1
|
Zhu C, Nie X, Lu Q, Bai Y, Jiang Z. Roles and regulation of Aquaporin-3 in maintaining the gut health: an updated review. Front Physiol 2023; 14:1264570. [PMID: 38089478 PMCID: PMC10714013 DOI: 10.3389/fphys.2023.1264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2025] Open
Abstract
Aquaporin-3 (AQP3) is a predominant water channel protein expressed in the intestine, and plays important roles in the gut physiology and pathophysiology due to its permeability to water, glycerol and hydrogen peroxide. In this review, we systematically summarized the current understanding of the expression of AQP3 in the intestine of different species, and focused on the potential roles of AQP3 in water transport, different types of diarrhea and constipation, intestinal inflammation, intestinal barrier function, oxidative stress, and autophagy. These updated findings have supported that AQP3 may function as an important target in maintaining gut health of human and animals.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Wang Y, Jiang H, Wang L, Gan H, Xiao X, Huang L, Li W, Li Z. Arctiin alleviates functional constipation by enhancing intestinal motility in mice. Exp Ther Med 2023; 25:199. [PMID: 37090075 PMCID: PMC10119619 DOI: 10.3892/etm.2023.11898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 04/25/2023] Open
Abstract
Functional constipation (FC), a common symptom that is primarily associated with intestinal motility dysfunction, is a common problem worldwide. Arctiin (Arc) is a lignan glycoside isolated from the Chinese herbal medicine Arctium lappa L., which is a health food in China. The present study aimed to evaluate the laxative effects of Arc against FC in mice. A model of FC induced by loperamide (5 mg/kg) was established in male Institute of Cancer Research (ICR) mice. Arc was administered at a dose of 100 mg/kg as a protective agent. The faecal status, intestinal motility and histological analyses were evaluated. Furthermore, the levels of gastrointestinal motility-associated neurotransmitters, such as motilin (MTL), nitric oxide (NO), and brain-derived neurotrophic factor (BDNF) and the protective effect of Arc on interstitial cells of Cajal (ICC) were assessed. Arc treatment reversed the loperamide-induced reduction in faecal number and water content and the intestinal transit ratio in ICR mice. Histological analysis confirmed that Arc administration mitigated colonic injury. Moreover, Arc treatment increased levels of motilin and brain-derived neurotrophic factor while decreasing nitric oxide levels and ICC injury in the colon of FC mice. Arc decreased inflammation induction and aquaporin expression levels. Owing to its pro-intestinal motility property, Arc was shown to have a protective effect against FC and may thus serve as a promising therapeutic strategy for the management of FC.
Collapse
Affiliation(s)
- Yujin Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Hua Jiang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
- Correspondence to: Mrs. Hua Jiang, The First Clinical Medical College, Shaanxi University of Chinese Medicine, Qindu, Xianyang, Shaanxi 712046, P.R. China
| | - Lijun Wang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Huiping Gan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xinchun Xiao
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Liangwu Huang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Wenxin Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Zongrun Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
3
|
Screening the effective components in treating dampness stagnancy due to spleen deficiency syndrome and elucidating the potential mechanism of Poria water extract. Chin J Nat Med 2023; 21:83-98. [PMID: 36871985 DOI: 10.1016/s1875-5364(23)60392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 03/07/2023]
Abstract
Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/β/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.
Collapse
|
4
|
Kon R, Ikarashi N, Onuma K, Yasukawa Z, Ozeki M, Sakai H, Kamei J. Effect of partially hydrolyzed guar gum on the expression of aquaporin-3 in the colon. Food Sci Nutr 2023; 11:1127-1133. [PMID: 36789055 PMCID: PMC9922137 DOI: 10.1002/fsn3.3150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, the development of functional foods targeting gastrointestinal disorders has been in progress. Partially hydrolyzed guar gum (PHGG), which is a water-soluble dietary fiber, is known to have a constipation-improving effect. However, many aspects of the mechanism remain unclear. In this study, we investigated the role of aquaporin-3 (AQP3), which regulates the water content of feces in ameliorative effect of PHGG on constipation. Rats were allowed to freely consume a normal diet or a diet containing 5% PHGG for 14 days, and defecation parameters were measured. We also analyzed the expression levels of genes involved in water transport in the colon. The defecation frequency and volume of rats treated with PHGG were not different from those from the control group, but the fecal water content was significantly increased, and soft stools were observed. The expressions of claudin-1, tight junction protein-1, and cadherin-1, which are involved in tight junctions or adherens junctions, were almost the same in the PHGG-treated group and the control group. The expression level of AQP3 in the colon was significantly decreased in the PHGG-treated group. In this study, PHGG decreased the colonic AQP3 expression, thereby suppressing water transport from the luminal side to the vascular side and improving constipation.
Collapse
Affiliation(s)
- Risako Kon
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | | | - Kazuhiro Onuma
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | - Zenta Yasukawa
- Department of Nutrition, Faculty of NutritionKanazawa Gakuin UniversityIshikawaJapan
| | | | - Hiroyasu Sakai
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | - Junzo Kamei
- Advanced Research Institute for Health ScienceJuntendo UniversityTokyoJapan
| |
Collapse
|
5
|
Wang Y, Jiang H, Wang L, Gan H, Xiao X, Huang L, Li W, Li Z. Luteolin ameliorates loperamide-induced functional constipation in mice. Braz J Med Biol Res 2023; 56:e12466. [PMID: 36722660 PMCID: PMC9883005 DOI: 10.1590/1414-431x2023e12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
Functional constipation (FC) is one of the most common gastrointestinal disorders characterized by hard stools and infrequent bowel movements, which is associated with dysfunction of the enteric nervous system and intestinal motility. Luteolin, a naturally occurring flavone, was reported to possess potential pharmacological activities on intestinal inflammation and nerve injury. This study aimed to explore the role of luteolin and its functional mechanism in loperamide-induced FC mice. Our results showed that luteolin treatment reversed the reduction in defecation frequency, fecal water content, and intestinal transit ratio, and the elevation in transit time of FC models. Consistently, luteolin increased the thickness of the muscular layer and lessened colonic histopathological injury induced by loperamide. Furthermore, we revealed that luteolin treatment increased the expression of neuronal protein HuC/D and the levels of intestinal motility-related biomarkers, including substance P (SP), vasoactive intestinal polypeptide (VIP), and acetylcholine (ACh), as well as interstitial cells of Cajal (ICC) biomarker KIT proto-oncogene, receptor tyrosine kinase (C-Kit), and anoctamin-1 (ANO1), implying that luteolin mediated enhancement of colonic function and contributed to the anti-intestinal dysmotility against loperamide-induced FC. Additionally, luteolin decreased the upregulation of aquaporin (AQP)-3, AQP-4, and AQP-8 in the colon of FC mice. In summary, our data showed that luteolin might be an attractive option for developing FC-relieving medications.
