1
|
Ardasheva R, Popov V, Yotov V, Prissadova N, Pencheva M, Slavova I, Turiyski V, Krastev A. Accelerated Electron Ionization-Induced Changes in the Myenteric Plexus of the Rat Stomach. Int J Mol Sci 2024; 25:6807. [PMID: 38928511 PMCID: PMC11203758 DOI: 10.3390/ijms25126807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 μs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.
Collapse
Affiliation(s)
- Raina Ardasheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Veselin Popov
- Section of Radiotherapy and Nuclear Medicine, Department of Clinical Oncology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Viktor Yotov
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Natalia Prissadova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Iva Slavova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (R.A.); (N.P.); (M.P.); (V.T.)
| | - Athanas Krastev
- Medical College, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
2
|
Ardasheva R, Prissadova N, Turiyski V, Tolekova A, Krastev A, Pencheva M, Popov V. Effects of Electron Radiation on Serotonin Signaling and Reactivity of Rat Gastric Smooth Muscle. TOXICS 2023; 11:603. [PMID: 37505568 PMCID: PMC10383043 DOI: 10.3390/toxics11070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Ionizing radiation in radiotherapy can disrupt cellular functions based on radiation type, energy, and dose. However, investigations on the effects of accelerated electrons, particularly on serotonin mediation, are limited. This study aimed to investigate changes in serotonin signal transduction (targeting 5-HT2A and 5-HT2B receptors) in gastric smooth muscle (SM) samples isolated from rats irradiated with accelerated electrons (linear accelerator Siemens Primus S/N 3561) and their effects on serotonin-induced reactions. The radiation effects were examined in samples prepared five days after the procedure. The contractile activity of smooth muscle samples was measured using an isometric method. The expression of 5-HT2A and 5-HT2B receptors was determined by immunohistochemical assay. Increased contractile reactivity to exogenous serotonin (1.10-8-1.10-4 mol/L) was observed in irradiated samples compared to controls. The expression of 5-HT2A and 5-HT2B receptors was significantly increased in the irradiated tissue. By selecting appropriate time intervals between equimolar (1.10-6 mol/L) sequential serotonin exposures, a process of desensitization associated with agonist-induced internalization was established in control samples, which was absent in irradiated samples. In conclusion, irradiation with accelerated electrons affects the agonist-induced receptor internalization of 5-HT2A and 5-HT2B receptors and increases their expression in rat gastric SM, which alters their contractile reactivity to exogenous serotonin.
Collapse
Affiliation(s)
- Raina Ardasheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Natalia Prissadova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Anna Tolekova
- Medical College, Trakia University, 6015 Stara Zagora, Bulgaria
| | - Athanas Krastev
- Medical College, Trakia University, 6015 Stara Zagora, Bulgaria
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Veselin Popov
- Department of Clinical Oncology (Section of Radiotherapy and Nuclear Medicine), Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Da Costa Guevara D, Trejo E. 5-HT 2A, 5-HT 1B/D, 5HT 3 and 5-HT 7 receptors as mediators of serotonin-induced direct contractile response of bovine airway smooth muscle. J Smooth Muscle Res 2022; 57:79-93. [PMID: 34980821 PMCID: PMC8710915 DOI: 10.1540/jsmr.57.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Serotonin (5-hydroxytryptamine; 5-HT) performs a variety of functions in the
body including the modulation of muscle tone in respiratory airways. Several studies
indicate a possible role of 5-HT in the pathophysiology of bronchial hyperresponsiveness.
However, the receptors and the molecular mechanisms by which 5-HT acts on airway smooth
muscle (ASM) continue to be controversial. Most of the evidence suggests the participation
of different subtypes of receptors in an indirect response. This study supports the
proposal that 5-HT directly contracts ASM and characterizes pharmacologically the subtypes
of serotonergic receptors involved. The characterization was carried out by using
selective antagonists in an organ bath model allowing study of the smooth muscle of
segments of bovine trachea. Results: The results obtained show that 5-HT2A
receptors are the main mediators of the direct contractile response of bovine ASM, with
the cooperation of the 5-HT7, 5-HT3 and 5-HT1B/D
receptors. Also, it was observed that the muscle response to serotonin is developed more
slowly and to a lesser extent in comparison with the response to cholinergic stimulation.
Conclusion: Overall, the receptors that mediate the direct serotonergic contraction of the
smooth muscle of the bovine trachea are 5-HT2A, 5-HT7,
5-HT3 and 5-HT1B/D receptors.
