1
|
Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 2018; 127:106-118. [PMID: 29408182 PMCID: PMC6020694 DOI: 10.1016/j.addr.2018.01.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
The intrinsic properties of therapeutic proteins generally present a major impediment for transdermal delivery, including their relatively large molecule size and susceptibility to degradation. One solution is to utilize microneedles (MNs), which are capable of painlessly traversing the stratum corneum and directly translocating protein drugs into the systematic circulation. MNs can be designed to incorporate appropriate structural materials as well as therapeutics or formulations with tailored physicochemical properties. This platform technique has been applied to deliver drugs both locally and systemically in applications ranging from vaccination to diabetes and cancer therapy. This review surveys the current design and use of polymeric MNs for transdermal protein delivery. The clinical potential and future translation of MNs are also discussed.
Collapse
Affiliation(s)
- Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Ito Y, Kobuchi S, Inoue G, Kakumu E, Aoki M, Sakaeda T, Takada K. Dissolving microneedles for enhanced local delivery of capsaicin to rat skin tissue. J Drug Target 2016; 25:420-424. [PMID: 27918217 DOI: 10.1080/1061186x.2016.1266650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capsaicin-loaded dissolving microneedles (DMNs) were prepared to investigate the analgesic effect of capsaicin on the skin. The dimensions of each microneedle (MN) were as follows: diameter of the basement, 17 mm; length, 500 μm; and width, 300 μm. The average capsaicin content in the DMNs loaded with a low and high dose of capsaicin was 8.8 ± 0.5 mg and 12.5 ± 0.4 mg. Almost all the capsaicin, 99.3 ± 4.1% and 99.7 ± 2.2% for low-dose and high-dose DMNs were released within 20 min. High amounts of capsaicin were recovered with 102.8 ± 0.1% of capsaicin after storage at 23 °C for 90 days. The pharmacological activity of capsaicin DMNs was compared to that of capsaicin cream as a positive control, by measuring the idiospasm of depilated rat skin. The time required to achieve 50% idiospasm suppression was 26.3 ± 1.9 min and 53.0 ± 2.3 min for low-dose and high-dose DMNs. A pharmacokinetic study showed high tissue capsaicin levels of 660.2 ± 120.6 and 1805.3 ± 218.1 μg/g wet weight for low-dose and high-dose DMNs at 5 min after administration. The results suggest that DMNs could exert a rapid local analgesic action on the skin.
Collapse
Affiliation(s)
- Yukako Ito
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Shinji Kobuchi
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Genta Inoue
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Eisaku Kakumu
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Miki Aoki
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Toshiyuki Sakaeda
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | | |
Collapse
|
3
|
Ito Y, Inagaki Y, Kobuchi S, Takada K, Sakaeda T. Therapeutic Drug Monitoring of Vancomycin in Dermal Interstitial Fluid Using Dissolving Microneedles. Int J Med Sci 2016; 13:271-6. [PMID: 27076783 PMCID: PMC4829539 DOI: 10.7150/ijms.13601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To design an alternative painless method for vancomycin (VCM) monitoring by withdrawing interstitial fluid (ISF) the skin using dissolving microneedles (DMNs) and possibly replace the conventional clinical blood sampling method. METHODS Male Wistar rats were anesthetized with 50 mg/kg sodium pentobarbital. Vancomycin at 5 mg/mL in saline was intravenously administered via the jugular vein. ISF was collected from a formed pore at 15, 30, 45, 60, 75, 90, and 120 min after the DMNs was removed from the skin. In addition, 0.3 mL blood samples were collected from the left femoral vein. RESULTS The correlation between the plasma and ISF VCM concentrations was significantly strong (r = 0.676, p < 0.05). Microscopic observation of the skin after application of the DMNs demonstrated their safety as a device for sampling ISF. CONCLUSION A novel monitoring method for VCM was developed to painlessly determine concentrations in the ISF as opposed to blood sampling.