Collapse
Affiliation(s)
- Yujin Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hua Jiang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Lijun Wang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Huiping Gan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xinchun Xiao
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Liangwu Huang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wenxin Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Zongrun Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
6
|
Colonic Fluid and Electrolyte Transport 2022: An Update. Cells 2022; 11:cells11101712. [PMID: 35626748 PMCID: PMC9139964 DOI: 10.3390/cells11101712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Colonic epithelial cells are responsible for maintaining a delicate balance between luminal secretion and the absorption of fluids and ions. This review aims to discuss and update the model of colonic electrolyte secretion and absorption via the cystic fibrosis transmembrane regulator (CFTR), epithelial sodium channel (ENaC), Na-K-Cl cotransporters (NKCC1 and 2), Na-H exchangers (NHE1–4), colonic H,KATPase, and several other key components involved in multi-level transepithelial ion transport. Developments in our understanding of the activity, regulation, localization, and relationships of these ion transporters and their interactions have helped forge a more robust understanding of colonic ion movement that accounts for the colonic epithelium’s role in mucosal pH modulation, the setting of osmotic gradients pivotal for fluid retention and secretion, and cell death regulation. Deviations from homeostatic ion transport cause diarrhea, constipation, and epithelial cell death and contribute to cystic fibrosis, irritable bowel syndrome (IBS), ulcerative colitis, and cancer pathologies. Signal transduction pathways that regulate electrolyte movement and the regulatory relationships between various sensors and transporters (CFTR as a target of CaSR regulation and as a regulator of ENaC and DRA, for example) are imperative aspects of a dynamic and comprehensive model of colonic ion homeostasis.
Collapse
|
7
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
8
|
Peng P, Deng D, Chen S, Li C, Luo J, Romeo A, Li T, Tang X, Fang R. The Effects of Dietary Porous Zinc Oxide Supplementation on Growth Performance, Inflammatory Cytokines and Tight Junction's Gene Expression in Early-Weaned Piglets. J Nutr Sci Vitaminol (Tokyo) 2021; 66:311-318. [PMID: 32863303 DOI: 10.3177/jnsv.66.311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was conducted to investigate the effect of dietary porous ZnO supplementation on the growth performance, inflammatory cytokines and tight junction's gene expression in weaned piglets. A total of 192 weaned piglets were randomly allocated to 4 experimental groups (n=48/group) and fed, during 14 d, with one of the following dietary treatments: 1) basal diet (NC); 2) basal diet with 3,000 mg/kg of conventional ZnO (PC); 3) basal diet with 750 mg/kg of porous ZnO (low inclusion porous ZnO, LP-ZnO); 4) basal diet with 1,500 mg/kg porous ZnO (high inclusion porous ZnO, HP-ZnO). Results showed that dietary supplementation with regular ZnO or porous ZnO (750 and 1,500 mg/kg) improved average daily gain (ADG), feed to gain ratio (F/G) and jejunum morphology, while decreasing diarrhea incidence. Compared with the NC group, porous ZnO at both doses (750 or 1,500 mg/kg) increased serum alkaline phosphatase (ALP), immunoglobulin G (IgG) and insulin-like growth factor 1 (IGF-1) concentrations, but decreased serum glucose (GLU). Moreover, the mRNA expression of anti-inflammation cytokine (TGF-β), tight junction (Occludin, ZO-1) in the jejunum by different ZnO administration were significantly increased compared with the NC group, while mRNA expression of pro-inflammatory (IL-8), membrane channels that transport water (AQP3) and miR-122a were significantly decreased. It can be concluded that porous ZnO even at low dose (750 mg/kg) can be an effective alternative to pharmacological (3,000 mg/kg) conventional ZnO in reducing diarrhea, promoting the growth performance, increasing anti-inflammatory cytokines and tight junctions, reducing pro-inflammatory cytokines of weaned piglets.
Collapse
Affiliation(s)
- Peng Peng
- College of Animal Science and Technology, Hunan Agriculture University.,Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | - Dun Deng
- Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | - Sijia Chen
- College of Animal Science and Technology, Hunan Agriculture University
| | - Chengliang Li
- College of Animal Science and Technology, Hunan Agriculture University
| | - Jie Luo
- Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | | | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production
| | - Xiaopeng Tang
- State Key Laboratory Cultivation for Karst Mountain Ecology Environment of Guizhou Province, School of Karst Science, Guizhou Normal University
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agriculture University
| |
Collapse
|
9
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
11
|
Wang H, Li C, Peng M, Wang L, Zhao D, Wu T, Yi D, Hou Y, Wu G. N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Sci Rep 2021; 11:1261. [PMID: 33441976 PMCID: PMC7807065 DOI: 10.1038/s41598-021-80994-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
β-Conglycinin (β-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to β-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, β-CG, and β-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the β-CG and β-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% β-CG for 2 days. Thereafter, pigs in the β-CG + NAC group were orally administrated with 50 mg (kg BW)-1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (- 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of β-CG-challenged piglets. Although β-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and β-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of β-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in β-CG-challenged piglets.
Collapse
Affiliation(s)
- Huiyun Wang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengcheng Li
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Meng Peng
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Wang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Yi
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Chen W, Peng X, Yu J, Chen X, Yuan M, Xiang R, He L, Yu D, Kang H, Pan Y, Xu Z. FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins in mice with castor oil-induced diarrhea. PLoS One 2020; 15:e0236511. [PMID: 32722717 PMCID: PMC7386626 DOI: 10.1371/journal.pone.0236511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The severe side effects of chemosynthetic anti-diarrhea drugs have created an interest in low-toxic alternative plant-derived compounds. FengLiao consists of Polygonum hydropiper Linn. and Daphniphyllum calycinum Bench., and is widely used in China to treat diarrhea due to low levels of toxicity. In this study, the effects of FengLiao were analyzed in a castor oil-induced diarrhea model, using the anti-diarrhea drug, loperamide, as the positive control. The effects were evaluated using stool characteristics and the expression levels of various diarrhea-related factors in the jejunum and liver, as well as changes in the microbiota of the jejunum. The symptoms of diarrhea and stool consistency were improved through FengLiao and loperamide treatment. Furthermore, FengLiao down-regulated alpha 1-acid glycoprotein (AGP) and C-reactive protein (CRP) levels, and up-regulated transferrin (TRF) mRNA levels in the liver, and down-regulated Aquaporin 3 (AQP3) and Na+/H+ exchanger isoform 8 (NHE8) expression in the epithelial cells of the jejunum. It also increased the relative abundance of Bifidobacterium, Aerococcus, Corynebacterium_1 and Pseudomonas, and lowered the Firmicutes/Bacteroidetes (F/B) ratio, which maintained the balance between immunity and intestinal health. Taken together, FengLiao alleviated castor oil-induced diarrhea by altering gut microbiota, and levels of jejunum epithelial transport proteins and acute phase proteins.
