1
|
Mokhfi FZ, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Vallamkonda B, Balakrishnan A, Challa M, Singh J, Prasad PD, Ali SS, Ahmad I, Doukani K, Emran TB. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact 2024; 402:111218. [PMID: 39209016 DOI: 10.1016/j.cbi.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.
Collapse
Affiliation(s)
- Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, Tamil Nadu, India
| | - Manjula Challa
- Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli Village, Sidhout Mandal Kadapa District, Andhra Pradesh, India
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - P Dharani Prasad
- Depertment of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine and Legorreta Cancer Center Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
2
|
Al Amin M, Emran TB, Khan J, Zehravi M, Sharma I, Patil A, Gupta JK, Jeslin D, Krishnan K, Das R, Nainu F, Ahmad I, Wilairatana P. Research Progress of Indole Alkaloids: Targeting MAP Kinase Signaling Pathways in Cancer Treatment. Cancers (Basel) 2023; 15:5311. [PMID: 38001572 PMCID: PMC10670446 DOI: 10.3390/cancers15225311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the leading cause of morbidity and mortality in people throughout the world. There are many signaling pathways associated with cancerous diseases, from which the Mitogen-activated protein kinase (MAPK) pathway performs a significant role in this regard. Apoptosis and proliferation are correlated with MAPK signaling pathways. Plenty of experimental investigations were carried out to assess the role of indole alkaloids in MAPK-mediated cancerous diseases. Previous reports established that indole alkaloids, such as vincristine and evodiamine are useful small molecules in cancer treatment via the MAPK signaling system. Indole alkaloids have the anticancer potential through different pathways. Vincristine and evodiamine are naturally occurring indole alkaloids that have strong anticancer properties. Additionally, much research is ongoing or completed with molecules belonging to this group. The current review aims to evaluate how indole alkaloids affect the MAPK signaling pathway in cancer treatment. Additionally, we focused on the advancement in the role of indole alkaloids, with the intention of modifying the MAPK signaling pathways to investigate potential new anticancer small molecules. Furthermore, clinical trials with indole alkaloids in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru 560010, Karnataka, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - D. Jeslin
- Department of Pharmaceutics, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai 600044, Tamil Nadu, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, Tamil Nadu, India;
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61411, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
4
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
5
|
Costa-Machado LF, Garcia-Dominguez E, McIntyre RL, Lopez-Aceituno JL, Ballesteros-Gonzalez Á, Tapia-Gonzalez A, Fabregat-Safont D, Eisenberg T, Gomez J, Plaza A, Sierra-Ramirez A, Perez M, Villanueva-Bermejo D, Fornari T, Loza MI, Herradon G, Hofer SJ, Magnes C, Madeo F, Duerr JS, Pozo OJ, Galindo MI, Del Pino I, Houtkooper RH, Megias D, Viña J, Gomez-Cabrera MC, Fernandez-Marcos PJ. Peripheral modulation of antidepressant targets MAO-B and GABAAR by harmol induces mitohormesis and delays aging in preclinical models. Nat Commun 2023; 14:2779. [PMID: 37188705 PMCID: PMC10185515 DOI: 10.1038/s41467-023-38410-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jose Luis Lopez-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Álvaro Ballesteros-Gonzalez
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Andrea Tapia-Gonzalez
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006, Castelló de la Plana, Castellón, Spain
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Jesús Gomez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Adrian Plaza
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Manuel Perez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - David Villanueva-Bermejo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - María Isabel Loza
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonzalo Herradon
- Lab. Pharmacology, Faculty of Pharmacy, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Janet S Duerr
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
| | - Maximo-Ibo Galindo
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
- UPV-CIPF Joint Research Unit "Disease Mechanisms and Nanomedicine". Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550, Alicante, Spain
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain.
| |
Collapse
|
6
|
Zani CP, Zani AP, Thomazini CM, Retamiro KM, de Oliveira AR, Gonçalves DL, Sarragiotto MH, Garcia FP, de Oliveira Silva S, Nakamura CV, Ueda-Nakamura T. β-Carboline-α-aminophosphonate Derivative: A Promising Antitumor Agent for Breast Cancer Treatment. Molecules 2023; 28:molecules28093949. [PMID: 37175359 PMCID: PMC10179861 DOI: 10.3390/molecules28093949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-β-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the β-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Cristiane Melissa Thomazini
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Débora Laís Gonçalves
- Department of Chemistry, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| |
Collapse
|
7
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
8
|
Bhattacharya P, De S. Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics. The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.
Collapse
Affiliation(s)
| | - Swati De
- Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
9
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
10
|
Luo ML, Huang W, Zhu HP, Peng C, Zhao Q, Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed Pharmacother 2022; 149:112827. [PMID: 35316753 DOI: 10.1016/j.biopha.2022.112827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a leading cause of death worldwide, and cancer development is often associated with disturbances in the autophagy process. Autophagy is a catabolic process involved in many physiological processes, crucial for cell growth and survival. It is an intracellular lysosomal/vacuolar degradation system. In this system, inner cytoplasmic cell membrane is degraded by lysosomal hydrolases, and the products are released back into the cytoplasm. Indole alkaloids are natural products extensively found in nature and have been proven to possess various pharmacological activities. In recent years, pharmacological studies have demonstrated another potential of indole alkaloids, autophagy regulation. The regulation may contribute to the efficacy of indole alkaloids in preventing and treating cancer. This review summarizes the current understanding of indole alkaloids' effect on tumor cells and autophagy. Then, we focus on mechanisms by which indole alkaloids can target the autophagy process associated with cancer, including the PI3K/Akt/mTOR signaling pathway, MAPK signaling pathway, ROS signaling pathway, Beclin-1, and so on. Literature has been surveyed primarily from 2009 to Nov. 2021, and some semisynthetic or fully synthetic indole derivatives are also discussed.