Collapse
Affiliation(s)
- Darwin Da Costa Guevara
- Sección de Biomembranas, Instituto de Medicina Experimental (IME), Facultad de Medicina, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Ernesto Trejo
- Sección de Biomembranas, Instituto de Medicina Experimental (IME), Facultad de Medicina, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| |
Collapse
|
4
|
de Oliveira DMN, Oliveira-Silva CA, Pinheiro CG, de Carvalho EF, Gadelha KKL, Lima-Silva K, Cavalcante AKM, Belém MDO, Paula SM, Dos Santos AA, Magalhães PJC. Differential effects of β-methylphenylethylamine and octopamine on contractile parameters of the rat gastrointestinal tract. Eur J Pharmacol 2021; 908:174339. [PMID: 34265293 DOI: 10.1016/j.ejphar.2021.174339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
This study tested the effects of β-methylphenylethylamine (β-MPEA) and octopamine on contractile parameters of the gastrointestinal tract in rats. We hypothesized that some of their effects result from interactions with trace amine (TA)-associated receptors or serotoninergic 5-hydroxytryptamine (5-HT) receptors. β-MPEA-induced contractions in rat gastric fundus strips under resting tonus conditions, but induced relaxation in preparations that were previously contracted with carbachol. Octopamine relaxed gastric fundus strips maintained at resting tonus or contracted with carbachol. The contractile effect of β-MPEA was reduced by cyproheptadine and methiothepin, antagonists of excitatory 5-HT receptors. The relaxing effect of β-MPEA on gastric fundus was insensitive to pretreatment with N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) and tropisetron, antagonists of TA1 and 5-HT4 receptors, respectively. Both EPPTB and tropisetron inhibited the relaxant effects of octopamine on carbachol-contracted preparations. Contrarily, EPPTB did not reduce the relaxant effects of RO5263397 (TA1 agonist) or zacopride (5-HT4 agonist). Octopamine, but not β-MPEA, delayed the gastrointestinal transit of a liquid test meal in awaken rats. In isolated preparations of the small intestine under resting conditions, β-MPEA did not alter the basal tonus, but octopamine relaxed it. Intestinal preparations previously contracted with carbachol relaxed after the addition of octopamine and decreased the magnitude of their spontaneous rhythmic contractions in a tropisetron-dependent manner. Thus, β-MPEA and octopamine exerted pharmacological actions on the rat gastrointestinal tract. The excitatory effects of β-MPEA involved 5-HT receptors. Octopamine inhibited the rat gut contractility through the likely involvement of 5-HT4 and TA receptors. Overall, octopamine effectively inhibited rat gastrointestinal transit.
Collapse
Affiliation(s)
| | | | - Camila Gadelha Pinheiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Kalinne Kelly Lima Gadelha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Karine Lima-Silva
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Mônica de Oliveira Belém
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Suliana Mesquita Paula
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro Jorge Caldas Magalhães
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Nikaido T, Muroga S, Maruyama C, Fujimaru Y, Asano T, Takaoka A. Ethenzamide Exerts Protective Effects against Ibuprofen-Induced Gastric Mucosal Damage in Rats by Suppressing Gastric Contraction. Biol Pharm Bull 2021; 44:332-337. [PMID: 33342935 DOI: 10.1248/bpb.b20-00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to cause gastric mucosal damage, in which gastric hypermotility has been reported to play a primary role. The antipyretic analgesic drug ethenzamide (ETZ) is widely used in combination with other NSAIDs and, in a recent study, was found to possess 5-hydroxytriptamine (5HT)2B receptor antagonistic activity. Therefore, the inhibition of gastric contraction via 5HT2B receptor blockade by ETZ might contribute to ETZ's protective effect against NSAIDs-induced gastric mucosal damage. In the present study, we examined the effects of ETZ on gastric contraction and ibuprofen (IBP)-induced gastric mucosal damage in rats. We found that ETZ suppressed both 5HT- and α-methyl-5HT (5HT2 receptor agonist)-induced contractions of rat-isolated gastric fundus in a concentration-dependent manner. This suppressive effect of ETZ was not seen for either high-KCl- or acetylcholine-induced contractions. Furthermore, ETZ was confirmed to decrease ibuprofen-induced gastric mucosal damage in a dose-dependent manner in rats. Similarly, clonidine is known to reduce gastric motility, and methysergide (a 5HT2 receptor antagonist) is known to inhibit 5HT-induced contractions of the gastric fundus, which also decreases IBP-induced gastric mucosal damage, respectively. Although further research on other possible sites or mechanisms of action would be needed, these results suggest that ETZ exerts a protective effect against IBP-induced gastric mucosal damage and that suppressing the gastric contraction may play an important role in the gastroprotective effect of ETZ.