Collapse
Affiliation(s)
- Wenlu Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyu Peng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
- * E-mail:
| | - Jingxian Yu
- South China Agricultural University, Guangzhou, China
| | - Xuanxuan Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Yuan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Rong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Limei He
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Danni Yu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Yufang Pan
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Live stock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observing and Experimental Station of veterinary drugs and diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| |
Collapse
|
13
|
Marimuthu S, Balasubramanian B, Selvam R, D'Souza P. Evaluation of a polyherbal formulation for the management of wet litter in broiler chickens: Implications on performance parameters, cecal moisture level, and footpad lesions. J Adv Vet Anim Res 2019; 6:536-543. [PMID: 31819883 PMCID: PMC6882714 DOI: 10.5455/javar.2019.f379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: The study was carried out to develop a wet litter model with magnesium chloride to assess the effectiveness of a polyherbal formulation (PHF) on growth performance, litter and cecal moisture (LCM) level, cecal consistency (CC) score, and footpad lesions (FPLs) score in Ross 308 broiler chickens. Materials and Methods: 1,200 one-day-old chicks were assigned into five groups: normal control, negative control [NTC; treated with 1.7% magnesium chloride hexahydrate (MgCl2.6H2O)], and three treatment groups, T1, T2, and T3, where 750, 1,000, and 2,000 gm/ton of PHF, respectively, were supplemented. All the groups were fed a basal diet until day 7. However, the NTC and treatment groups were fed a diet with MgCl2 from days 8 to 42. Results: The addition of MgCl2 for 35 days worsened the growth performance traits in broilers and induced wet litter problems (FPL, high LCM, and poor CC) in the NTC group. However, PHF (750, 1,000, and 2,000 gm/ton) ameliorated the negative effect of a diet with MgCl2 on growth performance and wet litter problems, but a better response with respect to LCM and CC was observed in 2,000 gm/ton of PHF group, followed by that in 1,000 gm/ton of PHF group and 750 gm/ton of PHF group on day 42. Conclusion: The wet litter broiler model was developed through excessive feeding of MgCl2, which caused the performance parameters to worsen and the emergence of problems associated with the wet litter. Supplementation with PHF ameliorated these problems and, therefore, it can be used for the management of wet litter in poultry.
Collapse
Affiliation(s)
- Saravanakumar Marimuthu
- Animal Health Science, R&D Centre, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India
| | - Brindhalakshmi Balasubramanian
- Animal Health Science, R&D Centre, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India
| | - Ramasamy Selvam
- Technocommercial, Marketing, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India
| | - Prashanth D'Souza
- Animal Health Science, R&D Centre, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India
| |
Collapse
|
14
|
Barekatain R, Toghyani M. High dietary zinc and glutamine do not improve the performance or reduce excreta moisture of broiler chickens fed diets with and without magnesium supplementation. Poult Sci 2019; 98:4066-4072. [PMID: 30843058 DOI: 10.3382/ps/pez098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
An experiment was conducted to investigate the effect of supplemental L-glutamine (L-Gln) and a higher concentration of zinc (Zn) on excreta moisture under nutritionally induced wet droppings via decreased intestinal water reabsorption. A 2 × 2 × 2 factorial arrangement of treatments was used to investigate 3 dietary factors of L-Gln supplementation (0 or 10 g/kg), and added Zn concentration (80 and 160 mg/kg) with or without magnesium chloride (MgCl) (2 g/kg-only in grower diets). A total of 576 male day-old Ross 308 broiler chickens were assigned to the experimental diets. Each diet was replicated 6 times with 12 birds per replicate. Wheat-based diets were formulated to be isocaloric and isonitrogenous. Starter diets were given from day 0 to 9 followed by grower (day 10 to 23) and finisher diets (day 24 to 35). Excreta moisture was measured for all the growth phases. The moisture content of different segments of intestine was assessed for starter and grower phases of feeding. There was no significant effect of any of the 3 main treatments on body weight gain or feed intake of birds during the experiment. Birds fed higher Zn (160 mg/kg) tended (P = 0.09) to have higher weight gain only in the first 9 days of age. Feeding 10 g/kg L-Gln increased the feed conversion ratio of the birds only from hatch until day 9 after which there was no significant effect. No effect of experimental treatments was found on digesta or excreta moisture, except a reduction in ileal moisture at the starter phase resulting from higher Zn concentration in the diets. MgCl at 2 g/kg was not effective in inducing wet droppings in birds fed grower diets. Under the conditions of this study, no positive response was observed in terms of performance or reduction in excreta moisture when birds were fed diets containing 10 g/kg L-Gln or higher concentration of Zn.
Collapse
Affiliation(s)
- R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - M Toghyani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
15
|
Shafeeq S, Mahboob T. Magnesium supplementation ameliorates toxic effects of 2,4-dichlorophenoxyacetic acid in rat model. Hum Exp Toxicol 2019; 39:47-58. [DOI: 10.1177/0960327119874428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an extensively used herbicide in the field of agriculture, its ever-escalating use induces toxicity, health effects, and environmental impact. Oxidative stress plays a key role in pathogenesis of 2,4-D-induced liver and kidney damage. Magnesium (Mg) is a highly effective antioxidant agent in restoring oxidative damage by directly influencing the metabolic and physiological processes. Therefore, the present study aimed to evaluate Mg role in ameliorating the oxidative damages provoked by 2,4-D in rat model. Male Wistar rats (180–220 g) were distributed into four groups and treated intragastrically for 4 weeks. Group 1: control, group 2: 2,4-D (150 mg/kg body weight/day), group 3: simultaneously treated with 2,4-D (150 mg/kg body weight/day) and Mg supplement (50 mg/kg body weight/day), and group 4: Mg supplement (50 mg/kg body weight/day). Under experimental conditions, plasma hepatic and renal biomarkers, tissue oxidative status, and antioxidant enzymes activities were investigated. Results demonstrated that 2,4-D intoxication caused hepatic and renal impairments as indicated by the significantly increased ( p < 0.001) alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, creatinine, and blood urea nitrogen levels. In addition, 2,4-D caused a significant enhancement ( p < 0.001) in the level of malondialdehyde as well as reduction ( p < 0.001) of the superoxide dismutase, catalase, and glutathione reductase activities in both hepatic and renal tissues. Mg treatment prevented and reversed the toxic variations induced by 2,4-D. In general, these outcomes suggest that Mg may have antioxidant potential and ameliorative effects against 2,4-D provoking hepatic and renal toxicity in rat model.
Collapse
Affiliation(s)
- S Shafeeq
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - T Mahboob
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
16
|
Okuda M, Kunitsugu I, Yoshitake N, Sasaki S. The Relationship between Functional Constipation and Dietary Habits in School-Age Japanese Children. J Nutr Sci Vitaminol (Tokyo) 2019; 65:38-44. [PMID: 30814410 DOI: 10.3177/jnsv.65.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional constipation negatively affects school-related quality of life for children and adolescents. We investigated the association between functional constipation, defined according to the Rome criteria version III, and dietary habits. The subjects of this cross-sectional study were 1,140 5th graders and 1,054 8th graders attending schools in Shunan City, Japan in 2012. Functional constipation was defined as having two or more symptoms of constipation. Dietary habits were assessed using a brief questionnaire. Self-reported biological, demographic and lifestyle information was obtained. Using multiple logistic models, dose-dependent associations among subgroups stratified with quintiles of nutrient and food intake were examined. The prevalence of functional constipation ranged from 3.7% to 8.3% across the grades. The most prevalent symptom was pain or hard stools. There was a link between higher rates of functional constipation and lower levels of dietary fiber intake, vegetables, and fruits (ptrend=0.010-0.030). Associations with vegetables and fruits attenuated when controlling for dietary fiber intake (ptrend=0.074-0.150). When 5th and 8th graders were separately analyzed, intake of dietary fiber, water from foods, and vegetables had beneficial effects on functional constipation in 8th graders (ptrend=0.005-0.038), and fruit intake had a beneficial effect in 5th graders (ptrend=0.012). Modification of dietary habits may have a positive effect in reducing functional constipation in school-age children. Diets rich in fiber, vegetables, and fruits, have the potential to improve functional constipation in Japanese children and adolescents.
