1
|
Zbib F, Deschamps A, Velly L, Blin O, Guilhaumou R, Gattacceca F. Physiologically Based Pharmacokinetic Model of Cefotaxime in Patients with Impaired Renal Function. Clin Pharmacokinet 2025; 64:257-273. [PMID: 39762592 DOI: 10.1007/s40262-024-01469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Cefotaxime is a widely prescribed cephalosporin antibiotic used to treat various infections. It is mainly eliminated unchanged by the kidney through tubular secretion and glomerular filtration. Therefore, a reduction of kidney function may increase exposure to the drug and induce toxic side effects. OBJECTIVES The objectives of this study were to develop a physiologically based pharmacokinetic (PBPK) model of cefotaxime in healthy European adults, to mechanistically describe the impact of chronic kidney disease (CKD) on cefotaxime pharmacokinetics, and to assess the applicability of the model to patients requiring intensive care. METHODS Using PK-Sim® software, we developed a PBPK model for cefotaxime, including basolateral and apical renal transporters and renal esterases, in healthy subjects and then extrapolated to patients with CKD by incorporating pathophysiological changes and reductions in activity of drug-metabolizing enzymes and transporters into the model. We then evaluated the predictive performance of the model in patients requiring intensive care using clinical routine data. RESULTS Model predictions were considered adequate in healthy subjects and patients with CKD, with predicted-to-observed area under the curve ratios within the two-fold acceptance criterion. Mean prediction error and mean absolute prediction error did not exceed ± 30 and 30%, respectively, except in patients with stage 4 CKD, where they were 70.5 and 75.6%, respectively. The model showed good predictive performance when applied to patients requiring intensive care, but its clinical applicability in this population needs to be further evaluated. CONCLUSION We successfully developed whole-body PBPK models to predict cefotaxime pharmacokinetics in different populations. These models represent an additional step toward improving personalized cefotaxime dosing regimens in vulnerable populations.
Collapse
Affiliation(s)
- Fatima Zbib
- Aix Marseille University, APHM, INSERM, Service de Pharmacologie Clinique et Pharmacosurveillance, INS Institute Neuroscience Syst, Marseille, France
| | - Anthéa Deschamps
- Aix Marseille University, APHM, INSERM, Service de Pharmacologie Clinique et Pharmacosurveillance, INS Institute Neuroscience Syst, Marseille, France
- Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis-Méditerranée, CRCM, Inserm U1068-CNRS UMR7258-Aix-Marseille University UM105, Marseille, France
| | - Lionel Velly
- Aix Marseille University, APHM, Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France
- Aix Marseille University, CNRS, INT, Institute Neuroscience Timone, UMR7289, Marseille, France
| | - Olivier Blin
- Aix Marseille University, APHM, INSERM, Service de Pharmacologie Clinique et Pharmacosurveillance, INS Institute Neuroscience Syst, Marseille, France
| | - Romain Guilhaumou
- Aix Marseille University, APHM, INSERM, Service de Pharmacologie Clinique et Pharmacosurveillance, INS Institute Neuroscience Syst, Marseille, France.
| | - Florence Gattacceca
- Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis-Méditerranée, CRCM, Inserm U1068-CNRS UMR7258-Aix-Marseille University UM105, Marseille, France
| |
Collapse
|
2
|
Sato T, Kawabata T, Kumondai M, Hayashi N, Komatsu H, Kikuchi Y, Onoguchi G, Sato Y, Nanatani K, Hiratsuka M, Maekawa M, Yamaguchi H, Abe T, Tomita H, Mano N. Effect of Organic Anion Transporting Polypeptide 1B1 on Plasma Concentration Dynamics of Clozapine in Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2024; 25:13228. [PMID: 39684938 DOI: 10.3390/ijms252313228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
The involvement of drug-metabolizing enzymes and transporters in plasma clozapine (CLZ) dynamics has not been well examined in Japanese patients with treatment-resistant schizophrenia (TRS). Therefore, this clinical study investigated the relationship between single nucleotide polymorphisms (SNPs) of various pharmacokinetic factors (drug-metabolizing enzymes and transporters) and dynamic changes in CLZ. Additionally, we aimed to determine whether CLZ acts as a substrate for pharmacokinetic factors using in vitro assays and molecular docking calculations. We found that 6 out of 10 patients with TRS and with multiple organic anion transporting polypeptide (OATP) variants (OATP1B1: *1b, *15; OATP1B3: 334T>G, 699G>A; and OATP2B1: *3, 935G>A, 601G>A, 76_84del) seemed to be highly exposed to CLZ and/or N-desmethyl CLZ. A CLZ uptake study using OATP-expressing HEK293 cells showed that CLZ was a substrate of OATP1B1 with Km and Vmax values of 38.9 µM and 2752 pmol/mg protein/10 min, respectively. The results of molecular docking calculations supported the differences in CLZ uptake among OATP molecules and the weak inhibitory effect of cyclosporine A, which is a strong inhibitor of OATPs, on CLZ uptake via OATP1B1. This is the first study to show that CLZ is an OATP1B1 substrate and that the presence of SNPs in OATPs potentially alters CLZ pharmacokinetic parameters.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Takeshi Kawabata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nagomi Hayashi