Collapse
Affiliation(s)
- Takato Nikaido
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| | - Shota Muroga
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| | - Chikashi Maruyama
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| | - Yukiko Fujimaru
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| | - Toshiki Asano
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| | - Akiko Takaoka
- Health Science Research R&D Laboratories, Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd
| |
Collapse
|
6
|
de Sousa LN, Sant'ana DSP, Siqueira dos Santos RG, dos Santos Ribeiro AEA, da Costa CF, de Oliveira AP, Almeida JRGDS, Jucá DM, da Silva MTB, dos Santos AA, Palheta Junior RC. Involvement of serotonergic pathways in gastric dysmotility induced by fat burning nutritional supplements in mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100018. [PMID: 34909653 PMCID: PMC8663933 DOI: 10.1016/j.crphar.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Fat burners are a category of nutritional supplements that are claimed to increase the metabolism and promote greater energy expenditure, leading to weight loss. However, little is known about the side effects on gastrointestinal motility. In this study, we evaluated the effect of ingestion with a fat burner named Thermbuterol® (THERM) on the gastric motility and food behavior of mice. THERM compounds were identified using nuclear magnetic resonance (NMR). Mice received variable doses of THERM (10, 50, 100 or 300 mg/kg, p.o.) or NaCl 0.15 M (control). Gastric emptying (GE) was assessed using the phenol red technique. Another set of mice was pretreated with intraperitoneal administration of hexamethonium (HEXA, 10 mg/kg), prazosin (PRAZ, 0.25 mg/kg), propranolol (PROP, 2 mg/kg), parachlorophenylalanine (PCPA, 300 mg/kg) or ondansetron (ONDA, 50 μg/kg) 30 min before THERM treatment for evaluation of GE. We assessed the gastrointestinal responsiveness in vitro as well as THERM's effects on food behavior. Caffeine was the major compound of THERM, identified by NMR. THERM 100 and 300 mg/kg decreased GE compared to the respective controls. Pretreatment with PRAZ or PROP did not prevent gastric dysmotility induced by THERM 100 mg/kg. However, the pretreatment with HEXA, ONDA or PCPA prevented GE delay induced by THERM. In vitro, THERM relaxed contractions in strips of longitudinal gastric fundus and duodenum. THERM also increased food intake, which was prevented by PCPA and ONDA treatments. THERM decreased GE of a liquid and increased food intake in mice, a phenomenon mediated by the autonomic nicotinic receptors and serotoninergic receptor.
Collapse
Affiliation(s)
| | | | | | | | - Camila F. da Costa
- Federal University of São Francisco Valley, Petrolina, Pernambuco, Brazil
| | | | | | - Davi M. Jucá
- Belo Horizonte University Center, Cristiano Machado Campus. Belo Horizonte, Minas Gerais, Brazil
| | - Moisés Tolentino Bento da Silva
- Laboratory of Exercise and Gastrointestinal Tract – Department of Physical Education, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Armênio A. dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
7
|
Agrawal L, Korkutata M, Vimal SK, Yadav MK, Bhattacharyya S, Shiga T. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology 2020; 166:107969. [PMID: 31982703 DOI: 10.1016/j.neuropharm.2020.107969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The latest estimates from world health organization suggest that more than 450 million people are suffering from depression and other psychiatric conditions. Of these, 50-60% have been reported to have progression of gut diseases. In the last two decades, researchers introduced incipient physiological roles for serotonin (5-HT) receptors (5-HTRs), suggesting their importance as a potential pharmacological target in various psychiatric and gut diseases. A growing body of evidence suggests that 5-HT systems affect the brain-gut axis in depressive patients, which leads to gut comorbidity. Recently, preclinical trials of 5-HT4R agonists and antagonists were promising as antipsychotic and prokinetic agents. In the current review, we address the possible pharmacological role and contribution of 5-HT4R in the pathophysiology of chronic depression and associated gut abnormalities. Physiologically, during depression episodes, centers of the sympathetic and parasympathetic nervous system couple together with neuroendocrine systems to alter the function of hypothalamic-pituitary-adrenal (HPA) axis and enteric nervous system (ENS), which in turn leads to onset of gastrointestinal tract (GIT) disorders. Consecutively, the ENS governs a broad spectrum of physiological activities of gut, such as visceral pain and motility. During the stages of emotional stress, hyperactivity of the HPA axis alters the ENS response to physiological and noxious stimuli. Consecutively, stress-induced flare, swelling, hyperalgesia and altered reflexes in gut eventually lead to GIT disorders. In summary, the current review provides prospective information about the role and mechanism of 5-HT4R-based therapeutics for the treatment of depressive disorder and possible consequences for the gut via brain-gut axis interactions. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan.
| | - Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Manoj Kumar Yadav
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba,1-1-1, Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.
| |
Collapse
|
8
|
Batista‐Lima FJ, Rodrigues FMDS, Gadelha KKL, Oliveira DMND, Carvalho EF, Oliveira TL, Nóbrega FC, Brito TS, Magalhães PJC. Dual excitatory and smooth muscle‐relaxant effect of β‐phenylethylamine on gastric fundus strips in rats. Clin Exp Pharmacol Physiol 2018; 46:40-47. [DOI: 10.1111/1440-1681.13033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco José Batista‐Lima
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Kalinne Kelly Lima Gadelha
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Emanuella Feitosa Carvalho
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Tatyanne Linhares Oliveira
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Fernanda Carlos Nóbrega
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Teresinha Silva Brito
- Departament of Health Sciences Rural Federal University of the Semiarid Mossoró RN Brazil
| | | |
Collapse
|
9
|
Krasaelap A, Madani S. Cyproheptadine: A Potentially Effective Treatment for Functional Gastrointestinal Disorders in Children. Pediatr Ann 2017; 46:e120-e125. [PMID: 28287686 DOI: 10.3928/19382359-20170213-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional gastrointestinal disorders (FGIDs) negatively affect children's quality of life and health care costs. It has been proposed that alteration of gut serotonin leads to gastrointestinal dysmotility, visceral hypersensitivity, altered gastrointestinal secretions, and brain-gut dysfunction. Cyproheptadine, a serotonin antagonist, has been shown to be a potentially effective and safe treatment option in children who meet the clinical criteria for FGIDs. Well-designed multicenter trials with long-term follow-up are needed to further investigate its efficacy. [Pediatr Ann. 2017;46(3):e120-e125.].