Collapse
Affiliation(s)
- Masayuki Okuda
- Graduate School of Sciences and Engineering for Innovation, Yamaguchi University
| | | | | | | |
Collapse
|
17
|
Benninga MA, Vandenplas Y. The Magnesium-Rich Formula for Functional Constipation in Infants: a Randomized Comparator-Controlled Study. Pediatr Gastroenterol Hepatol Nutr 2019; 22:270-281. [PMID: 31110960 PMCID: PMC6506425 DOI: 10.5223/pghn.2019.22.3.270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To compare the effectiveness of the magnesium (Mg)-enriched formula vs. control formula in constipated infants. METHODS An open-label, interventional, and the comparator-controlled study was conducted to evaluate the effectiveness of the Mg-enriched formula in formula-fed infants ≤6 months old presenting with functional constipation according to modified Rome IV criteria. Infants were randomized 1:1 to intervention or control formula for 30 days. Parents recorded stool consistency (hard, normal, or watery) and frequency on days 1-7 and 23-29. Physicians recorded patient baseline characteristics and performed the clinical examination at the time of three patient visits (baseline, day 8, and 30). RESULTS Of the 286 recruited infants, 143 received the Mg-rich formula and 142 received the control formula. After 7 days, significantly more infants had stools with normal consistency with the Mg-rich formula compared to the infants fed with the control formula (81.8% vs. 41.1%; p<0.001). The number of infants passing one or more stools per day was increased at day 7 in the Mg-rich formula group (86.7% vs. 68.2%; p<0.001). At days 7 and 29, >25% of infants responded completely to the Mg-rich formula compared to <5% of infants fed with the control formula (p<0.001). Parents of infants in the Mg-rich formula group were very satisfied with the treatment (80.8% vs. 10.2%), with the majority willing to continue treatment after 30 days (97.9% vs. 52.6%; p<0.001). CONCLUSION The Mg-rich formula significantly improved stool consistency and frequency compared to the control formula in constipated infants.
Collapse
Affiliation(s)
- Marc A Benninga
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Time to treatment response of a magnesium- and sulphate-rich natural mineral water in functional constipation. Nutrition 2019; 65:167-172. [PMID: 31170680 DOI: 10.1016/j.nut.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES First-line recommendations for the management of functional constipation include nutritional-hygienic measures. We previously showed that a natural mineral water rich in sulphates and magnesium (Hépar) is efficient in the treatment of functional constipation. The aim of this study was to consolidate those first results and determine a precise time to respond to Hépar. METHODS This multicenter, randomized, double-blind, controlled study of the effect of Hépar on stool consistency and frequency in functional constipation included 226 outpatients. After washout, patients used 1.5 L of water daily, including 1 L of Hépar or of low-mineral water, during 14 d. In addition to a daily reporting of stool consistency by the patient, an expert investigator blindly analyzed stool consistency (Bristol stool scale) based on photographs taken by the patient. RESULTS The primary endpoint was met. Treatment response was more frequent in the Hépar arm than in the control group at day 14 (50% versus 29%, respectively; P = 0.001). Mean time to treatment response was shorter in the Hépar group (6.4 d) than in the control arm (7.3 d; P = 0.013). Concomitant stool scoring was available for 60% of the patients. Scores given to 79% of the stools were similar between the patient and the expert (differences ≤1). Safety analyses showed excellent results. CONCLUSION This study confirms the efficacy and safety of Hépar in the treatment of functional constipation and shows that it is associated with a response within 7 d. Hépar could be a safe response to the current absence of first-line medication in the treatment of functional constipation.
Collapse
|
19
|
Downregulation of Aquaporin 3 Mediated the Laxative Effect in the Rat Colon by a Purified Resin Glycoside Fraction from Pharbitis Semen. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9406342. [PMID: 30733814 PMCID: PMC6348868 DOI: 10.1155/2019/9406342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/27/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Background Pharbitis Semen, the seeds of Pharbitis nil, is widely used as a traditional purgative medicine in China, Korea, and Japan. This study investigated the laxative effects of a purified resin glycoside fraction obtained in our previous study from Pharbitis Semen in vivo and in vitro. Materials and Methods After orally administering a purified resin glycoside fraction from Pharbitis Semen (RFP) to rats, the content of fecal water, AQP3, NF-κB, COX-2 expression, and the prostaglandin E2 (PGE2) concentrations in the colon were examined. Moreover, human intestinal epithelial cells (HT-29) were used to investigate the mechanism of RFP decreasing the AQP3 expression. Results Results obtained showed that treatment with RFP increased the feces excretion and fecal water content of rats in a dose-dependent manner. More interestingly, AQP3 expression was suppressed by RFP treatment both in the rat colons and in HT-29 cells, while the NF-κB pathway-mediated PGE2 production was activated. Interestingly, pretreating rats with BAY-11-7082 (NF-κB inhibitor) or indomethacin (COX-2 inhibitor) and RFP neither induced diarrhea nor decreased the AQP3 expression in the colon. Conclusions The purgative property of the purified resin glycoside fraction was attributed to NF-κB activation in the colon, which increased the COX-2-mediated secretion of PGE2. PGE2 decreased AQP3 expression which inhibits water absorbed from the intestine to the blood vessel side, resulting in the laxative effect of RFP.
Collapse
|
20
|
Laxative Effects of Total Diterpenoids Extracted from the Roots of Euphorbia pekinensis Are Attributable to Alterations of Aquaporins in the Colon. Molecules 2017; 22:molecules22030465. [PMID: 28335427 PMCID: PMC6155307 DOI: 10.3390/molecules22030465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/21/2022] Open
Abstract
This study was designed to evaluate the toxic effects of total diterpenoids extracted from the roots of Euphorbia pekinensis (TDEP) on the mouse colon and to clarify the mechanism. Dried powdered roots of E. pekinensis were extracted with chloroform, and then the extract (6.7 g) was subjected to column chromatography and preparative TLC, giving TDEP. Using the HPLC-DAD method, the purity of TDEP was determined as 85.26%. Mice were orally administered with TDEP (3.942, 19.71 and 39.42 mg/kg), after which fecal water content and colon water content were examined. Both of them increased over time after TDEP administration, accompanied by severe diarrhea. Three hours after TDEP administration, the animals were sacrificed to obtain their colons. The mRNA and protein expression levels of aquaporin 1 (AQP1), AQP3 and AQP4 in the colon were measured using real-time RT-PCR and Western blotting, respectively. TDEP significantly increased the levels of AQP3 and AQP4, but decreased that of AQP1 in dose-dependent manners. Similarly, Pekinenin C, a casbane diterpenoid, significantly increased AQP3 protein and mRNA expressions in human intestinal epithelial cells (HT-29). Histopathological examination revealed that the colon was not significantly damaged. The laxative effects of E. pekinensis were associated with the alterations of AQPs in the colon by TDEP.