Collapse
Affiliation(s)
- Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Li Z, Mao L, Yu B, Liu H, Zhang Q, Bian Z, Zhang X, Liao W, Sun S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J Pharm Anal 2022; 12:339-349. [PMID: 35582406 PMCID: PMC9091789 DOI: 10.1016/j.jpha.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
GB7 acetate is a galbulimima alkaloid obtained from Galbulimima belgraveana. However, information regarding its structure, biological activities, and related mechanisms is not entirely available. A series of spectroscopic analyses, structural degradation, interconversion, and crystallography were performed to identify the structure of GB7 acetate. The MTT assay was applied to measure cell proliferation on human colorectal cancer HCT 116 cells. The expressions of the related proteins were measured by Western blotting. Transmission electron microscopy (TEM), acridine orange (AO) and monodansylcadaverine (MDC) staining were used to detect the presence of autophagic vesicles and autolysosomes. A transwell assay was performed to demonstrate metastatic capabilities. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were performed to determine the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis activity of HCT 116 cells. The data showed that GB7 acetate suppressed the proliferation and colony-forming ability of HCT 116 cells. Pretreatment with GB7 acetate significantly induced the formation of autophagic vesicles and autolysosomes. GB7 acetate upregulated the expressions of LC3 and Thr172 phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase α (p-AMPKα), which are key elements of autophagy. In addition, GB7 acetate suppressed the metastatic capabilities of HCT 116 cells. Additionally, the production of matrix metallo-proteinase-2 (MMP-2) and MMP-9 was reduced, whereas the expression of E-cadherin (E-cad) was upregulated. Furthermore, GB7 acetate significantly reduced mitochondrial OXPHOS and glycolysis. In conclusion, the structure of the novel Galbulimima alkaloid GB7 acetate was identified. GB7 acetate was shown to have anti-proliferative, pro-autophagic, anti-metastatic, and anti-metabolite capabilities in HCT 116 cells. This study might provide new insights into cancer treatment efficacy and cancer chemoprevention.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Huahuan Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhongbo Bian
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Nasibova T. Cancer Statistics and Anticancer Potential of Peganum harmala Alkaloids: A Review. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i1.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most common diseases in the world. Although it develops in various organs and tissues, some species maintain a stable position in the ranking. Although the cancer causes are different, the specific grounds for each type are also noted. Sometimes the increase in incidents and mortality is associated with geographical reasons. Increases in statistics, expensive and chemotherapeutic methods focus on plant-based substances. One of such potential plants is Peganum harmala, which contains alkaloids such as harmine, harmaline, harmol, and harmalol. The effects of these compounds on many cancer cells have been tested, and positive results have been obtained. This fact reinforces the claim that more in-depth research on noted alkaloids is needed.
Collapse
|
13
|
Harmine Hydrochloride Mediates the Induction of G2/M Cell Cycle Arrest in Breast Cancer Cells by Regulating the MAPKs and AKT/FOXO3a Signaling Pathways. Molecules 2021; 26:molecules26216714. [PMID: 34771123 PMCID: PMC8588485 DOI: 10.3390/molecules26216714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.
Collapse
|
14
|
Wang YH, Chen YH, Shen WH. Amikacin Suppresses Human Breast Cancer Cell MDA-MB-231 Migration and Invasion. TOXICS 2020; 8:toxics8040108. [PMID: 33233497 PMCID: PMC7712503 DOI: 10.3390/toxics8040108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
(1) Background: Amikacin is an aminoglycoside antibiotic used for treating gram-negative bacterial infections in cancer patients. In this study, our aims are to investigate the migratory inhibition effects of amikacin in human MDA-MB-231 cells. (2) Methods: We used a wound-healing assay, trans-well analysis, Western blotting, immunostaining and siRNA knockdown approaches to investigate how amikacin influenced MDA-MB-231 cell migration and invasion. (3) Results: Wound healing showed that the MDA-MB-231 cell migration rates decreased to 44.4% in the presence of amikacin. Trans-well analysis showed that amikacin treatment led to invasion inhibition. Western blotting demonstrated that amikacin induced thioredoxin-interacting protein (TXNIP) up-regulation. TXNIP was knocked down using siRNA in MDA-MB-231 cell. Using immunostaining analysis, we found that inhibition of TXNIP expression led to MDA-MB-231 pseudopodia extension; however, amikacin treatment attenuated the cell extension formation. (4) Conclusions: We observed inhibition of migration and invasion in MDA-MB-231 cells treated with amikacin. This suggests inhibition might be mediated by up-regulation of TXNIP.