Collapse
|
10
|
Miwa H, Koseki J, Oshima T, Hattori T, Kase Y, Kondo T, Fukui H, Tomita T, Ohda Y, Watari J. Impairment of gastric accommodation induced by water-avoidance stress is mediated by 5-HT2B receptors. Neurogastroenterol Motil 2016; 28:765-78. [PMID: 26833428 DOI: 10.1111/nmo.12775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychological stress has been shown to impair gastric accommodation (GA), but its mechanism has not been elucidated. This study was conducted to clarify the role of 5-HT2B receptors in a guinea pig model of stress-induced impairment of GA. METHODS Gastric accommodation was evaluated by measuring the intrabag pressure in the proximal stomach after administration of a liquid meal. The guinea pigs were subjected to water-avoidance stress. The role of 5-HT2B receptors in impairment of GA was investigated by administering a 5-HT2B receptor agonist (BW723C86) or antagonist (SB215505), the traditional Japanese medicine rikkunshito (RKT), a muscarinic M3 receptor antagonist (1,1-dimethyl-4-diphenylacetoxypiperidium iodide [4-DAMP]), or a nitric oxide synthase inhibitor (Nω -nitro-L-arginine [L-NNA]). KEY RESULTS In normal animals, liquid meal-induced GA was inhibited by BW723C86, but was not affected by SB215505. The inhibition of GA by BW723C86 was reversed by co-administration of 4-DAMP. Compared to normal animals, GA in stressed animals was significantly inhibited. SB215505 and RKT significantly suppressed stress-induced impairment of GA. After meal administration, the level of cyclic guanosine monophosphate in gastric fundus tissue increased by approximately twofold in normal animals, but did not change in stressed animals. The inhibition of GA by L-NNA was suppressed by SB215505 or RKT. At a dose that did not affect GA in normal animals, BW723C86 exacerbated the impairment of GA in stressed animals. CONCLUSIONS AND INFERENCES Stress-induced impairment of GA may be mediated by an increased responsiveness of 5-HT2B receptors, and activation of the 5-HT2B receptor signaling pathway may have an inhibitory effect on nitric oxide function.
Collapse
Affiliation(s)
- H Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - J Koseki
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - T Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - T Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Y Kase
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - T Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - H Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - T Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Y Ohda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - J Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
11
|
Salem Sokar S, Elsayed Elsayad M, Sabri Ali H. Serotonin and histamine mediate gastroprotective effect of fluoxetine against experimentally-induced ulcers in rats. J Immunotoxicol 2016; 13:638-51. [PMID: 27000965 DOI: 10.3109/1547691x.2016.1145158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Research in the treatment of gastric ulcer has involved the investigation of new alternatives, such as anti-depressant drugs. The present study was designed to investigate the gastroprotective effects of fluoxetine against indomethacin and alcohol induced gastric ulcers in rats and the potential mechanisms of that effect. Fluoxetine (20 mg/kg) was administered IP for 14 days. For comparative purposes, other rats were treated with ranitidine (30 mg/kg). Thereafter, after 24 h of fasting, INDO (100 mg/kg) or absolute alcohol (5 ml/kg) was administered to all rats (saline was administered to naïve controls) and rats in each group were sacrificed 5 h (for INDO rats) or 1 h (for alcohol rats) later. Macroscopic examination revealed that both fluoxetine and ranitidine decreased ulcer scores in variable ratios, which was supported by microscopic histopathological examination. Biochemical analysis of fluoxetine- or ranitidine-pre-treated host tissues demonstrated reductions in tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) levels and concomitant increases in gastric pH, nitric oxide (NO) and reduced glutathione (GSH) contents. Fluoxetine, more than ranitidine, also resulted in serotonin and histamine levels nearest to control values. Moreover, immuno-histochemical analysis showed that fluoxetine markedly enhanced expression of cyclo-oxygenases COX-1 and COX-2 in both models; in comparison, ranitidine did not affect COX-1 expression in either ulcer model but caused moderate increases in COX-2 expression in INDO-induced hosts and high expression in alcohol-induced hosts. The results here indicated fluoxetine exhibited better gastroprotective effects than ranitidine and this could be due to anti-secretory, anti-oxidant, anti-inflammatory and anti-histaminic effects of the drug, as well as a stabilization of gastric serotonin levels.
