or transfected in dendritic cells in vitro. Human clinical trials indicate that the delivery of mRNA naked or transfected in dendritic cells induces the expected antigen-specific immune response. Follow-up efficacy studies are on the way. Meanwhile, mRNA can be produced in large amounts and GMP quality, allowing the further development of mRNA-based therapies. This chapter describes the structure of mRNA, its possible optimizations for immunization purposes, the different methods of delivery used in preclinical studies, and finally the results of clinical trial where mRNA is the active pharmaceutical ingredient of new innovative vaccines.
Collapse
|
41
|
Weide B, Garbe C, Rammensee HG, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 2008; 115:33-42. [DOI: 10.1016/j.imlet.2007.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 09/25/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
|
42
|
Chung IJ. Gene Therapy for Oral Cancer. Biomol Ther (Seoul) 2007. [DOI: 10.4062/biomolther.2007.15.4.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Tahara K, Sakai T, Yamamoto H, Takeuchi H, Kawashima Y. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm 2007; 354:210-6. [PMID: 18178349 DOI: 10.1016/j.ijpharm.2007.11.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/29/2007] [Accepted: 11/01/2007] [Indexed: 11/17/2022]
Abstract
The purpose of this paper was to establish the surface modified poly(d,l-lactide-co-glycolide) (PLGA) nanosphere platform with chitosan (CS) for gene delivery by using the emulsion solvent diffusion (ESD) method. The advantages of this method are a simple process under mild conditions without sonication. This method requires essentially dissolving both polymer and drug in the organic solvent. Therefore a hydrophilic drug such as nucleic acid is hardly applied to the ESD method. Nucleic acid can easily form an ion-complex with cationic compound, which can be dissolved in the organic solvent. Thereafter, nucleic acid solubility for organic solution can increase by complexation with cationic compound. We used DOTAP as a cationic compound to increase the loading efficiency of nucleic acid. By coating the PLGA nanospheres with CS, the loading efficiency of nucleic acid in the modified nanospheres increased significantly. The release profile of nucleic acid from PLGA nanospheres exhibited sustained release after initial burst. The PLGA nanospheres coated with chitosan reduced the initial burst of nucleic acid release and prolonged the drugs releasing at later stage. Chitosan coated PLGA nanosphere platform was established to encapsulate satisfactorily wide variety of nucleic acid for an acceptable gene delivery system.
Collapse
Affiliation(s)
- Kohei Tahara
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto, Chikusa, Nagoya, Aichi 464-8650, Japan
| | | | | | | | | |
Collapse
|
44
|
Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 2007; 1:51-7. [PMID: 16467923 PMCID: PMC1351208 DOI: 10.2147/nano.2006.1.1.51] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For the development of surface-functionalized gold nanoparticles as cellular probes and delivery agents, we have synthesized hetero-bifunctional poly(ethylene glycol) (PEG, MW 1500) having a thiol group on one terminus and a reactive functional group on the other for use as a flexible spacer. Coumarin, a model fluorescent dye, was conjugated to one end of the PEG spacer and gold nanoparticles were modified with coumarin-PEG-thiol. Surface attachment of coumarin through the PEG spacer decreased the fluorescence quenching effect of gold nanoparticles. The results of cellular cytotoxicity and fluorescence confocal analyses showed that the PEG spacer-modified nanoparticles were essentially non-toxic and could be efficiently internalized in the cells within 1 hour of incubation. Intracellular particle tracking using a Keck 3-D Fusion Microscope System showed that the functionalized gold nanoparticles were rapidly internalized in the cells and localized in the peri-nuclear region. Using the PEG spacer, the gold nano-platform can be conjugated with a variety of biologically relevant ligands such as fluorescent dyes, antibodies, etc in order to target, probe, and induce a stimulus at the target site.