Collapse
Affiliation(s)
- Yukako Ito
- 1. Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yuto Inagaki
- 1. Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Shinji Kobuchi
- 1. Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Kanji Takada
- 2. BioSerenTach Inc., Shimogyo-ku, Kyoto, 600-8040, Japan
| | - Toshiyuki Sakaeda
- 1. Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| |
Collapse
|
4
|
Cai Y, Xu M, Yuan M, Liu Z, Yuan W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine 2014; 9:3527-38. [PMID: 25114523 PMCID: PMC4122423 DOI: 10.2147/ijn.s63507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Since the availability of recombinant human growth hormone (rhGH) enabled the application of human growth hormone both in clinical and research use in the 1980s, millions of patients were prescribed a daily injection of rhGH, but noncompliance rates were high. To address the problem of noncompliance, numerous studies have been carried out, involving: sustained-release preparations, prolonged half-life derivatives, new injectors that cause less pain, and other noninvasive delivery methods such as intranasal, pulmonary and transdermal deliveries. Some accomplishments have been made and launched already, such as the Nutropin Depot® microsphere and injectors (Zomajet®, Serojet®, and NordiFlex®). Here, we provide a review of the different technologies and illustrate the key points of these studies to achieve an improved rhGH product.
Collapse
Affiliation(s)
- Yunpeng Cai
- Department of Neurology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Mingxin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minglu Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 2014; 8:459-82. [DOI: 10.1586/erd.11.20] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Ito Y, Kobuchi S, Takemura Y, Aoki M, Haruna M, Sakaeda T, Takada K. Prolonged hypoglycemic effects obtained by two-layered dissolving microneedles containing insulin glargine. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Ito Y, Taniguchi M, Hayashi A, Anai M, Morita S, Ko E, Yoshimoto N, Yoshii Y, Kobuchi S, Sakaeda T, Takada K. Application of Dissolving Microneedles to Glucose Monitoring through Dermal Interstitial Fluid. Biol Pharm Bull 2014; 37:1776-81. [DOI: 10.1248/bpb.b14-00406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Mayu Taniguchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Asuka Hayashi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Miku Anai
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Shinya Morita
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Emi Ko
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Naoko Yoshimoto
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Yasuhiro Yoshii
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | | | | |
Collapse
|
8
|
Ito Y, Ohta J, Imada K, Akamatsu S, Tsuchida N, Inoue G, Inoue N, Takada K. Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. J Drug Target 2013; 21:770-5. [PMID: 23808605 DOI: 10.3109/1061186x.2013.811510] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dissolving microneedles (DMs) were applied to lidocaine for local anesthesia of the skin. Three DM array chips were prepared where lidocaine was localized at the acral portion of DMs (type 1), loaded in whole DMs (type 2), and lidocaine was loaded both in whole DMs and the chip (type 3). DM chips were 15-mm diameter with 225 DMs, each 500-μm long with a 300-μm diameter base. The lidocaine contents were (type 1) 0.08 ± 0.01 mg, (type 2) 0.22 ± 0.01 mg and (type 3) 8.52 ± 0.49 mg. Lidocaine was released from type 1 and 2 DM array chips within 10 min. Pharmacological activity of DMs were compared to lidocaine cream by the suppression of idiospasm of hair-removed rat skin. Type 1, 2 and 3 DMs showed faster onset time, 5 min, than lidocaine cream. Type 2 and 3 DMs showed stronger anti-idioplasmic activity than type 1 DMs. Pharmacokinetic study showed that tissue lidocaine levels, 62.8 ± 3.6 (type 1), 89.1 ± 9.9 (type 2) and 131.2 ± 10.2(type 3) μg/g wet weight at 5 min after the removal of DM were obtained higher than lidocaine cream, 26.2 ± 12.5 μg/g wet weight. Those results suggest the usefulness of type 2 DMs to obtain fast onset time for the local anesthesia in the skin.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chandrasekhar S, Iyer LK, Panchal JP, Topp EM, Cannon JB, Ranade VV. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv 2013; 10:1155-70. [PMID: 23662940 DOI: 10.1517/17425247.2013.797405] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Peptide and protein microarray and microneedle array technology provides direct information on protein function and potential drug targets in drug discovery and delivery. Because of this unique ability, these arrays are well suited for protein profiling, drug target identification/validation and studies of protein interaction, biochemical activity, immune responses, clinical prognosis and diagnosis and for gene, protein and drug delivery. AREAS COVERED The aim of this review is to describe and summarize past and recent developments of microarrays in their construction, characterization and production and applications of microneedles in drug delivery. The scope and limitations of various technologies in this respect are discussed. EXPERT OPINION This article offers a review of microarray/microneedle technologies and possible future directions in targeting and in the delivery of pharmacologically active compounds for unmet needs in biopharmaceutical research. A better understanding of the production and use of microarrays and microneedles for delivery of peptides, proteins and vaccines is needed.