Collapse
Affiliation(s)
- Yun-Hsin Wang
- Division of Basic Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112, Taiwan;
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251, Taiwan;
- Correspondence: ; Tel.: +886-2-28970011 (ext. 1468)
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251, Taiwan;
| | - Wen-Hao Shen
- Division of Basic Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112, Taiwan;
| |
Collapse
|
15
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
16
|
Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res 2019; 33:2531-2547. [PMID: 31293008 DOI: 10.1002/ptr.6422] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Onsurang Wattanathamsan
- Inter‐department program of Pharmacology, Graduate SchoolChulalongkorn University Bangkok Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural MedicineUniversity of Toyama Toyama Japan
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn University Bangkok Thailand
| |
Collapse
|
17
|
Cui G, Shu B, Veeran S, Yuan H, Yi X, Zhong G. Natural β-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:67-77. [PMID: 30765058 DOI: 10.1016/j.pestbp.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The β-carboline alkaloids are a large group of naturally occurring and synthetic indole alkaloids with remarkable pharmacological properties. Furthermore, these alkaloids have also been reported to be effective agents for controlling many pests and plant pathogenic nematodes. However, studies on these potential insecticidal components are scarce. The previous finding that these bioactive compounds can induce programmed cell death in cancer cell lines provided a new insight for exploration of their toxicological mechanisms on insects. In the present study, the cytotoxicity of five natural harmala alkaloids was measured, and the autophagy-inducing effect was confirmed in the Spodoptera frugiperda Sf9 cultured cell line. The results demonstrated that these alkaloids inhibited the proliferation of Sf9 cells in a dose- and time-dependent manner, and the unsaturated β-carboline alkaloids, harmine and harmol, exhibited stronger autophagy induction activity based on monodansylcadaverineand LysoTracker Red staining. Many autophagy-related genes were increased after β-carbolines treatment at the RNA level, and the protein expression of Sf-Atg8 was also confirmed to increase after treatment. In addition, the primary autophagic signaling pathway, the PI3K/Akt/mTOR pathway, was altered during the procedure. Furthermore, experiments with special inhibitors and activators were performed to confirm the effect of β-carbolines on this pathway. The results suggested that the PI3K/Akt/mTOR pathway primarily regulated harmine-induced autophagy in insect cells, and this finding may potentially benefit the application of these promising bioactivity components.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Benshui Shu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sethuraman Veeran
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haiqi Yuan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Muench D, Rezzoug F, Thomas SD, Xiao J, Islam A, Miller DM, Sedoris KC. Quadruplex-forming oligonucleotide targeted to the VEGF promoter inhibits growth of non-small cell lung cancer cells. PLoS One 2019; 14:e0211046. [PMID: 30682194 PMCID: PMC6347295 DOI: 10.1371/journal.pone.0211046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is commonly overexpressed in a variety of tumor types including lung cancer. As a key regulator of angiogenesis, it promotes tumor survival, growth, and metastasis through the activation of the downstream protein kinase B (AKT) and extracellular signal-regulated kinase (ERK 1/2) activation. The VEGF promoter contains a 36 bp guanine-rich sequence (VEGFq) which is capable of forming quadruplex (four-stranded) DNA. This sequence has been implicated in the down-regulation of both basal and inducible VEGF expression and represents an ideal target for inhibition of VEGF expression. RESULTS Our experiments demonstrate sequence-specific interaction between a G-rich quadruplex-forming oligonucleotide encoding a portion of the VEGFq sequence and its double stranded target sequence, suggesting that this G-rich oligonucleotide binds specifically to its complementary C-rich sequence in the genomic VEGF promoter by strand invasion. We show that treatment of A549 non-small lung cancer cells (NSCLC) with this oligonucleotide results in decreased VEGF expression and growth inhibition. The VEGFq oligonucleotide inhibits proliferation and invasion by decreasing VEGF mRNA/protein expression and subsequent ERK 1/2 and AKT activation. Furthermore, the VEGFq oligonucleotide is abundantly taken into cells, localized in the cytoplasm/nucleus, inherently stable in serum and intracellularly, and has no effect on non-transformed cells. Suppression of VEGF expression induces cytoplasmic accumulation of autophagic vacuoles and increased expression of LC3B, suggesting that VEGFq may induce autophagic cell death. CONCLUSION Our data strongly suggest that the G-rich VEGFq oligonucleotide binds specifically to the C-rich strand of the genomic VEGF promoter, via strand invasion, stabilizing the quadruplex structure formed by the genomic G-rich sequence, resulting in transcriptional inhibition. Strand invading oligonucleotides represent a new approach to specifically inhibit VEGF expression that avoids many of the problems which have plagued the therapeutic use of oligonucleotides. This is a novel approach to specific inhibition of gene expression.
Collapse
Affiliation(s)
- David Muench
- Department of Immunobiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Francine Rezzoug
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Shelia D. Thomas
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jingjing Xiao
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Ashraful Islam
- Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Donald M. Miller
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Kara C. Sedoris
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
19
|
PDGFR and IGF-1R Inhibitors Induce a G2/M Arrest and Subsequent Cell Death in Human Glioblastoma Cell Lines. Cells 2018; 7:cells7090131. [PMID: 30200644 PMCID: PMC6162497 DOI: 10.3390/cells7090131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone.
Collapse
|
20
|
Zhang XW, Liu W, Jiang HL, Mao B. Chinese Herbal Medicine for Advanced Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:923-952. [PMID: 30001642 DOI: 10.1142/s0192415x18500490] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chinese herbal medicine (CHM) has been widely used in the treatment of advanced non-small-cell lung cancer (NSCLC), but their efficacy and safety remain controversial. We sought to comprehensively aggregate and evaluate the available evidence on the efficacy and safety of the combination treatment with CHM and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in NSCLC patients. Our exhausted and systematical searching strategy yielded 64 related randomized controlled trials involving 4384 patients. Compared with EGFR-TKIs therapy alone, meta-analysis showed significant differences favoring the combination treatment in progression-free survival ([Formula: see text]), median survival time ([Formula: see text]), one-year survival rate ([Formula: see text]), two-year survival rate ([Formula: see text]), probability of severe toxicities ([Formula: see text]), objective response rate ([Formula: see text]), Karnofsky performance status ([Formula: see text]), and improvement in percentage of CD3[Formula: see text] T lymphocyte ([Formula: see text]) and CD4[Formula: see text] T lymphocyte ([Formula: see text]). Though these results require further confirmation, they are prone to show a potential therapeutic value of CHM in improving the clinical effect, overcoming the drug resistance and toxicities as an adjunctive therapy to EGFR-TKIs.