Collapse
Affiliation(s)
- Samia Salem Sokar
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Tanta University , Egypt
| | - Mageda Elsayed Elsayad
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Tanta University , Egypt
| | - Hend Sabri Ali
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Tanta University , Egypt
| |
Collapse
|
12
|
Madani S, Cortes O, Thomas R. Cyproheptadine Use in Children With Functional Gastrointestinal Disorders. J Pediatr Gastroenterol Nutr 2016; 62:409-13. [PMID: 26308312 DOI: 10.1097/mpg.0000000000000964] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate clinical improvement and safety with use of cyproheptadine in functional gastrointestinal disorders (FGIDs) in children. METHODS Retrospectively evaluating the efficacy and safety of the use for indications including Rome III-defined FGIDs: functional abdominal pain, functional dyspepsia, irritable bowel syndrome (IBS), abdominal migraine, cyclic vomiting syndrome. Response categories were as follows: no improvement group/partial improvement group; requiring intervention, or complete improvement group (CIG); warranting discontinuation; ongoing use; or parental unwillingness to stop medication. RESULTS Among 307 patients, 151 included; 58% girls, ages 1 to 18 years (median 9); 110 (72.8%) reported complete symptom improvement; 41 (27.2%) reported no or partial improvement. Mean initial and final doses in the CIG were 4.85 mg/day (0.14 mg · kg · day) and 5.34 mg/day (0.14 mg · kg · day), respectively. A total of 102/151 (68%) reported no adverse effects. Adverse effects shown were as sleepiness in 19/151 (13%) and weight gain in 15/151 (10%). Cyproheptadine was effective in improving symptoms of functional abdominal pain, functional dyspepsia, in a relatively larger number of patients. Patients in smaller numbers had significant improvement 13/18 (72%) abdominal migraine, 10/10 (100%) IBS, and 6/8 (75%) cyclic vomiting syndrome. This is the first time report of improvement in IBS. Other pharmacodynamics had been as follows: the lower the body weight, the higher are the odds of no to partial improvement; patients in no improvement group/partial improvement group experience more adverse effects as compared to the CIG; the single best predictor of clinical improvement was body mass index. A 1 unit increase in body mass index with cyproheptadine use increased the odds of clinical improvement by 1.5-fold (P = 0.01). CONCLUSIONS Cyproheptadine effectively improves symptoms of Rome III-defined FGIDs and has a good safety profile when used for these indications.
Collapse
Affiliation(s)
- Shailender Madani
- *Carman Ann Adam Department of Pediatrics, Wayne State University School of Medicine †Department of Pediatrics, Children's Hospital of Michigan ‡Children's Research Center of Michigan, Children's Hospital of Michigan, Detroit
| | | | | |
Collapse
|
13
|
Mahaseth RK, Kumar S, Dutta S, Sehgal R, Rajora P, Mathur R. Pharmacodynamic Study of Interaction of Aqueous Leaf Extract of Psidium Guajava Linn. (Myrtaceae) with Receptor Systems Using Isolated Tissue Preparations. Indian J Pharm Sci 2015; 77:493-9. [PMID: 26664068 PMCID: PMC4649779 DOI: 10.4103/0250-474x.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the interaction of aqueous leaf extract of Psidium guajava with muscarinic, serotonergic and adrenergic receptor system using isolated rat ileum, gastric fundus and trachea, respectively. The concentration-dependent contractile response of aqueous leaf extract of Psidium guajava was parallel and rightward of standard agonists, ACh and 5-HT indicating agonistic activity on muscarinic and serotonergic receptor systems. The inhibition of aqueous leaf extract of Psidium guajava mediated contractions in presence of atropine (10-7 M) and ketanserin (10-6 M) confirmed the activity. Relaxant effect of PG (0.2 mg/ml) on carbachol induced pre-contracted rat tracheal chain indicated its agonistic action on adrenergic receptor system. Inhibition (P<0.05) of the action in the presence of propranolol (1 ng/ml) confirmed the activity. It may be concluded that PG possesses agonistic action on muscarinic, serotonergic and adrenergic receptor systems.