Collapse
Affiliation(s)
- Saradha Chandrasekhar
- Purdue University, Department of Industrial and Physical Pharmacy, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ito Y, Hamasaki N, Higashino H, Murakami Y, Miyamoto N, Takada K. Method to Increase the Systemically Delivered Amount of Drug from Dissolving Microneedles. Chem Pharm Bull (Tokyo) 2013; 61:8-15. [DOI: 10.1248/cpb.c12-00468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | | | | | - Yuki Murakami
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Nao Miyamoto
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Kanji Takada
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| |
Collapse
|
11
|
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Citation(s) in RCA: 1058] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.
Collapse
|
12
|
Ito Y, Nakahigashi T, Yoshimoto N, Ueda Y, Hamasaki N, Takada K. Transdermal insulin application system with dissolving microneedles. Diabetes Technol Ther 2012; 14:891-9. [PMID: 23013202 DOI: 10.1089/dia.2012.0096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this report was to develop a dissolving microneedle (DM) application system, where 225-300 insulin-loaded DMs were formed on a chip. After the heat-sealed sheet is removed, the system covered with the press-through package layer is put on the skin. By pressing with the hand, insulin DMs were inserted into the skin. MATERIALS AND METHODS Factors affecting the penetration depth of DM were studied using applicator in vitro and in vivo experiments. The penetration depth was determined for rat and human skin. Two-layered DM array chips were prepared to obtain complete absorption of insulin and administered to the rat abdominal skin. Plasma glucose levels were measured for 6 h. By comparing the hypoglycemic effect with that obtained after subcutaneous injection, relative pharmacological availability (RPA) was determined. RESULTS The penetration depth increased from 21 ± 3 μm to 63 ± 2 μm in proportion to application speed to isolated rat skin, at 0.8-2.2 m/s. Human skin showed similar results in the penetration depth. The in vivo penetration depth was dependent on the force (0.5-2.5 N) and duration (1-10 min), as the secondary application force. The penetration depth was 211 ± 3 μm with a duration of 3 min in the in vivo rat experiment. DM array chips having an insulin-loaded space of 181.2 ± 4.2 and 209 ± 3.9 μm were evaluated in the rat. RPA values of insulin from DMs were 98.1 ± 0.8% and 98.1 ± 3.1%, respectively. CONCLUSIONS These results suggest the usefulness of the two-layered DM application system for the transdermal delivery of insulin.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Kumar V, Banga AK. Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 2012; 434:106-14. [DOI: 10.1016/j.ijpharm.2012.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/09/2012] [Accepted: 05/15/2012] [Indexed: 01/20/2023]
|
14
|
Ito Y, Hirono M, Fukushima K, Sugioka N, Takada K. Two-layered dissolving microneedles formulated with intermediate-acting insulin. Int J Pharm 2012; 436:387-93. [PMID: 22750407 DOI: 10.1016/j.ijpharm.2012.06.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/16/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022]