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Yuki Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Go Onoguchi
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Kei Nanatani
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masahiro Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Smutny T, Smutna L, Lochman L, Kamaraj R, Kucera R, Pavek P. Rifampicin and its derivatives: stability, disposition, and affinity towards pregnane X receptor employing 2D and 3D primary human hepatocytes. Biochem Pharmacol 2024; 229:116500. [PMID: 39179119 DOI: 10.1016/j.bcp.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Rifampicin is a model ligand of the pregnane X receptor (PXR), the nuclear receptor involved in the regulation of cytochrome P450 3A4 (CYP3A4). Rifampicin forms several degradation products and metabolites of which 25-desacetylrifampicin is the most abundant in vivo. Here, we aimed to study both the stability and metabolism of rifampicin in media and 2D and 3D primary human hepatocytes (PHHs). Additionally, we analyzed interactions of rifampicin derivatives with PXR. We described that rifampicin gradually degrades by more than 50 % in the medium partly into quinone over 72 h. We observed 25-desacetylrifampicin in 2D PHHs but not in 3D PHHs. Contrary, rifampicin was converted into quinone in a one-direction process in media of 3D PHHs. The potency of rifampicin and its derivatives to activate human PXR was arranged as follows: 3-formylrifamycin SV > rifampicin quinone > rifampicin > rifampicin N-oxide > 25-desacetylrifampicin, respectively, but none activates mouse and rat PXR. The binding differences between rifampicin and 25-desacetylrifampicin were modeled in silico. Finally, we showed that overexpressed uptake organic anion transporting polypeptide 1B1 (OATP1B1) potentiated activation of PXR by rifampicin and rifampicin quinone, but overexpressed efflux multidrug resistance protein 1 (MDR1) decreased PXR activation by all derivatives.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Lochman
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Sun A, Hagenbuch B, Kelly EJ, Wang J. Molecular Mechanisms of Organic Anion Transporting Polypeptide-Mediated Organic Anion Clearance at the Blood-Cerebrospinal Fluid Barrier. Mol Pharmacol 2023; 104:255-265. [PMID: 37652713 PMCID: PMC10658916 DOI: 10.1124/molpharm.123.000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB), formed by the choroid plexus epithelial (CPE) cells, plays an active role in removing drugs and metabolic wastes from the brain. Recent functional studies in isolated mouse choroid plexus (CP) tissues suggested the presence of organic anion transporting polypeptides (OATPs, encoded by SLCOs) at the apical membrane of BCSFB, which may clear large organic anions from the cerebrospinal fluid (CSF). However, the specific OATP isoform involved is unclear. Using quantitative fluorescence imaging, we showed that the fluorescent anions sulforhodamine 101 (SR101), fluorescein methotrexate (FL-MTX), and 8-fluorescein-cAMP (fluo-cAMP) are actively transported from the CSF to the subepithelial space in CP tissues isolated from wild-type mice. In contrast, transepithelial transport of these compounds across the CPE cells was abolished in Oatp1a/1b-/- mice due to impaired apical uptake. Using transporter-expressing cell lines, SR101, FL-MTX, and fluo-cAMP were additionally shown to be transported by mouse OATP1A5 and its human counterpart OATP1A2. Kinetic analysis showed that estrone-3-sulfate and SR101 are transported by OATP1A2 and OATP1A5 with similar Michaelis-Menten constants (Km). Immunofluorescence staining further revealed the presence of OATP1A2 protein in human CP tissues. Together, our results suggest that large organic anions in the CSF are actively transported into CPE cells by apical OATP1A2 (OATP1A5 in mice), then subsequently effluxed into the blood by basolateral multidrug resistance-associated proteins (MRPs). As OATP1A2 transports a wide array of endogenous compounds and xenobiotics, the presence of this transporter at the BCSFB may imply a novel clearance route for drugs and neurohormones from the CSF. SIGNIFICANCE STATEMENT: Drug transporters at the blood-cerebrospinal fluid (CSF) barrier play an important but understudied role in brain drug disposition. This study revealed a functional contribution of rodent organic anion transporting polypeptide (OATP) 1A5 towards the CSF clearance of organic anions and suggested a similar role for OATP1A2 in humans. Delineating the molecular mechanisms governing CSF organic anion clearance may help to improve the prediction of central nervous system (CNS) pharmacokinetics and identify drug candidates with favorable CNS pharmacokinetic properties.