Collapse
Affiliation(s)
- R K Mahaseth
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| | - S Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| | - Shagun Dutta
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| | - Ratika Sehgal
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| | - Preety Rajora
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar, New Delhi-110 017, India
| |
Collapse
|
14
|
Effect of DA-9701 on Gastric Motor Function Assessed by Magnetic Resonance Imaging in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled Trial. PLoS One 2015; 10:e0138927. [PMID: 26402448 PMCID: PMC4581730 DOI: 10.1371/journal.pone.0138927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Background Improving gastric accommodation and gastric emptying is an attractive physiological treatment target in patients with functional dyspepsia (FD). We evaluated the effect of DA-9701, a new drug for FD, on gastric motor function after a meal in healthy volunteers using magnetic resonance imaging (MRI). Methods Forty healthy volunteers were randomly allocated to receive either DA-9701 or placebo. After 5 days of treatment, subjects underwent gastric MRI (60 min before and 15, 30, 45, 60, 90, and 120 min after a liquid test meal). Gastric volume was measured through 3-dimensional reconstruction from MRI data. We analyzed 4 outcome variables including changes in total gastric volume (TGV), proximal TGV, and proximal to distal TGV ratio after a meal and gastric emptying rates after adjusting values at the pre-test meal. Results Changes in TGV and proximal TGV after a meal did not differ between the DA-9701 and placebo groups (difference between groups -25.9 mL, 95% confidence interval [CI] -54.0 to 2.3 mL, P = 0.070 and -2.9 mL, 95% CI -30.3 to 24.5 mL, P = 0.832, respectively). However, pre-treatment with DA-9701 increased postprandial proximal to distal TGV ratio more than placebo (difference between groups 0.93, 95% CI 0.08 to 1.79, P = 0.034). In addition, pre-treatment with DA-9701 significantly increased gastric emptying as compared with placebo (mean difference between groups 3.41%, 95% CI 0.54% to 6.29%, P = 0.021, by mixed model for repeated measures). Conclusion Our results suggested that DA-9701 enhances gastric emptying and does not significantly affect gastric accommodation in healthy volunteers. Further studies to confirm whether DA-9701 enhances these gastric motor functions in patients with FD are warranted. Trial Registration ClinicalTrials.gov NCT02091635
Collapse
|
15
|
Rodriguez L, Diaz J, Nurko S. Safety and efficacy of cyproheptadine for treating dyspeptic symptoms in children. J Pediatr 2013; 163:261-7. [PMID: 23419589 PMCID: PMC3661691 DOI: 10.1016/j.jpeds.2012.12.096] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/28/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To present our experience using cyproheptadine, a potent serotonin antagonist used to stimulate appetite, to treat dyspeptic symptoms in children. STUDY DESIGN This was a retrospective open-label study conducted to evaluate the safety and efficacy of cyproheptadine in children with refractory upper gastrointestinal symptoms (eg, nausea, early satiety, vomiting, retching after fundoplication, abdominal pain). Response was graded as resolution if symptoms resolved and medication was discontinued, as significant improvement if symptoms resolved with no further interventions, and as failure with any other outcome. RESULTS A total of 80 children (65% females) aged <12 years (mean age, 10 years) were included. Response to therapy was reported in 55% of patients. Multivariate analysis revealed better response in children and females (P = .04 and .03, respectively). No associations were found between response to therapy response and gastric emptying, antroduodenal manometry, functional dyspepsia, vomiting, and use of cyproheptadine as first therapy. Early vomiting (occurring within 1 hour after starting a meal) responded better than late vomiting (P = .03), and patients with retching after undergoing Nissen fundoplication had an 86% response rate. Twenty-four patients (30%) complained of side effects, all mild, including somnolence (16%), irritability and behavioral changes (6%), increased appetite and weight gain (5%), and abdominal pain (2.5%), but only 2 of these patients discontinued therapy. Multivariate analysis demonstrated an association between side effects and lack of response to therapy (P = .04), but no associations with age and sex. CONCLUSION Cyproheptadine is safe and effective for treating dyspeptic symptoms in children, particularly in young children and those with early vomiting and retching after fundoplication.
Collapse
Affiliation(s)
- Leonel Rodriguez
- Center for Motility and Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | - Juan Diaz
- Center for Motility and Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA
,Division of Pediatric Gastroenterology, Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Samuel Nurko
- Center for Motility and Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Wang Y, Park SY, Oh KH, Min Y, Lee YJ, Lee SY, Sohn UD. Characteristics of 5-hydroxytryptamine receptors involved in contraction of feline ileal longitudinal smooth muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:267-72. [PMID: 22128258 DOI: 10.4196/kjpp.2011.15.5.267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 01/15/2023]
Abstract
A number of studies have demonstrated that 5-hydroxytryptamine (5-HT) can induce muscle contraction or relaxation response and enhance secretion in the gastrointestinal tract via a multiplicity of 5-HT receptor subtypes. In the present study, we investigated the pharmacological characterization of the 5-HT-induced contractile response in longitudinal smooth muscle isolated from the feline ileum. Addition of 5-HT into muscle chambers enhanced the basal tone and spontaneous activity in a concentration-dependent manner. The neurotoxin tetrodotoxin did not alter the 5-HT-induced contraction of the longitudinal muscles. Neither atropine nor guanethidine affected the contraction. The 5-HT agonists, 5-methylserotonin hydrochloride and mosapride, also evoked concentration-dependent contractions. The 5-HT-induced contraction was enhanced by the 5HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron but was inhibited by the 5-HT(1) receptor antagonist methysergide and 5-HT(4) receptor antagonist GR113808. These results indicate that 5-HT(1) and 5-HT(4) receptors may mediate the contraction of the 5-HT-induced response and 5-HT(2) and 5-HT(3) receptors may mediate 5-HT-induced relaxation in feline ileal longitudinal smooth muscles.