Abstract
Two-layered dissolving microneedles (DMs) containing intermediate-acting insulin, protamine sulfate insulin (PSI), were prepared. Then a pharmacodynamic study was performed to evaluate the prolonged hypoglycemic effects in rats. The DMs were approximately 497±5 μm long, with 303±3 μm diameter at their base. The length of the insulin loaded space was 182±4 μm. PSI contents in DMs were 0.51±0.02 IU. A three-month stability study showed that 99.9±1.4% of PSI was recovered at 4 °C. As the temperature increased to 40 °C, recovery decreased to 97.5±2.0%. PSI was released within 5 min from DMs. Hypoglycemic effects of PSI DMs were evaluated in rats where subcutaneous injection preparations were used as references. Total area above the plasma glucose level (% of the pre-dose level) vs. time curve as an index of hypoglycemic effect was 144.0±16.0% h and 243.3±8.5% h for PSI DMs at 1.46 and 3.28 IU/kg. The relative pharmacologic availability of PSI from DMs were 100.2±9.8% and 91.4±4.1%. No significant difference of hypoglycemic curves was found between DMs and injection solutions, which suggests the usefulness of two-layered DMs of PSI for the displacement therapy of sc injection preparation.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | | | | | | | | |
Collapse
|
15
|
Ito Y, Yoshimura M, Tanaka T, Takada K. Effect of Lipophilicity on the Bioavailability of Drugs After Percutaneous Administration by Dissolving Microneedles. J Pharm Sci 2012; 101:1145-56. [DOI: 10.1002/jps.22814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/08/2011] [Accepted: 10/21/2011] [Indexed: 11/05/2022]
|
16
|
Ikejiri A, Ito Y, Naito S, Takada K. Two-and Three-Layered Dissolving Microneedles for Transcutaneous Delivery of Model Vaccine Antigen in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.33030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Ikejiri A, Ito Y, Takada K. High percutaneous bioavailability of granisetron by dissolving microneedleswe. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Naito S, Ito Y, Kiyohara T, Kataoka M, Ochiai M, Takada K. Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination. Vaccine 2011; 30:1191-7. [PMID: 22172508 DOI: 10.1016/j.vaccine.2011.11.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 11/14/2011] [Accepted: 11/29/2011] [Indexed: 01/06/2023]
Abstract
Antigen-loaded dissolving microneedle array (dMNA) patches were investigated as novel systems for vaccine delivery into the skin, where immuno-competent dendritic cells are densely distributed. We fabricated micron-scale needles arrayed on patches, using chondroitin sulfate mixed with a model antigen, ovalbumin. Insertion of dMNA effectively delivered substantial amounts of ovalbumin into the skin within 3 min and induced robust antigen-specific antibody responses in the sera of mice. The antibody dose-response relationship showed that the efficiency of dMNA patch immunization was comparable to that of conventional intradermal injections. Thus, Antigen-loaded dMNA patches are a promising antigen-delivery system for percutaneous vaccination.