Collapse
Affiliation(s)
- Xia-Wei Zhang
- 1 Division of Respiratory Medicine, Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P. R. China
| | - Wei Liu
- 1 Division of Respiratory Medicine, Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P. R. China
| | - Hong-Li Jiang
- 1 Division of Respiratory Medicine, Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P. R. China
| | - Bing Mao
- 1 Division of Respiratory Medicine, Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
21
|
Zou N, Wei Y, Li F, Yang Y, Cheng X, Wang C. The inhibitory effects of compound Muniziqi granule against B16 cells and harmine induced autophagy and apoptosis by inhibiting Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:517. [PMID: 29197358 PMCID: PMC5712103 DOI: 10.1186/s12906-017-2017-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/19/2017] [Indexed: 12/27/2022]
Abstract
Background Compound Muniziqi granule (MNZQ) is a multi-component herbal preparation and a popular traditional Uighur medicine used in China for treating endocrine disorder-induced acne, chloasma, dysmenorrhea, menopausal syndrome, and melanoma. Harmine presented in MNZQ has been confirmed potential anticancer effect on the B16 cells among others. The purpose of this study is to explore the inhibitory effects of MNZQ against B16 cells and mechanism of autophagy and apoptosis induced by harmine in B16 cells. Methods The cell viability was calculated by CCK8 assay. The in vitro tyrosinase activity was determined by spectrophotometry. The harmine-induced autophagy was demonstrated by electron microscopy and MDC staining. Flow cytometry was used to measure cell death and cell cycle distribution. All proteins expression was assessed by western blot. Results MNZQ and some herb extracts contained in preparation displayed inhibitory effects on B16 cells but without inhibition on mushroom tyrosinase compared with kojic acid. The formation of autophagosome was markedly induced by harmine with the accretion of LC3-II and the degeneration of p62 in B16 cells, which indicated that harmine was an autophagy inducer. Cell death and sub-G2 population suggested that harmine could induce cell death. Particularly, 3-MA, an autophagy inhibitor, was discovered to prevent harmine-induced decrease of the cell viability and cell cycle arrest on G2 phase, indicating that autophagy was vital to the cell death. In addition, the results indicated that harmine could inhibit the phosphorylation of Akt and mTOR, which might mediate autophagy. Conclusion Harmine could induce autophagy and apoptosis by inhibiting Akt/mTOR pathway in B16 cells. Harmine might be a promising therapeutic agent for treatment of melanoma in MNZQ.
Collapse
|
22
|
Xiang M, Li R, Zhang Z, Song X. [Advances in the Research of the Regulation of Chinese Traditional Medicine Monomer and Its Derivatives on Autophagy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:205-212. [PMID: 28302224 PMCID: PMC5973305 DOI: 10.3779/j.issn.1009-3419.2017.03.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) did influence the quality of life of tumor patients world-wide. There is an urgent need to develop new therapies that have high anti-tumor activity and low toxicity side effects. It is widely accepted that autophagy can play diverse roles in carcinogenesis, such as induces pro-death of lung cancer cells or helps the escape from cell death, making it become a proper anticancer target. It's believed that various monomers of Chinese traditional medicine closely correlates to anti-NSCLC activities, and that even could affect the acquired multiple drug resistance (MDR). Furthermore, autophagy might be the underling mechanisms which could play a role as the candidate targets of natural active compounds. Recent studies of terpenoids, alkaloid, dietary polyphenols, saponins and other active ingredients that extracted from a large variety of herbs suggest that different monomer compounds could either regulate the activity of pro-death autophagy or influence the level of protective autophagy of NSCLC cells, thus changing their drug sensitivity and cell viability. This paper aims to give a systemic description of the latest advances about natural compounds and their derivatives that involved in tumorigenesis of NSCLC via inducing the autophagy.
Collapse
Affiliation(s)
- Meiyi Xiang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Zhiwei Zhang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Xin Song
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
23
|
Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:861-876. [PMID: 27793785 DOI: 10.1016/j.jep.2016.10.069] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM), an ancient yet still alive medicinal system widely used in East Asia, has played an essential role in health maintenance and diseases control, for a wide range of human chronic diseases like cancers and neurodegenerative diseases. TCM-derived compounds and extracts attract wide attention for their potential application as therapeutic agents against above mentioned diseases. AIM OF REVIEW Recent years the enthusiasm in searching for autophagy regulators for human diseases has yielded many positive hits. TCM-derived compounds as important sources for drug discovery have been widely tested in different models for autophagy modulation. Here we summarize the current progress in the discovery of natural autophagy regulators from TCM for the therapeutic application in cancer and neurodegenerative disease models, aiming to provide the direct link from traditional use to new pharmacological application. METHODS The present review collected the literature published during the recent 10 years which studied the effect of TCM-derived compounds or extracts on autophagy regulation from PubMed, Web of Science, Google Scholar and Science Direct. The names of chemical compounds studied in this article are corresponding to the information in journal plant list. RESULTS In this review, we give a brief introduction about the autophagy and its roles in cancer and neurodegenerative disease models and describe the molecular mechanisms of autophagy modulation. We also make comprehensive lists to summarize the effects and underlying mechanisms of TCM-derived autophagy regulators in cancer and neurodegenerative disease models. In the end of the review, we discuss the current strategies, problems and future direction for TCM-derived autophagy regulators in the treatment of human diseases. CONCLUSIONS A number of data from in vivo and in vitro models indicated TCM derived compounds and extracts hold great potential for the treatment of human diseases including cancers and neurodegenerative diseases. Autophagy, as a novel and promising drug target involved in a wide range of human diseases, can be modulated by many TCM derived agents, indicating autophagy modulation may be an important mechanism underlying the therapeutic effect of TCM in treating diseases. Furthermore, we look forward to seeing the discovery of ideal autophagy modulators from TCM with considerably higher selectivity for the treatment of human diseases.