Collapse
Affiliation(s)
- Yiyi Wang
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Strickland JR, Looper ML, Matthews JC, Rosenkrans CF, Flythe MD, Brown KR. BOARD-INVITED REVIEW: St. Anthony's Fire in livestock: Causes, mechanisms, and potential solutions1,2. J Anim Sci 2011; 89:1603-26. [DOI: 10.2527/jas.2010-3478] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Ghayur MN, Gilani AH, Ahmed T, Khalid A, Nawaz SA, Agbedahunsi JM, Choudhary MI, Houghton PJ. Muscarinic, Ca++ antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.10.0014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Ginger rhizome (Zingiber officinale) has been used for centuries to treat dementia in South Asia. This study was undertaken to possibly justify its use. A 70% aqueous/methanolic extract of dried ginger (Zo.Cr) was used. Zo.Cr tested positive for the presence of terpenoids, flavonoids, secondary amines, phenols, alkaloids and saponins. When tested on isolated rat stomach fundus, Zo.Cr showed a spasmogenic effect (0.03–5.00 mg mL−1); it relaxed the tissue at concentrations ≥5 mg mL−1. The stimulant effect was resistant to blockade by hexamethonium and methysergide, but sensitive to atropine, indicating activity via muscarinic receptors. In atropinized (0.1 μM) preparations, Zo.Cr (0.3–3.0 mg mL−1) relaxed high K+ (80 mm)-induced contractions, indicating Ca++ antagonism in addition to the muscarinic effect. This possible Ca++ antagonist activity was investigated in Ca++-free conditions, with the inhibitory effect of the extract tested against contractions induced by externally administered Ca++. Zo.Cr (0.1–0.3 mg mL−1), similar to verapamil (0.03–0.10 μm), shifted the contractions induced by externally administered Ca++ to the right, thus suggesting an inhibitory interaction between Zo.Cr and voltage-operated Ca++ channels. Zo.Cr (0.1–3.0 μg mL−1) also potentiated acetylcholine peak responses in stomach fundus, similar to physostigmine, a cholinesterase inhibitor. Zo.Cr, in an in-vitro assay, showed specific inhibition of butyrylcholinesterase (BuChE) rather than acetylcholinesterase enzyme. Different pure compounds of ginger also showed spasmolytic activity in stomach fundus, with 6-gingerol being the most potent. 6-Gingerol also showed a specific anti-BuChE effect. This study shows a unique combination of muscarinic, possible Ca++ antagonist and BuChE inhibitory activities of dried ginger, indicating its benefit in dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
- Muhammad N Ghayur
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Pharmacognosy Research Laboratory, Department of Pharmacy, King's College London, London, UK
| | - Anwarul H Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Touqeer Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Asaad Khalid
- Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
- Dr Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi, Pakistan
| | - Sarfraz A Nawaz
- Dr Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi, Pakistan
| | - Joseph M Agbedahunsi
- Pharmacognosy Research Laboratory, Department of Pharmacy, King's College London, London, UK
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Muhammad I Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi, Pakistan
| | - Peter J Houghton
- Pharmacognosy Research Laboratory, Department of Pharmacy, King's College London, London, UK
| |
Collapse
|
19
|
Mikami T, Komada T, Sugimoto H, Suzuki K, Ohmi T, Kimura N, Naganeo R, Nakata E, Nakatani K, Toga T, Eda H, Sakakibara M. In vitro and in vivo pharmacological characterization of PF-01354082, a novel partial agonist selective for the 5-HT(4) receptor. Eur J Pharmacol 2009; 609:5-12. [PMID: 19285067 DOI: 10.1016/j.ejphar.2009.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/12/2009] [Accepted: 03/01/2009] [Indexed: 12/18/2022]
Abstract
The pharmacological profile of PF-01354082, a selective 5-HT(4) receptor partial agonist, was investigated. PF-01354082 displayed high affinity for human 5-HT(4d) and dog 5-HT(4h) receptors in binding studies, having Ki values of 2.0 nM and 4.2 nM, respectively. By contrast, PF-01354082 did not show significant affinity for several other 5-HT receptors (5-HT(1A), 5-HT(1B), 5-HT(1D), 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(3A), and 5-HT(7)) or the dopamine D(2long) receptor. Functional assays using either cells expressing human recombinant 5-HT(4d) receptors or rat tunica muscularis mucosae demonstrated that PF-01354082 exhibited partial agonist activity at the 5-HT(4) receptor. The effects of PF-01354082 on in vitro receptor binding, ion channel activity, and sites of uptake were further investigated. PF-01354082 did not show biologically relevant binding activity at concentrations up to 10 microM except for binding to the 5-HT(4e) receptor. Furthermore, PF-01354082 decreased I(HERG) current by only 11% at a concentration of 300 microM, indicating that the compound had greater than 150,000-fold selectivity for the human 5-HT(4d) receptor over hERG channels. An in vivo study using a gastric motility model in conscious dogs demonstrated that oral administration of PF-01354082 resulted in marked and sustained stimulation of gastric motility in a dose-dependent manner. These results indicate that PF-01354082 is an orally active, highly selective, partial agonist of the human 5-HT(4) receptor that is expected to exert a favorable effect on gastrointestinal motor disorders with reduced adverse effects mediated by other related receptors.