Collapse
Affiliation(s)
- Seishiro Naito
- Division of Quality Assurance, National Institute of Infectious Diseases,4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Human growth hormone: New delivery systems, alternative routes of administration, and their pharmacological relevance. Eur J Pharm Biopharm 2011; 78:278-88. [DOI: 10.1016/j.ejpb.2011.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
|
20
|
Ito Y, Kashiwara S, Fukushima K, Takada K. Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Drug Dev Ind Pharm 2011; 37:1387-93. [DOI: 10.3109/03639045.2011.576426] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Ito Y, Murano H, Hamasaki N, Fukushima K, Takada K. Incidence of low bioavailability of leuprolide acetate after percutaneous administration to rats by dissolving microneedles. Int J Pharm 2011; 407:126-31. [DOI: 10.1016/j.ijpharm.2011.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/28/2022]
|
22
|
Fukushima K, Ito Y, Ishihata M, Sugioka N, Takada K. Insulin micropiles comprising biodegradable polymers for production of a long-term hypoglycemic effect. J Drug Target 2011; 19:212-8. [DOI: 10.3109/1061186x.2010.492521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Fukushima K, Yamazaki T, Hasegawa R, Ito Y, Sugioka N, Takada K. Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol Ther 2010; 12:465-74. [PMID: 20470231 DOI: 10.1089/dia.2009.0176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND This study tested the hypothesis that dissolving microneedles are a useful transdermal drug delivery system (TDDS) for insulin. METHODS Insulin was loaded on a patch (1.0 cm2) that had 100 dissolving microneedles with chondroitin sulfate by microfabrication technology. Pharmacodynamic evaluation was performed by applying two or four patches to the shaved abdominal skin of dogs, and blood samples were collected for 360 min to measure plasma glucose and insulin levels. In diffusion experiment, microneedles containing fluorescein isothiocyanate-insulin and/or Evans blue were administered to the rat skin, and the diffusion rates of tracers were recorded. RESULTS The mean length, diameter of basement, and drug-loaded space from the top of the microneedles were 492.6 +/- 2.4, 290.0 +/- 3.6, and 316.0 +/- 7.3 microm, respectively. The insulin content was 1.67 +/- 0.17 IU per patch. The time when the minimum plasma glucose level was obtained was 50.0 +/- 8.7 min for two-patch and 82.5 +/- 14.4 min for four-patch studies. A dose-dependent hypoglycemic effect was observed. By comparing the cumulative percentage change in the plasma glucose level between insulin microneedles and solution, the relative physiological availabilities were calculated to be 71.1 +/- 17.8% (for two patches) and 59.3 +/- 4.4% (for four patches). Bioavailabilities of insulin from microneedles were 72.1 +/- 11.6% (for two patches) and 72.4 +/- 8.3% (for four patches). High diffusion rates of fluorescein isothiocyanate-insulin and Evans blue were observed at the administered skin site and correlated well with the high absorption rate of insulin into the systemic circulation. Insulin was stable in dissolving microneedles for 1 month at 4 degrees C; the recovered percentage was 99.2 +/- 13.9%. CONCLUSIONS Dissolving microneedles were demonstrated to be a useful TDDS as an immediate-acting insulin preparation.
Collapse
Affiliation(s)
- Keizo Fukushima
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats. Pharm Res 2010; 28:7-21. [DOI: 10.1007/s11095-010-0097-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
25
|
Ito Y, Ise A, Sugioka N, Takada K. Molecular weight dependence on bioavailability of FITC-dextran after administration of self-dissolving micropile to rat skin. Drug Dev Ind Pharm 2010; 36:845-51. [DOI: 10.3109/03639040903541179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K. Self-Dissolving Micropile Array Chip as Percutaneous Delivery System of Protein Drug. Biol Pharm Bull 2010; 33:683-90. [DOI: 10.1248/bpb.33.683] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Ryo Hasegawa
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | - Keizo Fukushima
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| | | | - Kanji Takada
- Department of Pharmacokinetics, Kyoto Pharmaceutical University
| |
Collapse
|
27
|
Fukushima K, Nakane H, Ohhashi Y, Ito Y, Sugioka N, Takada K. Evaluation of insulin self-dissolving micropiles by PK/PD analysis. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Kawada T, Asano R, Hayashida S, Sakuno T. Total Synthesis of the Phenylpropanoid Glycoside, Acteoside. J Org Chem 1999. [DOI: 10.1021/jo9906983] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshinari Kawada
- Department of Forestry Science, Faculty of Agriculture, Tottori University, Minami 4-101, Koyama, Tottori 680-0945, Japan
| | - Ryuji Asano
- Department of Forestry Science, Faculty of Agriculture, Tottori University, Minami 4-101, Koyama, Tottori 680-0945, Japan
| | - Shiho Hayashida
- Department of Forestry Science, Faculty of Agriculture, Tottori University, Minami 4-101, Koyama, Tottori 680-0945, Japan
| | - Tomoyasu Sakuno
- Department of Forestry Science, Faculty of Agriculture, Tottori University, Minami 4-101, Koyama, Tottori 680-0945, Japan
| |
Collapse
|