Collapse
Affiliation(s)
- Sheng-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
24
|
Grasso S, Pereira GJS, Palmeira-Dos-Santos C, Calgarotto AK, Martínez-Lacaci I, Ferragut JA, Smaili SS, Bincoletto C. Autophagy regulates Selumetinib (AZD6244) induced-apoptosis in colorectal cancer cells. Eur J Med Chem 2016; 122:611-618. [PMID: 27448918 DOI: 10.1016/j.ejmech.2016.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE As Selumetinib is a MEK1/2 inhibitor that has gained interest as an anti-tumor agent, the present study was designed to investigate autophagy involvement on Selumetinib-induced apoptosis in colorectal cancer (CRC) cells. METHODS CRC cells death and cycle studies were assessed by AnnexinV-FITC and PI staining, respectively. Autophagy flux was analysed by Western Blot (LC3II and p62 protein levels) and retroviral infection of SW480 cells for siBecn1 RNA interference experiments. Confocal microscopy was used to determine mCherry-EGFP-LC3 distribution. KEY FINDINGS The Selumetinib effects were concentration-dependent in SW480 cell line. Whereas 1 μM exerted an arrest in the cell cycle (G1 phase), higher concentrations (10 μM) induced cell death, which was accompanied by autophagy blockage in its last stages. Autophagy induction by Rapamycin (RAPA) increased cell survival, whereas pharmacology autophagy inhibition by Bafilomycin A1 (BAF), Chloroquine (CQ) or 3-Methyladenine (3-MA) increased Selumetinib-induced CRC cells death. CONCLUSIONS Altogether, these results suggest that autophagy plays a fundamental role in CRC cells response to Selumetinib. In addition, the combination of Selumetinib with autophagy inhibitors may be a useful therapeutic strategy to enhance its activity against colorectal tumours.
Collapse
Affiliation(s)
- Silvina Grasso
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Caroline Palmeira-Dos-Santos
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrana K Calgarotto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Isabel Martínez-Lacaci
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad AECC de Investigación Traslacional en Cáncer, Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain
| | - Jose Antonio Ferragut
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Tascón M, Benavente F, Vizioli NM, Gagliardi LG. A rapid and simple method for the determination of psychoactive alkaloids by CE-UV: application to Peganum Harmala seed infusions. Drug Test Anal 2016; 9:596-602. [PMID: 27377797 DOI: 10.1002/dta.1989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022]
Abstract
The β-carboline alkaloids of the harmala (HAlks) group are compounds widely spread in many natural sources, but found at relatively high levels in some specific plants like Peganum harmala (Syrian rue) or Banisteriopsis caapi. HAlks are a reversible Mono Amino Oxidase type A Inhibitor (MAOI) and, as a consequence, these plants or their extracts can be used to produce psychotropic effects when are combined with psychotropic drugs based on amino groups. Since the occurrence and the levels of the HAlks in natural sources are subject to significant variability, more widespread use is not clinical but recreational or ritual, for example B. caapi is a known part of the Ayahuasca ritual mixture. The lack of simple methods to control the variable levels of these compounds in natural sources restricts the possibilities to dose in strict quantities and, as a consequence, limits its use with pharmacological or clinical purposes. In this work, we present a fast, simple, and robust method of quantifying simultaneously the six HAlks more frequently found in plants, i.e., harmine, harmaline, harmol, harmalol, harmane, and norharmane, by capillary electrophoresis instruments equipped with the more common detector UV. The method is applied to analyze these HAlks in P. Harmala seeds infusion which is a frequent intake form for these HAlks. The method is validated in three different instruments in order to evaluate the transferability and to compare the performances between them. In this case, harmaline, harmine, and harmol were found in the infusion samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcos Tascón
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA and División Química Analítica, Facultad de Ciencias Exactas, UNLP-CONICET, La PlataLaboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA and División Química Analítica, Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, B1900AJL, Argentina
| | - Fernando Benavente
- Departamento de Química Analítica, Instituto de Investigación en Nutrición y Seguridad Alimentaria, INSA-UB, Universidad de Barcelona, España
| | - Nora M Vizioli
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, e Instituto de Química y Fisicoquímica Biológicas, CONICET, Universidad de Buenos Aires, Argentina
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA and División Química Analítica, Facultad de Ciencias Exactas, UNLP-CONICET, La PlataLaboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA and División Química Analítica, Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, B1900AJL, Argentina
| |
Collapse
|
26
|
Huang HC, Liu WT, Hua KS, Hung HC, Tsai JY, Kuo SC, Huang LJ, Gean PW. α-Carboline derivative TJY-16 inhibits tumor growth by inducing G2/M cell cycle arrest in glioma cells. J Biomed Sci 2016; 23:10. [PMID: 26786523 PMCID: PMC4717554 DOI: 10.1186/s12929-016-0222-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 01/21/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most lethal primary brain tumors which remains difficult to cure despite advances in surgery, radiotherapy and chemotherapy. Therefore, the development of new drug is urgently needed. α-carboline derivatives were usually isolated from marine animals such as Britannia marine tunicate Dendrodoa grossularia and Indonesian ascidian Polycarpa aurata. In this study, we have synthesized several α-carboline compounds and examined their anti-glioma activities. Results We report that among α-carboline derivatives TJY-16 (6-acetyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b] indole) is the most potent α-carboline analog to induce glioma cell death with IC50 value of around 50 nM. TJY-16 decreased cell viability of glioma cells in a concentration- and time-dependent manner. Trypan blue exclusion assay showed that the reduction of cell viability was due to both cell growth inhibition and cell death. Flow cytometric analysis showed that TJY-16 induced G2/M cell cycle arrest followed by induction of sub-G1 phase. Hoechst staining detected the apoptotic features such as nuclear shrinkage and DNA condensation. Western blot analysis showed the increased level of cleaved caspase-3. The activation of caspase-8 and depolarization of mitochondrial membrane potential (ΔΨm) indicated that both extrinsic and intrinsic apoptotic pathways were involved in TJY-16-induced apoptosis. TJY-16 effectively inhibited tumor growth and induced caspase-3 activation in the xenograft tumor model of U87 glioma cells. Conclusions Our results suggest that TJY-16 may kill glioma cells by inducing G2/M cell cycle arrest followed by apoptosis. Thus, TJY-16 is a promising agent for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Hsiao-Chieh Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ting Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Su Hua
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chi Hung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ying Tsai
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan.