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics (A.S., E.J.K., J.W.) and Kidney Research Institute (E.J.K.), University of Washington, Seattle, Washington; and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Bruno Hagenbuch
- Department of Pharmaceutics (A.S., E.J.K., J.W.) and Kidney Research Institute (E.J.K.), University of Washington, Seattle, Washington; and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Edward J Kelly
- Department of Pharmaceutics (A.S., E.J.K., J.W.) and Kidney Research Institute (E.J.K.), University of Washington, Seattle, Washington; and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Joanne Wang
- Department of Pharmaceutics (A.S., E.J.K., J.W.) and Kidney Research Institute (E.J.K.), University of Washington, Seattle, Washington; and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| |
Collapse
|
6
|
Moreira FDL, Benzi JRDL, Pinto L, Thomaz MDL, Duarte G, Lanchote VL. Optimizing Therapeutic Drug Monitoring in Pregnant Women: A Critical Literature Review. Ther Drug Monit 2023; 45:159-172. [PMID: 36127797 DOI: 10.1097/ftd.0000000000001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND More than 90% of pregnant women take at least one drug during pregnancy. Drug dose adjustments during pregnancy are sometimes necessary due to various pregnancy-induced physiological alterations frequently associated with lower plasma concentrations. However, the clinical relevance or benefits of therapeutic drug monitoring (TDM) in pregnant women have not been specifically studied. Clinical pharmacokinetic studies in pregnant women are incredibly challenging for many reasons. Despite this, regulatory agencies have made efforts to encourage the inclusion of this population in clinical trials to achieve more information on the pharmacotherapy of pregnant women. This review aims to provide support for TDM recommendations and dose adjustments in pregnant women. METHODS The search was conducted after a predetermined strategy on PubMed and Scopus databases using the MeSH term "pregnancy" alongside other terms such as "Pregnancy and dose adjustment," "Pregnancy and therapeutic drug monitoring," "Pregnancy and PBPK," "Pregnancy and pharmacokinetics," and "Pregnancy and physiological changes." RESULTS The main information on TDM in pregnant women is available for antiepileptics, antipsychotics, antidepressants, antibiotics, antimalarials, and oncologic and immunosuppressive drugs. CONCLUSIONS More data are needed to support informed benefit-risk decision making for the administration of drugs to pregnant women. TDM and/or pharmacokinetic studies could ensure that pregnant women receive an adequate dosage of an active drug. Mechanistic modeling approaches potentially could increase our knowledge about the pharmacotherapy of this special population, and they could be used to better design dosage regimens.
Collapse
Affiliation(s)
- Fernanda de Lima Moreira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Jhohann Richard de Lima Benzi
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Leonardo Pinto
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Matheus de Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| |
Collapse
|
7
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
8
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
9
|
Alshabeeb M, Alomar FA, Khan A. Impact of SLCO1B1*5 on Flucloxacillin and Co-Amoxiclav-Related Liver Injury. Front Pharmacol 2022; 13:882962. [PMID: 35754504 PMCID: PMC9214039 DOI: 10.3389/fphar.2022.882962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiosyncratic drug-induced liver injury (DILI) is a serious uncommon disease that may develop as a result of the intake of certain drugs such as the antimicrobials flucloxacillin and co-amoxiclav. The reported cases showed significant associations between DILI and various human leukocyte (HLA) markers. The solute carrier organic anion transporter 1B1 (SLCO1B1), a non-HLA candidate gene, was previously reported as a risk factor for liver injury induced by rifampin and methimazole. This study presumed that SLCO1B1 may play a general role in the DILI susceptibility and therefore investigated the association of rs4149056 (SLCO1B1*5, T521C) polymorphism with flucloxacillin- and co-amoxiclav-induced