Collapse
|
21
|
Bothe G, Coh A, Auinger A. Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a double-blind, randomized, placebo-controlled study. Eur J Nutr 2017; 56:491-499. [PMID: 26582579 PMCID: PMC5334415 DOI: 10.1007/s00394-015-1094-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/27/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE The present placebo-controlled, double-blind, randomized trial aimed to investigate whether a natural mineral water rich in magnesium sulphate and sodium sulphate (Donat Mg) may help to improve bowel function. METHODS A total of 106 otherwise healthy subjects with functional constipation were randomly assigned to consume 300 or 500 mL of a natural mineral water as compared to placebo water, over a course of 6 weeks. The 300-mL arms were terminated due to the results of a planned interim analysis. Subjects documented the complete spontaneous bowel movements, spontaneous and overall bowel movements/week, stool consistency, gastrointestinal symptoms and general well-being in a diary. Change in the number of complete spontaneous bowel movements was defined as the primary outcome. RESULTS For the 75 subjects in the 500-mL arms, the change in the number of complete spontaneous bowel movements per week tended to be higher in the active group when compared to placebo after 6 weeks (T2 = 1.8; p value = 0.036; one-sided). The mean number of spontaneous bowel movements significantly increased over the course of the study, with significant differences between study arms considering the whole study time (F test = 4.743; p time × group = 0.010, 2-sided). Stool consistency of spontaneous bowel movements (p < 0.001) and the subjectively perceived symptoms concerning constipation (p = 0.005) improved significantly with the natural mineral water as compared to placebo. CONCLUSIONS The daily consumption of a natural mineral water rich in magnesium sulphate and sodium sulphate improved bowel movement frequency and stool consistency in subjects with functional constipation. Moreover, the subjects' health-related quality of life improved. CLINICAL TRIAL REGISTRATION EudraCT No 2012-005130-11.
Collapse
Affiliation(s)
- Gordana Bothe
- Analyze & Realize GmbH, Waldseeweg 6, 13467, Berlin, Germany
| | - Aljaz Coh
- Droga Kolinska, d.d., Kolinska ulica 1, 1544, Ljubljana, Slovenia
| | | |
Collapse
|
22
|
Ibuka H, Ishihara M, Suzuki A, Kagaya H, Shimizu M, Kinosada Y, Itoh Y. Antacid attenuates the laxative action of magnesia in cancer patients receiving opioid analgesic. J Pharm Pharmacol 2016; 68:1214-21. [PMID: 27364763 PMCID: PMC5129525 DOI: 10.1111/jphp.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/11/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was designed to investigate pharmacological interaction between magnesium laxative and antacid in patients receiving opioid analgesic. METHODS Data obtained from a total of 441 eligible patients receiving opioid analgesic for the first time were retrospectively analysed. The incidence of constipation, defined as stool-free interval of 3 days and more within the first week of opioid intake, was compared between patients who took laxative alone and those who received laxative in combination with antacid. KEY FINDINGS Laxatives were prescribed in 74% of patients, among them 61% received antacids such as proton pump inhibitor and H2 receptor blocker. Magnesia was the most commonly used laxative (89%). Constipation occurred in 21% and 55% of patients with and without laxatives, respectively. Antacids reversed the laxative action of lower doses (<2000 mg/day) but not higher doses (>2000 mg/day) of magnesia without affecting the effects of other laxatives. Therefore, it is suggested that both acid-dependent and acid-independent mechanisms may operate in the laxative action of magnesia, in which the former may be involved in the action of lower doses of magnesia. CONCLUSION Care should be taken to avoid the unfavourable pharmacological interaction between low doses of magnesia and antacid.
Collapse
Affiliation(s)
- Hirokazu Ibuka
- Department of Biomedical InformaticsGifu University Graduate School of MedicineGifuJapan
- Katorea PharmacyGifuJapan
| | | | - Akio Suzuki
- Department of PharmacyGifu University HospitalGifuJapan
| | - Hajime Kagaya
- Department of Clinical PharmaceuticsMeiji Pharmaceutical UniversityTokyoJapan
| | - Masahito Shimizu
- Department of GastroenterologyGifu University Graduate School of MedicineGifuJapan
| | - Yasutomi Kinosada
- Department of Biomedical InformaticsGifu University Graduate School of MedicineGifuJapan
| | | |
Collapse
|
23
|
Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int J Mol Sci 2016; 17:ijms17091399. [PMID: 27589719 PMCID: PMC5037679 DOI: 10.3390/ijms17091399] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Collapse
|
24
|
Ikarashi N, Kon R, Sugiyama K. Aquaporins in the Colon as a New Therapeutic Target in Diarrhea and Constipation. Int J Mol Sci 2016; 17:ijms17071172. [PMID: 27447626 PMCID: PMC4964543 DOI: 10.3390/ijms17071172] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) play important roles in the water transport system in the human body. There are currently 13 types of AQP, AQP0 through AQP12, which are expressed in various organs. Many members of the AQP family are expressed in the intestinal tract. AQP3 is predominantly expressed in the colon, ultimately controlling the water transport. Recently, it was clarified that several laxatives exhibit a laxative effect by changing the AQP3 expression level in the colon. In addition, it was revealed that morphine causes severe constipation by increasing the AQP3 expression level in the colon. These findings have shown that AQP3 is one of the most important functional molecules in water transport in the colon. This review will focus on the physiological and pathological roles of AQP3 in the colon, and discuss clinical applications of colon AQP3.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Risako Kon
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
25
|
Chen TY, Tang XG. Compensation of aquaporin 3 in rats after resection of two-thirds of the colon: Effect of Pulsatilla decoction. Shijie Huaren Xiaohua Zazhi 2015; 23:4871-4875. [DOI: 10.11569/wcjd.v23.i30.4871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of aquaporin 3 (AQP3) in rats after resection of two-thirds of the colon, and to assess the effect of Pulsatilla decoction on AQP3 expression.
METHODS: Resection of two-thirds of the colon was performed in rats. Rats were randomly divided into a normal control group, a model group, and a Chinese intervention group, with nine rats in each group. The Chinese intervention group was treated with Pulsatilla decoction. The expression of AQP3 protein and mRNA was detected by immunohistochemistry and real-time PCR, respectively.
RESULTS: At the first week, AQP3 compensation was observed in the colon of rats in the model group colon, and diarrhea was improved. At the second and fourth weeks, Pulsatilla decoction treatment significantly reduced the compensation time compared with rats in the model group, but did not alter the expression level of AQP3.
CONCLUSION: The expression of AQP3 is increased in rats after resection of two-thirds of the colon, and Pulsatilla decoction plays a positive role in promoting Aquaporin 3 compensation.
Collapse
|
26
|
Kon R, Ikarashi N, Hayakawa A, Haga Y, Fueki A, Kusunoki Y, Tajima M, Ochiai W, Machida Y, Sugiyama K. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion. Toxicol Sci 2015; 145:337-47. [PMID: 25766885 DOI: 10.1093/toxsci/kfv055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.