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Zhang P, Huang CR, Wang W, Zhang XK, Chen JJ, Wang JJ, Lin C, Jiang JW. Harmine Hydrochloride Triggers G2 Phase Arrest and Apoptosis in MGC-803 Cells and SMMC-7721 Cells by Upregulating p21, Activating Caspase-8/Bid, and Downregulating ERK/Bad Pathway. Phytother Res 2015; 30:31-40. [PMID: 26549417 DOI: 10.1002/ptr.5497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/20/2015] [Accepted: 09/27/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Peng Zhang
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Chun-rong Huang
- Department of Nephrology; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
| | - Wei Wang
- Department of Laboratory; Foshan Fourth People's Hospital; Foshan 528000 Guangdong Province China
| | - Xia-kai Zhang
- Department of General Surgery; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
- Department of General Surgery; The First People's Hospital of Nanyang City; Nanyang 473000 China
| | - Jia-jin Chen
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Juan-juan Wang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Chen Lin
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Jian-wei Jiang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| |
Collapse
|
28
|
Li Z, Chen S, Zhu S, Luo J, Zhang Y, Weng Q. Synthesis and Fungicidal Activity of β-Carboline Alkaloids and Their Derivatives. Molecules 2015; 20:13941-57. [PMID: 26263966 PMCID: PMC6332272 DOI: 10.3390/molecules200813941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022] Open
Abstract
A series of β-Carboline derivatives were designed, synthesized, and evaluated for their fungicidal activities in this study. Several derivatives electively exhibited fungicidal activities against some fungi. Especially, compound F5 exhibited higher fungicidal activity against Rhizoctonia solani (53.35%) than commercial antiviral agent validamycin (36.4%); compound F16 exhibited high fungicidal activity against Oospora citriaurantii ex Persoon (43.28%). Some of the alkaloids and their derivatives (compounds F4 and F25) exhibited broad-spectrum fungicidal activity. Specifically, compound F4 exhibited excellent high broad-spectrum fungicidal activity in vitro, and the curative and protection activities against P. litchi in vivo reached 92.59% and 59.26%, respectively. The new derivative, F4, with optimized physicochemical properties, obviously exhibited higher activities both in vitro and in vivo; therefore, F4 may be used as a new lead structure for the development of fungicidal drugs.
Collapse
Affiliation(s)
- Zhibin Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaohua Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaowen Zhu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jianjun Luo
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yaomou Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Wong CP, Seki A, Horiguchi K, Shoji T, Arai T, Nugroho AE, Hirasawa Y, Sato F, Kaneda T, Morita H. Bisleuconothine A Induces Autophagosome Formation by Interfering with AKT-mTOR Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2015; 78:1656-1662. [PMID: 26176165 DOI: 10.1021/acs.jnatprod.5b00258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have previously reported that bisleuconothine A (Bis-A), a novel bisindole alkaloid isolated from Leuconotis griffithii, showed cytostatic activity in several cell lines. In this report, the mechanism of Bis-A-induced cytostatic activity was investigated in detail using A549 cells. Bis-A did not cause apoptosis, as indicated by analysis of annexin V and propidium iodide staining. Expression of all tested apoptosis-related proteins was also unaffected by Bis-A treatment. Bis-A was found to increase LC3 lipidation in MCF7 cells as well as A549 cells, suggesting that Bis-A cytostatic activity may be due to induction of autophagy. Subsequent investigation via Western blotting and immunofluorescence staining indicated that Bis-A induced formation but prevented degradation of autophagosomes. Mechanistic studies showed that Bis-A down-regulated phosphorylation of protein kinase B (AKT) and its downstream kinase, PRAS40, which is an mTOR repressor. Moreover, phosphorylation of p70S6K, an mTOR-dependent kinase, was also down-regulated. Down-regulation of these kinases suggests that the increase in LC3 lipidation may be due to mTOR deactivation. Thus, the cytostatic activity shown by Bis-A may be attributed to its induction of autophagosome formation. The Bis-A-induced autophagosome formation was suggested to be caused by its interference with the AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Chin Piow Wong
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ari Seki
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kaori Horiguchi
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tomokazu Shoji
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takashi Arai
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Alfarius Eko Nugroho
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Hirasawa
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Fumiaki Sato
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
30
|
Xie T, Li SJ, Guo MR, Wu Y, Wang HY, Zhang K, Zhang X, Ouyang L, Liu J. Untangling knots between autophagic targets and candidate drugs, in cancer therapy. Cell Prolif 2015; 48:119-39. [PMID: 25650136 DOI: 10.1111/cpr.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/05/2014] [Indexed: 02/05/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal mechanism implicated in a wide variety of pathological processes, such as cancer. Autophagy can be regulated by a limited number of autophagy-related genes (Atgs) such as oncogenic Bcl-2/Bcl-XL , mTORC1, Akt and PI3KCI, and tumour suppressive proteins PI3KCIII, Beclin-1, Bif-1, p53, DAPKs, PTEN and UVRAG, which play their crucial roles in regulating autophagy-related cancer. As autophagy has a dual role in cancer cells, with tumour-promoting and tumour-suppressing properties, it has become an attractive target for a series of emerging small molecule drugs. In this review, we reveal new discoveries of related small molecules or chemical compounds that can regulate autophagic pathways and lead to pro-death or pro-survival autophagy, in different types of cancer. We discuss the knots between autophagic targets and candidate drugs, in the hope of shedding new light on exploiting new anti-tumour small molecule drugs for future cancer therapy.