liver injury. Methodology: We recruited 155 and 165 DILI cases of white ancestral origin from various European countries but mainly from the United Kingdom owing to flucloxacillin and co-amoxiclav, respectively. Only adult patients (≥18 years) who were diagnosed with liver injury and who showed i) clinical jaundice or bilirubin >2x the upper limit of normal (ULN), ii) alanine aminotransferase (ALT) >5x ULN or iii) alkaline phosphatase (ALP) >2x ULN and bilirubin > ULN were selected. The population reference sample (POPRES), a European control group (n = 282), was used in comparison with the investigated cases. TaqMan SNP genotyping custom assay designed by Applied Biosystems was used to genotype both DILI cohorts for SLCO1B1 polymorphism (rs4149056). Allelic discrimination analysis was performed using a step one real-time PCR machine. Genotype differences between cases and controls were examined using Fisher's exact test. GraphPad Prism version 5.0 was used to determine the p-value, odds ratio, and 95% confidence interval. Compliance of the control group with Hardy-Weinberg equilibrium was proven using a web-based calculator available at https://wpcalc.com/en/equilibrium-hardy-weinberg/. Results: A small number of cases failed genotyping in each cohort. Thus, only 149 flucloxacillin and 162 co-amoxiclav DILI cases were analyzed. Genotyping of both DILI cohorts did not show evidence of association with the variant rs4149056 (T521C) (OR = 0.71, 95% CI = 0.46-1.12; p = 0.17 for flucloxacillin cases and OR = 0.87, 95% CI = 0.56-1.33; p = 0.58 for co-amoxiclav), although slightly lower frequency (22.8%) of positive flucloxacillin cases was noticed than that of POPRES controls (29.4%). Conclusion: Carriage of the examined allele SLCO1B1*5 is not considered a risk factor for flucloxacillin DILI or co-amoxiclav DILI as presumed. Testing a different allele (SLCO1B1*1B) and another family member gene (SLCO1B3) may still be needed to provide a clearer role of SLCO1B drug transporters in DILI development-related to the chosen antimicrobials.
Collapse
Affiliation(s)
- Mohammad Alshabeeb
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Department of Biological Sciences (Zoology), Faculty of Science, University of Lakki Marwat, Lakki Marwat, Pakistan
| |
Collapse
|
10
|
Yu X, Chu Z, Li J, He R, Wang Y, Cheng C. Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China. Curr Drug Metab 2021; 22:5-23. [PMID: 32990533 DOI: 10.2174/1389200221666200929115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. METHODS The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction. RESULTS The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. CONCLUSION Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
11
|
Wang Y, Wilkerson M, Li J, Zhang W, Owens A, Wright S, Hidalgo I. Assessment of Statin Interactions With the Human NTCP Transporter Using a Novel Fluorescence Assay. Int J Toxicol 2020; 39:518-529. [PMID: 33078647 DOI: 10.1177/1091581820953066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP), which is highly expressed in the sinusoidal membrane of hepatocytes, maintains bile acid homeostasis and participates in the hepatic disposition of a variety of endogenous substances as well as xenobiotics. Manifested by the involvement of organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) in the hepatic uptake of statin drugs, sinusoidal membrane transporters play an important role in the pharmacokinetics and pharmacodynamics of these agents. It has been speculated that NTCP may function as an alternative pathway for statin hepatic uptake, complementary to OATP1B1 and OATP1B3. In the current study, we produced stable NTCP-expressing human embryonic kidney 293 (HEK293) cells and developed a fluorescence-based assay using flow cytometry for measuring NTCP transport with chenodeoxycholyl-(Nε-7-nitrobenz-2-oxa-1,3-diazole)-lysine (CDCA-NBD) as the substrate. NTCP-mediated CDCA-NBD transport was time-dependent and exhibited typical Michaelis-Menten kinetics, with a K m of 6.12 µM. Compounds known to interact with NTCP, including chenodeoxycholic acid and taurocholic acid, displayed concentration-dependent inhibition of NTCP-mediated CDCA-NBD transport. We report here a systematic evaluation of the interaction between statins and the NTCP transporter. Utilizing this system, several statins were either found to inhibit NTCP-dependent transport or act as substrates. We find a good correlation between the reported lipophilicity of statins and their ability to inhibit NTCP. The objective was to develop a higher-throughput system to evaluate potential inhibitors such as the statins. The in vitro assays using CDCA-NBD as fluorescent substrate are convenient, rapid, and have utility in screening drug candidates for potential drug-NTCP interactions.