Collapse
Affiliation(s)
- Risako Kon
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Akio Hayakawa
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yusuke Haga
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Aika Fueki
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yoshiki Kusunoki
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yoshiaki Machida
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
27
|
Hou WX, Cheng SY, Liu ST, Shi BM, Shan AS. Dietary Supplementation of Magnesium Sulfate during Late Gestation and Lactation Affects the Milk Composition and Immunoglobulin Levels in Sows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1469-77. [PMID: 25178299 PMCID: PMC4150180 DOI: 10.5713/ajas.2014.14190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/01/2014] [Accepted: 06/10/2014] [Indexed: 11/27/2022]
Abstract
This experiment was conducted to investigate the effects of dietary supplementation of magnesium sulfate (MgSO4) during late gestation and lactation on sow and litter performance, fecal moisture, blood biochemistry parameters, immunoglobulin levels and milk composition in sows. Forty-eight sows (Yorkshire×Landrace, 4th to 5th parity) were randomly allocated to 1 of 4 dietary treatments supplemented with 0, 200, 400, or 600 mg/kg MgSO4 (n = 12). The experiment started on day 90 of gestation and continued through day 21 of lactation. Blood samples were collected on day 107 of gestation, day 0 (farrowing) and 21 (weaning) of lactation for the analyses of the blood biochemistry parameters and immunoglobulin levels. The colostrum and milk samples were obtained on day 0 and 14 of lactation, respectively. Fecal samples were collected from the sows on day 107 of gestation as well as day 7 and 20 of lactation to determine fecal moisture content. The results showed that the survival percentage of piglets and the litter weight at weaning were decreased linearly (p<0.05) and other parameters of the sow or litter performance were not influenced (p>0.05) by MgSO4 supplementation. The fecal moisture content of the sows were increased (p<0.05) linearly as dietary MgSO4 increased on day 7 and 20 of lactation. Supplementation with MgSO4 increased the plasma magnesium (Mg) level linearly (p<0.05) and had a trend to increase total protein level (p>0.05 and p<0.10). However, an increase in the dietary MgSO4 level resulted in a linear decrease in the colostrum fat content (p<0.05). Dietary MgSO4 supplementation enhanced the immunoglobulin G (IgG) level (linear, p<0.05) in plasma on day of farrowing and immunoglobulin A (IgA) level in colostrum (quadratic, p<0.05) and milk (linear, p<0.05) of the sows. These results indicated that supplementation with MgSO4 during late gestation and lactation may have the potential to prevent sow constipation, but may also result in some negative effects.
Collapse
|
28
|
Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:619465. [PMID: 25215286 PMCID: PMC4151595 DOI: 10.1155/2014/619465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.
Collapse
|
29
|
Dupont C, Campagne A, Constant F. Efficacy and safety of a magnesium sulfate-rich natural mineral water for patients with functional constipation. Clin Gastroenterol Hepatol 2014; 12:1280-7. [PMID: 24342746 DOI: 10.1016/j.cgh.2013.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the effects of natural mineral water on constipation in adults. We assessed the effect of a magnesium sulfate-rich natural mineral water (Hépar; Nestlé Waters, Issy-les-Moulineaux, France) on gastrointestinal transit in constipated women. METHODS We performed a randomized, double-blind, placebo-controlled trial to evaluate the efficacy and safety of Hépar in outpatients with functional constipation (based on the Rome III criteria). The study included 244 female patients, age 18 to 60 years, identified by 62 general practitioners throughout France. After a washout period, subjects drank 1.5 L natural low-mineral water daily (control, n = 77), 0.5 L Hépar and 1 L natural low-mineral water daily (Hépar 0.5 group, n = 85), or 1 L Hépar and 0.5 L natural low-mineral water daily (Hépar 1 group, n = 82) for 4 weeks. We collected information on the number and types of stools, abdominal pain, rescue medications, adverse events, and volume of water consumed. RESULTS We observed no significant effect at week 1. At week 2, constipation was reduced in 21.1% of patients in the control group, in 30.9% in the Hépar 0.5 group (P = .099 vs controls), and in 37.5% in the Hépar 1 group (P = .013 vs controls). The Hépar 1 group also had a decreased number of hard or lumpy stools (Bristol scale, P = .030 vs baseline) and a substantial decrease in the use of rescue medication (P = .034 vs controls). Patient responses correlated with magnesium sulfate concentrations. Safety was very good; there were no serious adverse events among patients who drank Hépar. CONCLUSIONS In a controlled trial, daily consumption of 1 L Hépar reduced constipation and hard or lumpy stools in a greater percentage of women with functional constipation than natural low-mineral water, as early as the second week of treatment.
Collapse
Affiliation(s)
- Christophe Dupont
- Service d'Explorations Fonctionnelles Digestives Pédiatriques, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfant Malade, Université Paris Descartes, Paris, France.
| | | | | |
Collapse
|
30
|
Involvement of aquaporins in a mouse model of rotavirus diarrhea. Virol Sin 2014; 29:211-7. [PMID: 25160756 DOI: 10.1007/s12250-014-3469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022] Open
Abstract
Rotavirus diarrhea is a major worldwide cause of infantile gastroenteritis; however, the mechanism responsible for intestinal fluid loss remains unclear. Water transfer across the intestinal epithelial membrane seems to occur because of aquaporins (AQPs). Accumulating evidence indicates that alterations in AQPs may play an important role in pathogenesis. Here, we focus on changes in AQPs in a mouse model of rotavirus diarrhea. In the present study, 32 of 35 mice developed diarrhea and mild dehydration within 24 hours after infection with rotavirus strain SA11. Intestinal epithelial cells demonstrated cytoplasmic vacuolation, malaligned villi, and atrophy. AQP1 expression was significantly attenuated in the ileum and colon in comparison with controls; likewise, AQP4 and -8 protein expression were significantly decreased in the colon of rotavirus diarrhea-infected mice. In contrast, AQP3 protein expression was significantly increased in the colon of rotavirus-infected mice in comparison with controls. These results indicate that rotavirus diarrhea is associated with the downregulation of AQP1, -4, and -8 expression. Therefore, AQPs play an important role in rotavirus diarrhea.
Collapse
|
31
|
Zheng YF, Liu CF, Lai WF, Xiang Q, Li ZF, Wang H, Lin N. The laxative effect of emodin is attributable to increased aquaporin 3 expression in the colon of mice and HT-29 cells. Fitoterapia 2014; 96:25-32. [DOI: 10.1016/j.fitote.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
|
32
|
van der Hoeven-Hangoor E, Rademaker CJ, Paton ND, Verstegen MWA, Hendriks WH. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples. Poult Sci 2014; 93:1782-92. [PMID: 24812231 DOI: 10.3382/ps.2013-03776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation.