Collapse
Affiliation(s)
- Tao Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jin QM, Lu Y, Jin JL, Guo H, Lin GW, Wang Y, Lu T. Synthesis, characterization, DNA binding ability and cytotoxicity of the novel platinum(II), copper(II), cobalt(II) and nickel(II) complexes with 3-(1 H -benzo[ d ]imidazol-2-yl)- β -carboline. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Hsiao CJ, Hsiao G, Chen WL, Wang SW, Chiang CP, Liu LY, Guh JH, Lee TH, Chung CL. Cephalochromin induces G0/G1 cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption. JOURNAL OF NATURAL PRODUCTS 2014; 77:758-765. [PMID: 24588135 DOI: 10.1021/np400517g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fungus-derived compound cephalochromin, isolated from the fermented broth of Cosmospora vilior YMJ89051501, shows growth-inhibitory and apoptotic activity against human lung cancer A549 cells in a concentration-dependent manner with an IC50 value of 2.8 μM at 48 h. Cephalochromin induced cell cycle arrest at the G0/G1 phase through down-regulation of cyclin D1, cyclin E, Cdk 2, and Cdk 4 expressions. Cephalochromin markedly increased the hypodiploid sub-G1 phase (apoptosis) of the cell cycle at 48 h as measured by flow cytometric analysis. Reactive oxygen species generation and loss of the mitochondrial membrane potential (MMP) were also markedly induced by cephalochromin. Moreover, the immunoblotting assays showed that cephalochromin reduced survivin and Bcl-xL expression and induced the activation of caspase-8, -9, and -3 and the cleavage of poly(ADP-ribose) polymerase, indicating the involvement of a caspase signaling cascade. The caspase inhibitor Z-VAD-fmk significantly suppressed cephalochromin-induced apoptosis. Cephalochromin also triggered LC3 II, autophagic marker, expression. Taken together, this is the first report that cephalochromin induced an antiproliferative effect on human lung cancer cells through mitochondrial disruption and down-regulation of survivin, leading to cell cycle arrest at the G0/G1 phase, loss of MMP, and subsequently apoptotic cell death.
Collapse
Affiliation(s)
- Che-Jen Hsiao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4:e838. [PMID: 24113172 PMCID: PMC3824660 DOI: 10.1038/cddis.2013.350] [Citation(s) in RCA: 946] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.
Collapse
Affiliation(s)
- X Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pan X, Liu D, Wang J, Zhang X, Yan M, Zhang D, Zhang J, Liu W. Peneciraistin C induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells. Cancer Sci 2013; 104:1476-82. [PMID: 23952056 DOI: 10.1111/cas.12253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022] Open
Abstract
Peneciraistin C (Pe-C) is a novel spiroketal compound isolated from the saline soil derived fungus Penicillium raistrickii. Our previous study showed that Pe-C exerted a potent cytotoxic effect on many kinds of cancer cell lines, especially on human lung cancer A549 cells. Here, we report the anticancer mechanisms of Pe-C in a variety of lung cancer cells. The results showed that Pe-C induced caspase-independent autophagic cell death and elevated mitochondrial-derived reactive oxygen species levels. Interestingly, if autophagy was blocked by 3-methyladenine or Atg5 siRNA, Pe-C triggered a shift from autophagic cell death into caspase-dependent apoptotic cell death. In addition, cotreatment with the antioxidant N-acetyl-(L)-cysteine or Mito-TEMPO could effectively reverse the effect of the enhanced reactive oxygen species production, which in turn almost completely prevented the cell death induced by Pe-C. Thus, this study provided new insights into the mechanisms underlying Pe-C-mediated cell death, which indicated that Pe-C could be a potential drug candidate for therapy of lung cancers.