Collapse
Affiliation(s)
- Ying Wang
- 376544Absorption Systems LP, Exton, PA, USA
| | | | - Jibin Li
- 376544Absorption Systems LP, Exton, PA, USA
| | - Wei Zhang
- 376544Absorption Systems LP, Exton, PA, USA
| | | | | | | |
Collapse
|
12
|
Lin X, Xiang Z, Wang B, Chen H, Zhou T, Hong M. Interaction of swine organic anion transporting polypeptide 1a2 with tetracycline, macrolide and β-lactam antibiotics. Toxicol Appl Pharmacol 2019; 379:114649. [PMID: 31287969 DOI: 10.1016/j.taap.2019.114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022]
Abstract
Organic anion-transporting polypeptides (human OATPs; animals Oatps; gene symbol SLCO/Slco) are integral membrane proteins that mediate the sodium-independent transport of a wide range of endogenous compounds as well as many xenobiotics. Antibiotics, antidiabetic drugs, anti-inflammatory drugs, antifungals, antivirals, antihistamines, antihypertensives, fibrates, statins, cardiac glycosides, immunosuppressants, and anticancer drugs are among the substrates transported by OATPs. Because of the broad substrate specificity, wide tissue distribution and the involvement of drug-drug interaction, human OATPs have been extensively recognized as key determinants for drug absorption, distribution and excretion. In a previous study, we cloned a functional orthologue of human OATP1A2 from the pig liver and designated it as swine Oatp1a2 (sOatp1a2) based on sequence analysis and phylogenic study. In the present study, transport capability of swine Oatp1a2 for tetracyclines, macrolides and β-lactam antibiotics was investigated. It was found that most of the tested antibiotics, including the tetracycline family members such as tetracycline, doxycycline, oxytetracycline and chlortetracycline as well as the β-lactam antibiotics such as penicillin, amoxicillin and cefquinome are directly transported by sOatp1a2; while macrolides such as tylosin, tilmicosin, clarithromycin and erythromycin may only inhibit uptake function of the transporter. As a group of well-known inhibitors of OATP family members, the effect of flavonoids on sOatp1a2 function was evaluated and it was found that all the flavonoids tested are inhibitors of the swine transporter as well.
Collapse
Affiliation(s)
- Xunkai Lin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhaojian Xiang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Bo Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tong Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Crowe A, Zheng W, Miller J, Pahwa S, Alam K, Fung KM, Rubin E, Yin F, Ding K, Yue W. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 2019; 36:101. [PMID: 31093828 PMCID: PMC8456979 DOI: 10.1007/s11095-019-2634-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Membrane transport protein organic anion transporting polypeptide (OATP) 1B1 mediates hepatic uptake of many drugs (e.g. statins). The OATP1B1 c.521 T > C (p. V174A) polymorphism has reduced transport activity. Conflicting in vitro results exist regarding whether V174A-OATP1B1 has reduced plasma membrane localization; no such data has been reported in physiologically relevant human liver tissue. Other potential changes, such as phosphorylation, of the V174A-OATP1B1 protein have not been explored. Current studies characterized the plasma membrane localization of V174A-OATP1B1 in genotyped human liver tissue and cell culture and compared the phosphorylation status of V174A- and wild-type (WT)-OATP1B1. METHODS Localization of V174A- and WT-OATP1B1 were determined in OATP1B1 c.521 T > C genotyped human liver tissue (n = 79) by immunohistochemistry and in transporter-overexpressing human embryonic kidney (HEK) 293 and HeLa cells by surface biotinylation and confocal microscopy. Phosphorylation and transport of OATP1B1 was determined using 32P-orthophosphate labeling and [3H]estradiol-17β-glucuronide accumulation, respectively. RESULTS All three methods demonstrated predominant plasma membrane localization of both V174A- and WT-OATP1B1 in human liver tissue and in cell culture. Compared to WT-OATP1B1, the V174A-OATP1B1 has significantly increased phosphorylation and reduced transport. CONCLUSIONS We report novel findings of increased phosphorylation, but not impaired membrane localization, in association with the reduced transport function of the V174A-OATP1B1.