Collapse
Affiliation(s)
| | - C J Rademaker
- Animal Nutrition Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, the Netherlands
| | - N D Paton
- Cargill Animal Nutrition, 10 Nutrition Way, Brookville, OH 45309
| | - M W A Verstegen
- Animal Nutrition Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, the Netherlands
| | - W H Hendriks
- Animal Nutrition Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, the Netherlands; Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, NL-3584 CL Utrecht, the Netherlands
| |
Collapse
|
33
|
Ikarashi N. [The elucidation of the function and the expression control mechanism of aquaporin-3 in the colon]. YAKUGAKU ZASSHI 2014; 133:955-61. [PMID: 23995803 DOI: 10.1248/yakushi.13-00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporins (AQPs) are membrane channels that transport water within the human body and are therefore important for the regulation of water homeostasis. However, little is known regarding the details of the physiological role of AQP3, which is predominantly expressed in the colon. Thus, we investigated the role of AQP3 in the colon using laxative agents (magnesium sulfate and bisacodyl). The results suggest that the laxative effect produced by magnesium sulfate, which is classified as an osmotic laxative, is not simply a result of the changes in osmotic pressure but is also associated with the increased expression of AQP3 in the mucosal epithelial cells of the colon. In addition, magnesium sulfate increased colonic AQP3 expression through adenylate cyclase activation, which is caused by an increase in the intracellular Mg(2+) concentration. This effect may trigger CREB phosphorylation through PKA activation and promote AQP3 gene transcription. Meanwhile, bisacodyl, which is classified as a stimulant laxative, decreases the expression level of AQP3 in the mucosal epithelial cells of the colon, resulting in the inhibition of water transfer from the intestinal tract to the vascular side of the epithelium, eventually leading to the development of diarrhea. It was also observed that the direct activation of colon macrophages by bisacodyl increases the secretion of PGE2, which acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells. Future studies of the enteric AQP3 expression level and water transport may aid in the development of new laxative and antidiarrheal agents that target AQP3.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan.
| |
Collapse
|
34
|
Kon R, Ikarashi N, Nagoya C, Takayama T, Kusunoki Y, Ishii M, Ueda H, Ochiai W, Machida Y, Sugita K, Sugiyama K. Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:190-200. [PMID: 24412547 DOI: 10.1016/j.jep.2013.12.055] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aquaporin-3 (AQP3) is expressed in mucosal epithelial cells in the colon and is important for regulating fecal water content. We examined the role of AQP3 in the laxative effect of rhubarb extract. METHODS After orally administering rhubarb extract or its major component (sennoside A) to rats, the fecal water content, AQP3 expression and prostaglandin E2 (PGE2) concentrations in the colon were examined. The mechanism by which sennoside A decreases the expression of AQP3 was examined using the human colon cancer HT-29 cells and macrophage-derived Raw264.7 cells. RESULTS During diarrhea by rhubarb extract administration, the PGE2 levels in the colon increased while the AQP3 expression significantly decreased. Similar changes were also observed when sennoside A was administered. When sennoside A or its metabolites, rheinanthrone and rhein were added to Raw264.7 cells, a significant increase in the PGE2 concentration was observed only in cells treated with rheinanthrone. Fifteen minutes after adding PGE2 to the HT-29 cells, the AQP3 expression decreased to approximately 40% of the control. When pretreated with indomethacin, sennoside A neither decreased the AQP3 expression nor induced diarrhea. CONCLUSIONS Sennoside A may decrease AQP3 expression in the colon to inhibit water transport from the luminal to the vascular side, leading to a laxative effect. The decreases in the levels of AQP3 are caused by rheinanthrone, which is a metabolite of sennoside A, this metabolite activates the macrophages in the colon and increases the secretion of PGE2; PGE2 acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells.
Collapse
Affiliation(s)
- Risako Kon
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | - Yoshiki Kusunoki
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Harumi Ueda
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshiaki Machida
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Japan
| | | | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
35
|
Soltani N, Nematbakhsh M, Eshraghi-Jazi F, Talebi A, Ashrafi F. Effect of oral administration of magnesium on Cisplatin-induced nephrotoxicity in normal and streptozocin-induced diabetic rats. Nephrourol Mon 2013; 5:884-90. [PMID: 24350087 PMCID: PMC3842559 DOI: 10.5812/numonthly.11624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/13/2013] [Accepted: 05/26/2013] [Indexed: 11/25/2022] Open
Abstract
Background Cisplatin (CP) therapy as the most common potent chemotherapeutic process is accompanied by nephrotoxicity. The diabetic state may protect rat kidney against this toxicity, and magnesium (Mg) on the other hand may reduce the glucose level in diabetic animals. Objectives Current study was planned to investigate the effect of oral administration of magnesium supplementation on CP-induced nephrotoxicity in normal and Streptozocin (STZ)-induced diabetic rats. Materials and Methods Male Wistar rats were divided into seven groups and underwent two experiment protocols. As protocol 1, group 1 was considered as the sham group. Group 2 (CP group) received CP (2 mg/kg/d) for five consecutive days. Group 3 (CP + Mg group) received magnesium sulphate (MgSO4, 10 g/L added to the drinking water) for 10 days and then treated with CP from sixth day. As protocol 2, animals received a single dose of STZ (65 mg/kg i.p.). Three days after diabetes induction, animals were divided into four groups; Groups 4 (D group), 5 (D + CP group), and 7 (D + Mg + CP group) followed the same manner as groups 1 to 3, respectively; and group 6 (D + Mg group) was treated with MgSO4 alone for 10 days. Finally, blood samples were obtained, and all animals were killed for kidney tissue investigation. Results CP administration in normoglycemic rats significantly elevated the serum levels of blood urea nitrogen (BUN) and creatinine (Cr) (P < 0.05). However, coadministration of CP and Mg statistically increased the serum levels of BUN and Cr in both normoglycemic and diabetic animals when compared to the rats treated with CP alone (P < 0.05), while the serum level of Mg was significantly increased in nondiabetic groups (P < 0.05). No significant changes were observed in serum and kidney levels of nitrite; as well as the testis weight between all normoglycemic groups, whereas Mg decreased kidney levels of nitrite in diabetic groups when accompanied by CP (P < 0.05). The kidney and serum levels of malondialdehyde (MDA) enhanced significantly in nondiabetic rats treated with Mg and CP (P < 0.05). Kidney tissue damage score (KTDS), kidney weight, and body weight loss were significantly different among normoglycemic groups (P < 0.05), and Mg promoted the KTDS in diabetic animals treated with CP. Conclusions Oral Mg supplementation did not protect the CP induced nephrotoxicity in diabetic rats.
Collapse
Affiliation(s)
- Nepton Soltani
- Research Center for Molecular Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
- Department of Physiology, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Isfahan Institute of Basic and Applied Sciences Research, Isfahan, IR Iran
- Corresponding author: Mehdi Nematbakhsh, Water and Electrolytes Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, IR Iran. Tel/Fax: +98-3117922419, E-mail:
| | - Fatemeh Eshraghi-Jazi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Farzaneh Ashrafi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| |
Collapse
|
36
|
Zhang GP, Yuan WT. Expression of AQPs 3, 8 and 9 in the residual colonic mucosa of rats with extensive colon resection. Shijie Huaren Xiaohua Zazhi 2013; 21:2315-2319. [DOI: 10.11569/wcjd.v21.i23.2315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of Aquaporins (AQPs) 3, 8 and 9 in the residual colonic mucosa of rats with extensive colon resection.
METHODS: Thirty-two healthy adult SD rats were randomly and equally divided into either a control group or an experimental group. Under general anesthesia, resection of about two-thirds of the colon was performed 5.0 cm from the ileocecal junction, followed by an end-to-end anastomosis with a single-layer 6/0 polypropylene suture. The animals were allowed to eat 24 h after the surgery, and the water content of feces was determined. Rats of the experimental group were killed on days 14 and 28 after surgery, and those of the control group were killed on day 28 to take colonic mucosal samples. RT-PCR was used to determine the expression of AQPs 3, 8 and 9.