Collapse
Affiliation(s)
- Dinesh Shenoy
- Departments of Pharmaceutical Sciences, Northeastern UniversityBoston, MA, USA
| | - Wei Fu
- Departments of Physics, Northeastern UniversityBoston, MA, USA
| | - Jane Li
- Departments of Chemistry and Chemical Biology, Northeastern UniversityBoston, MA, USA
| | - Curtis Crasto
- Departments of Chemistry and Chemical Biology, Northeastern UniversityBoston, MA, USA
| | - Graham Jones
- Departments of Chemistry and Chemical Biology, Northeastern UniversityBoston, MA, USA
| | - Charles DiMarzio
- Departments of Electrical and Computer Engineering, and the
Nanomedicine Consortium, Northeastern UniversityBoston, MA, USA
| | | | - Mansoor Amiji
- Departments of Pharmaceutical Sciences, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
45
|
Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke TM. Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc 2007; 128:8176-84. [PMID: 16787082 DOI: 10.1021/ja0585580] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein, three new glycopolymers have been synthesized via "click polymerization" to promote nucleic acid delivery in the presence of biological media containing serum. These structures were designed to contain a trehalose moiety to promote biocompatibility, water solubility, and stability against aggregation, amide-triazole groups to enhance DNA binding affinity, and an oligoamine unit to facilitate DNA encapsulation, phosphate neutralization, and interactions with cell surfaces. A 2,3,4,2',3',4'-hexa-O-acetyl-6,6'-diazido-6,6'-dideoxy-D-trehalose (4) monomer was polymerized via copper(I)-catalyzed azide-alkyne cycloaddition with a series of dialkyne-amide comonomers that contain either one, two, or three Boc-protected secondary amines (7a, 7b, or 7c, respectively). After deprotection, three water-soluble polycations (9a, 9b, or 9c) were obtained with similar degrees of polymerization (n = 56-61) to elucidate the role of amine number on nucleic acid binding, complex formation, stability, and cellular delivery. Gel electrophoresis and ethidium bromide experiments showed that 9a-9c associated with plasmid DNA (pDNA) and formed complexes (polyplexes) at N/P ratios dependent on the amine number. TEM experiments revealed that 9a-9c polyplexes were small (50-120 nm) and had morphologies (spherical and rodlike) associated with the polymer chain stiffness. Dynamic light scattering studies in the presence of media containing serum demonstrated that 9c polyplexes had a low degree of flocculation, whereas 9a and 9b polyplexesd aggregate rapidly. Further biological studies revealed that these structures were biocompatible and deliver pDNA into HeLa cells. Particularly, 9c polyplexes promoted high delivery efficacy and gene expression profiles in the presence of serum.
Collapse
|
46
|
Vorhies JS, Nemunaitis J. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Rev Anticancer Ther 2007; 7:373-82. [PMID: 17338656 DOI: 10.1586/14737140.7.3.373] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of DNA vector-based short hairpin (sh)RNA for RNA interference shows promise as a precise means for the disruption of gene expression to achieve a therapeutic effect. The in vivo usage of shRNA therapeutics in cancer is limited by obstacles related to effective delivery into the nuclei of target cancer cells. Nonviral delivery vehicles that are relevant for shRNA delivery into humans belong to a group of substances about which significant preclinical data has been amassed to show an acceptable safety profile, resistance to immune defenses and good transfection efficiency. Here, we review the most promising current nonviral gene delivery vehicles with a focus on their potential use in cancer shRNA therapeutics.
Collapse
Affiliation(s)
- John S Vorhies
- Mary Crowley Medical Research Center, 1717 Main St, Suite 6000, Dallas, TX 75201, USA.
| | | |
Collapse
|
47
|
Nishikawa M. [Optimization of in-vivo gene transfer through regulating biological response to vectors]. YAKUGAKU ZASSHI 2007; 126:1029-37. [PMID: 17077609 DOI: 10.1248/yakushi.126.1029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatiotemporal distribution of transgenes determines the therapeutic efficacy of in vivo gene transfer. The important parameters of gene transfer are the level, duration, and cell specificity of expression, and the number of transfected cells. Interaction of vectors with blood cells, antigen-presenting cells, serum proteins, and other biological components affects the tissue distribution of vectors and the profile of transgene expression. Although plasmid DNA is less immunogenic than viral vectors, it can induce inflammatory cytokine release, due mainly to the presence of unmethylated CpG dinucleotides (CpG motifs). It was clearly demonstrated that intravenous injection of a plasmid DNA/cationic liposome complex resulted not only in the induction of inflammatory cytokines, but also in the activation of nuclear factor kappaB (NF-kappaB) in the lung. Insertion of additional NF-kappaB-binding sequences into conventional plasmid DNA resulted in a high transgene expression in the lung, suggesting that the biological response to vectors can be used to increase transgene expression. In a marked contrast to this strategy, long-term transgene expression was achieved by reducing the number of the CpG motifs in plasmid DNA. A plasmid encoding murine interferon (IFN)-beta or IFN-gamma with reduced numbers of CpG motifs was highly effective in inhibiting metastatic tumor growth in mice. These results clearly demonstrate the importance of the regulation of biological responses to plasmid vectors to optimize plasmid-based in vivo gene transfer.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
48
|
Nakamura J, Fumoto S, Kawanami R, Kodama Y, Nishi J, Nakashima M, Sasaki H, Nishida K. Spleen-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Spleen Surface in Mice. Biol Pharm Bull 2007; 30:941-5. [PMID: 17473439 DOI: 10.1248/bpb.30.941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of present study was to examine spleen-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the spleen surface in mice. Gene expression in the spleen and other tissues was evaluated based on firefly luciferase activity. Six hours after spleen surface instillation of naked pDNA, high gene expression in the spleen was observed. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the spleen surface, gene expression in the spleen was significantly higher than those in other tissues. Six hours after instillation of naked pDNA onto the spleen surface, gene expression in the spleen reached the peak value, and thereafter decreased gradually. By utilizing a glass-made diffusion cell that is able to limit the contact dimension between the spleen surface and naked pDNA solution administered, site-specific gene expression in the spleen was found. This novel gene transfer method is expected to be a safe and effective strategy for DNA vaccine against serious infectious diseases and cancers.