Collapse
Affiliation(s)
- Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Wei Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Rubin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Yin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
14
|
Zhang Q, Guo J, Dai G, Li J, Zhu L, He S, Zong Y, Tang Z, Zhao B, Ju W, Duan J. Comparison of the Pharmacokinetic Profiles of Ceftriaxone Used Alone and Combined with Danhong Injection in Old Rats. Eur J Drug Metab Pharmacokinet 2018; 44:505-517. [PMID: 30511237 DOI: 10.1007/s13318-018-0530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Danhong injection is the most commonly prescribed adjuvant drug applied for the treatment of cardiovascular and cerebrovascular diseases in China. Ceftriaxone is usually prescribed along with Danhong injection to elderly patients with complications. However, the pharmacokinetic interactions between these two medications have not been investigated. The aim of this study was to investigate whether Danhong injection influences the pharmacokinetic profile of ceftriaxone in old rats when these two medications are used in combination. METHODS The animal experiment protocol was designed according to the clinical data. Ten-month-old male Sprague-Dawley (SD) rats were dosed with ceftriaxone through intravenous administration for 1 or 7 days in the presence or absence of Danhong injection. The combinations were divided into 1-day, 7-day, and 14-day combined-treatment groups in which Danhong injection was administered for 1, 7, or 14 days and ceftriaxone was given for 1, 7, or 7 days, respectively. The plasma concentration of ceftriaxone was determined by ultrahigh performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-TQ-MS) on a BEH C18 column with a mobile phase consisting of acetonitrile and 0.4% formic acid-water. The chromatographic method was validated and found to be simple, rapid, and stable. RESULTS Danhong injection significantly increased the plasma clearance of and decreased systemic exposure to ceftriaxone. In the 1-day combined-treatment group, the plasma clearance of ceftriaxone increased by 52.69%, and the area under the concentration-time curve (AUC) of ceftriaxone was decreased by 32.54% (P < 0.01). In the 7-day combined-treatment group, the rate of plasma clearance increased by 52.49% and the area under the concentration-time curve decreased by 31.15% (P < 0.01). For the 14-day combined-treatment group, the plasma clearance of ceftriaxone increased by 26.73%, and the area under the concentration-time curve decreased by 21.44% (P < 0.05). CONCLUSIONS In old male rats, systemic exposure to ceftriaxone decreased when used concomitantly with Danhong injection, which may be because Danhong injection increased the plasma clearance of ceftriaxone. Further investigations should be carried out to clarify the mechanism for the influence of Danhong injection on the pharmacokinetics of ceftriaxone.
Collapse
Affiliation(s)
- Qian Zhang
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing, 210046, People's Republic of China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing, 210046, People's Republic of China
| | - Guoliang Dai
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing, 210046, People's Republic of China
| | - Lijing Zhu
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Shufen He
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yang Zong
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Zhishu Tang
- Shanxi University of Traditional Chinese Medicine, Xianyang, People's Republic of China
| | - Buchang Zhao
- Buchang Pharma, Xi'an, People's Republic of China
| | - Wenzheng Ju
- The Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, People's Republic of China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
15
|
Ufuk A, Kosa RE, Gao H, Bi YA, Modi S, Gates D, Rodrigues AD, Tremaine LM, Varma MVS, Houston JB, Galetin A. In Vitro-In Vivo Extrapolation of OATP1B-Mediated Drug-Drug Interactions in Cynomolgus Monkey. J Pharmacol Exp Ther 2018; 365:688-699. [PMID: 29643253 DOI: 10.1124/jpet.118.247767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake Km values of 2.0 and 3.9 µM for OATP1B probe substrates, pitavastatin and rosuvastatin, respectively. Rifampicin inhibited pitavastatin and rosuvastatin active uptake in monkey hepatocytes with IC50 values of 3.0 and 0.54 µM, respectively, following preincubation with the inhibitor. Intravenous pharmacokinetics of 2H4-pitavastatin and 2H6-rosuvastatin (0.2 mg/kg) and the oral pharmacokinetics of cold probes (2 mg/kg) were studied in cynomolgus monkeys (n = 4) without or with coadministration of single oral ascending doses of rifampicin (1, 3, 10, and 30 mg/kg). A rifampicin dose-dependent reduction in i.v. clearance of statins was observed. Additionally, oral pitavastatin and rosuvastatin plasma exposure increased up to 19- and 15-fold at the highest dose of rifampicin, respectively. Use of in vitro IC50 obtained following 1 hour preincubation with rifampicin (0.54 µM) predicted correctly the change in mean i.v. clearance and oral exposure of statins as a function of mean unbound maximum plasma concentration of rifampicin. This study demonstrates quantitative translation of in vitro OATP1B IC50 to predict DDIs using cynomolgus monkey as a preclinical model and provides further confidence in application of in vitro hepatocyte data for the prediction of clinical OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Rachel E Kosa
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Hongying Gao
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V S Varma
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
16
|