RESULTS: After surgery, the water content of feces increased. The relative expression levels of AQPs 3, 8 and 9 were significantly lower in the control group (day 28) than in the experimental group (days 14 and 28) (AQP3: 0.352, 0.425 vs 0.614, both P < 0.01; AQP8: 0.425, 0.518 vs 0.733, both P < 0.01; AQP9: 0.422, 0.516 vs 0.632, both P < 0.01).
CONCLUSION: After extensive colon resection, expression of AQPs 3, 8 and 9 in the remaining colon increases, which may accelerate the absorption of water and increase the moisture of feces.
Collapse
|
37
|
van der Hoeven-Hangoor E, van de Linde I, Paton N, Verstegen M, Hendriks W. Effect of different magnesium sources on digesta and excreta moisture content and production performance in broiler chickens. Poult Sci 2013; 92:382-91. [DOI: 10.3382/ps.2012-02404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Hoekman DR, Benninga MA. Functional constipation in childhood: current pharmacotherapy and future perspectives. Expert Opin Pharmacother 2012; 14:41-51. [DOI: 10.1517/14656566.2013.752816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Abstract
Magnesium (Mg2+) balance is tightly regulated by the concerted actions of the intestine, bone and kidneys. This balance can be disturbed by a broad variety of drugs. Diuretics, modulators of the EGFR (epidermal growth factor receptor), proton pump inhibitors, antimicrobials, calcineurin inhibitors and cytostatics may all cause hypomagnesaemia, potentially leading to tetany, seizures and cardiac arrhythmias. Conversely, high doses of Mg2+ salts, frequently administered as an antacid or a laxative, may lead to hypermagnesaemia causing various cardiovascular and neuromuscular abnormalities. A better understanding of the molecular mechanisms underlying the adverse effects of these medications on Mg2+ balance will indicate ways of prevention and treatment of these adverse effects and could potentially provide more insight into Mg2+ homoeostasis.
Collapse
|
40
|
Ikarashi N, Ogiue N, Toyoda E, Kon R, Ishii M, Toda T, Aburada T, Ochiai W, Sugiyama K. Gypsum fibrosum and its major component CaSO4 increase cutaneous aquaporin-3 expression levels. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:409-413. [PMID: 22138657 DOI: 10.1016/j.jep.2011.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE We have previously reported that Byakkokaninjinto improves cutaneous pruritus by increasing the expression level of aquaporin-3 (AQP3). In this study, we examined the effect of Gypsum fibrosum (main component: CaSO(4)), which is the main component of Byakkokaninjinto, on the cutaneous AQP3 expression level. MATERIALS AND METHODS KKAy mice were given a diet containing 0.3% Gypsum fibrosum extract, or a diet containing 0.3% CaSO(4) for 4 weeks. The urine volume, plasma glucose levels, cutaneous AQP3 protein expression, and the Ca(2+) content were measured. RESULTS The 24-h urine volumes and the plasma glucose levels in the Gypsum fibrosum extract group were not significantly different from those in the control group. In the Gypsum fibrosum extract group, the cutaneous AQP3 protein levels increased significantly, by approximately 3.2-fold, compared to the control group. The cutaneous Ca(2+) content in the control group was approximately 35μg/g. In the Gypsum fibrosum extract group, the Ca(2+) content increased to approximately 51μg/g, which was significant compared to the control group. In the CaSO(4) group, an increase in the AQP3 protein expression levels and Ca(2+) content were observed; the extent of these increases were similar to those in the Gypsum fibrosum extract group. CONCLUSIONS The results of this study suggest that Gypsum fibrosum plays an important role in the increased levels of cutaneous AQP3 expression enhanced by Byakkokaninjinto. The results also indicate that the increase in AQP3 caused by Gypsum fibrosum is attributable to an increase in the cutaneous Ca(2+) content from its main component, CaSO(4).
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ikarashi N, Sato W, Toda T, Ishii M, Ochiai W, Sugiyama K. Inhibitory Effect of Polyphenol-Rich Fraction from the Bark of Acacia mearnsii on Itching Associated with Allergic Dermatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:120389. [PMID: 22315629 PMCID: PMC3270726 DOI: 10.1155/2012/120389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
We examined the inhibitory effect of polyphenol-rich aqueous extract from the bark of Acacia mearnsii (PrA) on itching associated with atopic dermatitis (AD). HR-1 mice were fed a normal diet, special diet (AD group), or special diet containing 3% PrA (PrA group) for 6 weeks. In the AD group, itching frequency and transepidermal water loss increased compared to the control group. In the PrA group, an improvement in atopic dermatitis symptoms was observed. Ceramide expression in the skin decreased in the AD group compared to the control group, but no decrease was observed in the PrA group. mRNA expression of ceramidase decreased in the PrA group compared to the AD group. The results of this study have revealed that PrA inhibits itching in atopic dermatitis by preventing the skin from drying. It is considered that the mechanism by which PrA prevents the skin from drying involves the inhibition of increased ceramidase expression associated with atopic dermatitis.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Sato
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
42
|
Ikarashi N, Mimura A, Kon R, Iizasa T, Omodaka M, Nagoya C, Ishii M, Toda T, Ochiai W, Sugiyama K. The concomitant use of an osmotic laxative, magnesium sulphate, and a stimulant laxative, bisacodyl, does not enhance the laxative effect. Eur J Pharm Sci 2012; 45:73-8. [DOI: 10.1016/j.ejps.2011.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/28/2011] [Indexed: 11/25/2022]
|
43
|
Ikarashi N, Baba K, Ushiki T, Kon R, Mimura A, Toda T, Ishii M, Ochiai W, Sugiyama K. The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE2 secretion from macrophages. Am J Physiol Gastrointest Liver Physiol 2011; 301:G887-95. [PMID: 21868635 DOI: 10.1152/ajpgi.00286.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to investigate the role of aquaporin3 (AQP3) in the colon in the laxative effect of bisacodyl. After oral administration of bisacodyl to rats, AQP3, macrophages, cyclooxygenase 2 (COX2), and prostaglandin E(2) (PGE(2)) were examined in the colon. The mechanism by which bisacodyl decreases the expression of AQP3 was examined using HT-29 and Raw264.7 cells. When diarrhea occurred, a significant increase in the expression of PGE(2) and a decrease in AQP3 expression were observed. Immunostaining showed COX2 expression only in macrophages. The PGE(2) concentration increased significantly 30 min after the addition of bisacodyl to Raw264.7 cells. Thirty minutes after PGE(2) addition to HT-29 cells, the AQP3 expression level decreased to 40% of the control. When pretreated with indomethacin, bisacodyl did not induce an increase in the colon PGE(2) level, a decrease in the AQP3 expression level, or diarrhea. The results suggest that bisacodyl may decrease the expression of AQP3 in the colon, which inhibits water transfer from the luminal to the vascular side and leads to a laxative effect. This study also showed that direct activation of colon macrophages by bisacodyl increases the secretion of PGE(2), which acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|