Collapse
Affiliation(s)
- Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kawano H, Nishikawa M, Mitsui M, Takahashi Y, Kako K, Yamaoka K, Watanabe Y, Takakura Y. Improved anti-cancer effect of interferon gene transfer by sustained expression using CpG-reduced plasmid DNA. Int J Cancer 2007; 121:401-6. [PMID: 17372909 DOI: 10.1002/ijc.22636] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmid DNA (pDNA) expressing mouse interferon (IFN)-beta or IFN-gamma (pCMV-Mu beta and pCMV-Mu gamma, respectively) has been shown to be effective in inhibiting the growth of colon carcinoma CT-26 cells in the liver (Kobayashi et al., Molecular Therapy 2002;6:737-44). The therapeutic effect of such IFN gene transfer could be significantly increased by the sustained expression of IFNs. In the present study, CpG-reduced pDNA encoding IFN-beta or IFN-gamma (pGZB-Mu beta and pGZB-Mu gamma, respectively) was constructed. pCMV-Mu beta and pCMV-Mu gamma were used as conventional CpG-replete pDNAs. Each pDNA was injected into the tail vein of mice by the hydrodynamics-based procedure. An injection of pGZB-Mu beta resulted in very high IFN-beta activities in the serum for at least 24 hr after injection, whereas the IFN-beta activity after pCMV-Mu beta injection declined quickly. About a 14-fold greater amount of IFN-beta was produced from pGZB-Mu beta than from pCMV-Mu beta. pGZB-Mu beta markedly inhibited the pulmonary metastasis of CT-26 cells. Similar, but more marked results were obtained with pGZB-Mu gamma: it increased the area under the concentration-time curve by more than a 60-fold and the mean residence time of IFN-gamma 4-fold compared with pCMV-Mu gamma. The survival time of the pGZB-Mu gamma-treated mice was significantly (p<0.05) longer than that of the saline- or pCMV-Mu gamma-treated mice. These results indicate that long-term expression of IFN can be achieved by CpG-reduced pDNA and sustained IFN gene expression results in enhanced therapeutic effects of IFN gene transfer against tumor metastasis.
Collapse
Affiliation(s)
- Hiroki Kawano
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakamura J, Fumoto S, Ariyoshi K, Kodama Y, Nishi J, Nakashima M, Sasaki H, Nishida K. Unilateral Lung-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Pulmonary Pleural Surface in Mice. Biol Pharm Bull 2007; 30:729-32. [PMID: 17409511 DOI: 10.1248/bpb.30.729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine unilateral lung-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the pulmonary pleural surface in mice. Naked pDNA was administered intravenously, intraperitoneally, and instilled onto the right pulmonary pleural surface. Four hours later, right pulmonary pleural surface instillation of naked pDNA resulted in high gene expression in the right lung. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the right or left pulmonary pleural surface, gene expressions in the applied lung were significantly higher than those in the other lung and tissues. In addition, gene expressions were detected only in the intrathoracic tissues, not in the intraperitoneal tissues. Four hours after instillation of naked pDNA onto the right pulmonary pleural surface, gene expression in the right lung was the highest, and thereafter gene expression in the right lung decreased gradually. This novel gene transfer method is expected to be a safe and effective treatment against serious lung diseases.
Collapse
Affiliation(s)
- Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|