Berlin S, Kirschbaum A, Spieckermann L, Oswald S, Keiser M, Grube M, Venner M, Siegmund W. Pharmacological indices and pulmonary distribution of rifampicin after repeated oral administration in healthy foals. Equine Vet J 2017; 49:618-623. [DOI: 10.1111/evj.12662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. Berlin
- Department of Clinical Pharmacology Centre of Drug Absorption and Transport (C_DAT) University Medicine of Greifswald Greifswald Germany
| | | | | | - S. Oswald
- Department of Clinical Pharmacology Centre of Drug Absorption and Transport (C_DAT) University Medicine of Greifswald Greifswald Germany
| | - M. Keiser
- Department of Clinical Pharmacology Centre of Drug Absorption and Transport (C_DAT) University Medicine of Greifswald Greifswald Germany
| | - M. Grube
- Department of General Pharmacology Centre of Drug Absorption and Transport (C_DAT) University Medicine of Greifswald Greifswald Germany
| | - M. Venner
- Veterinary Clinic for Horses Destedt Germany
| | - W. Siegmund
- Department of Clinical Pharmacology Centre of Drug Absorption and Transport (C_DAT) University Medicine of Greifswald Greifswald Germany
| |
Collapse
|
17
|
Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica 2017; 48:73-78. [PMID: 28005438 DOI: 10.1080/00498254.2016.1275880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The drug-drug interaction (DDI) mediated by organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and OATP2B1 has a major impact on the hepatic clearance of drugs. The effects of tyrosine kinase inhibitors (TKIs) on OATPs have not been well studied. In the present study, we evaluated the contribution of OATPs to the hepatic uptake of crizotinib and gefitinib and the interaction of those TKIs with OATPs to estimate DDIs. 2. To clarify whether crizotinib and gefitinib were substrates for OATPs, we performed uptake studies. We examined the effects of the TKIs on uptake of typical substrates and fluvastatin via OATPs. IC50 and EC50 values of the TKIs were calculated. 3. OATP1B3- and OATP2B1-mediated crizotinib uptake and OATP2B1-mediated gefitinib uptake were observed. Gefitinib accelerated OATP1B3-mediated [3H]TCA uptake and inhibited OATP2B1-mediated [3H]E3S uptake. On the other hand, gefitinib inhibited OATP1B1- and OATP2B1-mediated fluvastatin uptake. 4. We provided basic information to estimate the DDI on OATPs caused by TKIs. The DDI on OATPs caused by gefitinib could occur in a normal clinical situation. And the uptake of crizotinib into the intrahepatocellular environment via OATPs may induce DDI and liver damage. We therefore emphasize the necessity of careful use of TKIs.
Collapse
Affiliation(s)
- Toshihiro Sato
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan
| | - Hajime Ito
- b Laboratory of Clinical Pharmaceutics & Therapeutics , Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan
| | - Ayaka Hirata
- c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Takaaki Abe
- d Division of Nephrology , Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University , Sendai , Japan.,e Division of Medical Science , Graduate School of Biomedical Engineering, Tohoku University , Sendai , Japan , and.,f Department of Clinical Biology and Hormonal Regulation , Graduate School of Medicine, Tohoku University , Sendai , Japan
| | - Nariyasu Mano
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Hiroaki Yamaguchi
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
18
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
19
|
Vaidyanathan J, Yoshida K, Arya V, Zhang L. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1. J Clin Pharmacol 2016; 56 Suppl 7:S59-72. [DOI: 10.1002/jcph.723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Jayabharathi Vaidyanathan
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Kenta Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
- Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| |
Collapse
|
20
|
Dixit V, Moore A, Tsao H, Hariparsad N. Application of Micropatterned Cocultured Hepatocytes to Evaluate the Inductive Potential and Degradation Rate of Major Xenobiotic Metabolizing Enzymes. Drug Metab Dispos 2016; 44:250-61. [PMID: 26658225 DOI: 10.1124/dmd.115.067173] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022] Open
Abstract
Long-term coculture models of hepatocytes are promising tools to study drug transport, clearance, and hepatoxicity. In this report we compare the basal expression of drug disposition genes and the inductive response of prototypical inducers (rifampin, phenobarbital, phenytoin) in hepatocyte two-dimensional monocultures and the long-term coculture model (HepatoPac). All the inducers used in the study increased the expression and activity of CYP3A4, CYP2B6 and CYP2C enzymes in the HepatoPac cultures. The coculture model showed a consistent and higher induction of CYP2C enzymes compared with the monocultures. The EC50 of rifampin for CYP3A4 and CYP2C9 was up to 10-fold lower in HepatoPac than the monocultures. The EC50 of rifampin calculated from the clinical drug interaction studies correlated well with the EC50 observed in the HepatoPac cultures. Owing to the long-term stability of the HepatoPac cultures, we were able to directly measure a half-life (t1/2) for both CYP3A4 and CYP2B6 using the depletion kinetics of mRNA and functional activity. The t1/2 for CYP3A4 mRNA was 26 hours and that for the functional protein was 49 hours. The t1/2 of CYP2B6 was 38 hours (mRNA) and 68 hours (activity), which is longer than CYP3A4 and shows the differential turnover of these two proteins. This is the first study to our knowledge to report the turnover rate of CYP2B6 in human hepatocytes. The data presented here demonstrate that the HepatoPac cultures have the potential to be used in long-term culture to mimic complex clinical scenarios.