Collapse
Affiliation(s)
- Xiaohong Pan
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 2013; 28:458-64. [PMID: 23813779 DOI: 10.1002/ptr.5015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/03/2013] [Accepted: 05/08/2013] [Indexed: 11/10/2022]
Abstract
Although tanshinone IIA (Tan IIA) from Salviae miltiorrhizae was known to induce apoptosis in various cancers, its underlying mechanism of autophagic cell death was not reported yet. Thus, in the present study, the molecular mechanism of autophagic cell death by Tan IIA was investigated in KBM-5 leukemia cells. Tan IIA significantly increased the expression of microtubule-associated protein light chain 3 (LC3) II as a hallmark of autophagy in western blotting and immunofluorescence staining. Tan IIA augmented the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and attenuated the phosphorylation of mammalian target of rapamycin (mTOR) and p70 S6K in a dose-dependent manner. Conversely, autophagy inhibitor 3-methyladenine partly reversed the cytotoxicity and the phosphorylation of AMPK, mTOR and p70 S6K induced by Tan IIA in KBM-5 leukemia cells. In addition, Tan IIA dramatically activated the extracellular signal regulated kinase (ERK) signaling pathway including Raf, ERK and p90 RSK in a dose-dependent and time-dependent manner. Consistently, ERK inhibitor PD184352 suppressed LC3-II activation induced by Tan IIA, whereas PD184352 and PD98059 did not affect poly (ADP-ribose) polymerase cleavage and sub-G1 accumulation induced by Tan IIA in KBM-5 leukemia cells. Furthermore, Tan IIA could induce autophagy via LC3-II activation in various cancer cells such as prostate (PC-3), multiple myeloma (U266), lung (NCI-H460), and breast (MDA-MB-231) cells. Overall, these findings suggest that Tan IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 cells as a potent natural compound for leukemia treatment.
Collapse
Affiliation(s)
- Sun-Mi Yun
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Tsai IT, Chen YH, Chen YH, Wang YH. Amikacin-induced Fin Reduction is Mediated by Autophagy. J Toxicol Pathol 2013; 26:79-82. [PMID: 23723573 PMCID: PMC3620219 DOI: 10.1293/tox.26.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/10/2012] [Indexed: 01/05/2023] Open
Abstract
Despite its medical use, little is known about the mechanisms underlying amikacin-induced embryotoxicity, including fin reduction, in zebrafish. In this study, we examined the expression of well-known autophagy markers mTOR (target of rapamycin), atg10 (autophagy-related gene), atg12 and LC3 (mammalian homolog of Atg8) in amikacin-treated zebrafish embryos. Our results indicated that the mRNA expression level of atg12 in the amikacin-treated group was significantly increased by 1.5-fold (p<0.05) compared with the corresponding mock control group, while the expression levels of atg10 and mTOR were significantly decreased by 0.74-fold (p<0.05) and 0.58-fold (p<0.05), respectively. Western blot analysis revealed that LC3 protein expression was induced by amikacin. Taken together, these data suggest that amikacin-induced fin reduction is mediated by fin cell autophagy.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan, ROC
| | | | | | | |
Collapse
|
37
|
ABE AKIHISA, KOKUBA HIROKO. Harmol induces autophagy and subsequent apoptosis in U251MG human glioma cells through the downregulation of survivin. Oncol Rep 2013; 29:1333-42. [DOI: 10.3892/or.2013.2242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/12/2012] [Indexed: 11/06/2022] Open
|
38
|
Al-Daghri NM, Alokail MS, Alkharfy KM, Mohammed AK, Abd-Alrahman SH, Yakout SM, Amer OE, Krishnaswamy S. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. Altern Ther Health Med 2012; 12:202. [PMID: 23110539 PMCID: PMC3520713 DOI: 10.1186/1472-6882-12-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
Background Drugs used both in classical chemotherapy and the more recent targeted therapy do not have cancer cell specificity and, hence, cause severe systemic side effects. Tumors also develop resistance to such drugs due to heterogeneity of cell types and clonal selection. Several traditional dietary ingredients from plants, on the other hand, have been shown to act on multiple targets/pathways, and may overcome drug resistance. The dietary agents are safe and readily available. However, application of plant components for cancer treatment/prevention requires better understanding of anticancer functions and elucidation of their mechanisms of action. The current study focuses on the anticancer properties of fenugreek, a herb with proven anti-diabetic, antitumor and immune-stimulating functions. Method Jurkat cells were incubated with 30 to 1500 μg/mL concentrations of 50% ethanolic extract of dry fenugreek seeds and were followed for changes in viability (trypan blue assay), morphology (microscopic examination) and autophagic marker LC3 transcript level (RT-PCR). Results Incubation of Jurkat cells with fenugreek extract at concentrations ranging from 30 to 1500 μg/mL for up to 3 days resulted in cell death in a dose- and time-dependent manner. Jurkat cell death was preceded by the appearance of multiple large vacuoles, which coincided with transcriptional up-regulation of LC3. GC-MS analysis of fenugreek extract indicated the presence of several compounds with anticancer properties, including gingerol (4.82%), cedrene (2.91%), zingerone (16.5%), vanillin (1.52%) and eugenol (1.25%). Conclusions Distinct morphological changes involving appearance of large vacuoles, membrane disintegration and increased expression of LC3 transcripts indicated that fenugreek extract induced autophagy and autophagy-associated death of Jurkat cells. In addition to the already known apoptotic activation, induction of autophagy may be an additional mechanism underlying the anticancer properties of fenugreek. This is the first report showing fenugreek as an inducer of autophagy in human cells and further work is needed to define the various intermediates of the autophagic pathway.
Collapse
|
39
|
Influence of β-Carboline Produced from Glucose and Tryptophan on Protein Synthesis of Chicken Embryo Myoblasts. J Poult Sci 2012. [DOI: 10.2141/jpsa.011114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|