Collapse
Affiliation(s)
- Tadayoshi Mikami
- Discovery Biology Research, Global Research & Development, Nagoya Laboratories, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sundqvist M, Holmgren S. Changes in the control of gastric motor activity during metamorphosis in the amphibian Xenopus laevis, with special emphasis on purinergic mechanisms. ACTA ACUST UNITED AC 2008; 211:1270-80. [PMID: 18375852 DOI: 10.1242/jeb.012005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The stomach of the amphibian Xenopus laevis is subject to extensive remodelling during metamorphosis. We investigated the changes in gastric activity control during this period using in vitro circular smooth muscle preparations mounted in organ baths. The nitric oxide synthase inhibitor L-NAME increased mean force in metamorphic and juvenile frogs but not in prometamorphic tadpoles. Serotonin (5-HT) relaxed stomach muscle prior to metamorphosis but elicited a biphasic response in juveniles consisting of contraction at low concentrations and relaxation at high concentrations. The effects of 5-HT were blocked by methysergide. In the prometamorphic tadpole, ATP elicited relaxation that was blocked by the ectonucleotidase inhibitor ARL67156 and the adenosine A(1) receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), suggesting adenosine as the mediator. Exogenous adenosine and the A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) induced relaxation at all stages. After metamorphosis, the potency of ATP decreased and neither DPCPX nor ARL67156 could block ATP-induced relaxation. Uridine 5'-triphosphate (UTP) induced relaxation prior to metamorphosis, but caused contraction of muscle strips from metamorphosing tadpoles. Single doses of UTP blocked phasic contractions in juveniles in a tetrodotoxin (TTX)-sensitive manner while the simultaneous increase in muscle tension was TTX insensitive. The P2X(1)/P2X(3) receptor agonist alpha-beta-MeATP elicited pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS)-sensitive contractions at all stages investigated. These results indicate the development of an inhibitory nitrergic tonus during metamorphosis and a 5-HT receptor involved in muscle contraction. Also, the development of UTP receptors mediating increased tension and neural UTP receptors decreasing contraction frequency in juveniles is indicated. An adenosine A(1)-like receptor mediating relaxation and a P2X-like receptor mediating contraction is demonstrated at all stages.
Collapse
Affiliation(s)
- Monika Sundqvist
- Department of Zoophysiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | |
Collapse
|
21
|
Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:181-203. [PMID: 18398601 DOI: 10.1007/s00210-008-0276-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/15/2008] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) plays a critical physiological role in the regulation of gastrointestinal (GI) function. 5-HT dysfunction may also be involved in the pathophysiology of a number of functional GI disorders, such as chronic constipation, irritable bowel syndrome and functional dyspepsia. This article describes the role of 5-HT in the enteric nervous system (ENS) of the mammalian GI tract and the receptors with which it interacts. Existing serotonergic therapies that have proven effective in the treatment of GI functional disorders and the potential of drugs currently in development are also highlighted. Advances in our understanding of the physiological and pathophysiological roles of 5-HT in the ENS and the identification of selective receptor ligands bodes well for the future development of more efficacious therapies for patients with functional GI disorders.
Collapse
|
22
|
Mikami T, Ochi Y, Suzuki K, Saito T, Sugie Y, Sakakibara M. 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs. J Pharmacol Exp Ther 2008; 325:190-9. [PMID: 18198343 DOI: 10.1124/jpet.107.133850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors.
Collapse
Affiliation(s)
- Tadayoshi Mikami
- Drug Safety Research and Development, Tokyo Laboratories, Pfizer Global Research and Development, Pfizer Inc., 3-22-7 Yoyogi, Shibuya, Tokyo 151-8589, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
5-Hydroxytryptamine(4) (5-HT(4)) receptors are an interesting target for the management of patients in need of gastrointestinal (GI) promotility treatment. They have proven therapeutic potential to treat patients with GI motility disorders. Lack of selectivity for the 5-HT(4) receptor has limited the clinical success of the agonists used until now. For instance, next to their affinity for 5-HT(4) receptors, both cisapride and tegaserod have appreciable affinity for other receptors, channels or transporters [e.g. cisapride: human ether-a-go-go-related gene (hERG) is K(+) channel and tegaserod: 5-HT(1) and 5-HT(2) receptors]. Adverse cardiovascular events observed with these compounds are not 5-HT(4) receptor-related. Recent efforts have led to the discovery of a series of selective 5-HT(4) receptor ligands, with prucalopride being the most advanced in clinical development. The selectivity of these new compounds clearly differentiates them from the older generation compounds by minimizing the potential of target-unrelated side effects. The availability of selective agonists enables the focus to shift to the exploration of 5-HT(4) receptor-related differences between agonists. Based on drug- and tissue-related properties (e.g. differences in receptor binding, receptor density, effectors, coupling efficiency), 5-HT(4) receptor agonists are able to express tissue selectivity, i.e. behave as a partial agonist in some and as a full agonist in other tissues. Furthermore, the concept of ligand-directed signalling offers great opportunities for future drug development by enlarging the scientific basis for the generation of agonist-specific effects in different cell types, tissues or organs. Selective 5-HT(4) receptor agonists might thus prove to be innovative drugs with an attractive safety profile for better treatment of patients suffering from hypomotility disorders.
Collapse
|