Collapse
Affiliation(s)
- Vaishali Dixit
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Amanda Moore
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Hong Tsao
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| |
Collapse
|
21
|
Arita Y, Allen S, Chen G, Zhang W, Wang Y, Owen AJ, Dentinger P, Sidhu SS. Rapid isolation of peptidic inhibitors of the solute carrier family transporters OATP1B1 and OATP1B3 by cell-based phage display selections. Biochem Biophys Res Commun 2016; 473:370-6. [PMID: 26792727 DOI: 10.1016/j.bbrc.2016.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022]
Abstract
OATP1B1 and OATP1B3 (1B3) are members of organic anion-transporting polypeptides (OATPs), a family of sodium-independent organic anion membrane transporters that contribute to transport of various drugs. To identify peptide inhibitors of OATP1B1, we developed a direct selection system on live cells using phage-displayed peptide libraries. Selections against OATP1B1 overexpressed cell-lines yielded three unique peptides able to inhibit the transport function of OATP1B1 and 1B3. Affinity maturation of one peptide led to identification of two peptides that demonstrated improved inhibition efficacy on drug uptake mediated by OATP1B1 and 1B3. We anticipate that these peptides will assist the identification of novel substrates for OATP1B1 and 1B3. Moreover, our selection system is a practical method for generating inhibitors of other membrane transporters.
Collapse
Affiliation(s)
- Yuko Arita
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | | | - Gang Chen
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Wei Zhang
- Absorption Systems LP, Exton, PA, USA
| | - Ying Wang
- Absorption Systems LP, Exton, PA, USA
| | | | | | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON Canada.
| |
Collapse
|
22
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
23
|
Ufuk A, Somers G, Houston JB, Galetin A. In Vitro Assessment of Uptake and Lysosomal Sequestration of Respiratory Drugs in Alveolar Macrophage Cell Line NR8383. Pharm Res 2015. [PMID: 26224396 PMCID: PMC4628094 DOI: 10.1007/s11095-015-1753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose To assess accumulation and lysosomal sequestration of 9 drugs used in respiratory indications (plus imipramine as positive control) in the alveolar macrophage (AM) cell line NR8383. Methods For all drugs, uptake at 5 μM was investigated at 37 and 4°C to delineate active uptake and passive diffusion processes. Accumulation of basic clarithromycin, formoterol and imipramine was also assessed over 0.1–100 μM concentration range. Lysosomal sequestration was investigated using ammonium chloride (NH4Cl), monensin and nigericin. Impact of lysosomal sequestration on clarithromycin accumulation kinetics was investigated. Results Both cell-to-medium concentration ratio (Kp) and uptake clearance (CLuptake) ranged > 400-fold for the drugs investigated. The greatest Kp was observed for imipramine (391) and clarithromycin (82), in contrast to no accumulation seen for terbutaline. A concentration-dependent accumulation was evident for the basic drugs investigated. Imipramine and clarithromycin Kp and CLuptake were reduced by 59–85% in the presence of NH4Cl and monensin/nigericin, indicating lysosomal accumulation, whereas lysosomal sequestration was not pronounced for the other 8 respiratory drugs. Clarithromycin uptake rate was altered by NH4Cl, highlighting the impact of subcellular distribution on accumulation kinetics. Conclusions This study provides novel evidence of the utility of NR8383 for investigating accumulation and lysosomal sequestration of respiratory drugs in AMs. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1753-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Graham Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
24
|
Fardel O, Le Vee M, Jouan E, Denizot C, Parmentier Y. Nature and uses of fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 2015; 11:1233-51. [PMID: 26050735 DOI: 10.1517/17425255.2015.1053462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Drug transporters are now recognized as major players involved in pharmacokinetics and toxicology. Methods for assessing their activity are important to consider, particularly owing to regulatory requirements with respect to inhibition of drug transporter activity and prediction of drug-drug interactions. In this context, the use of fluorescent-dye-based transport assays is likely to deserve attention. AREAS COVERED This review provides an overview of the nature of fluorescent dye substrates for ATP-binding cassette and solute carrier drug transporters. Their use for investigating drug transporter activity in cultured cells and clinical hematological samples, drug transporter inhibition, drug transporter imaging and drug transport at the organ level are summarized. EXPERT OPINION A wide range of fluorescent dyes is now available for use in various aspects of drug transporter studies. The use of these dyes for transporter analyses may, however, be hampered by classic pitfalls of fluorescence technology, such as quenching. Transporter-independent processes such as passive diffusion of dyes through plasma membrane or dye sequestration into subcellular compartments must also be considered, as well as the redundant handling by various distinct transporters of some fluorescent probes. Finally, standardization of dye-based transport assays remains an important on-going issue.
Collapse
Affiliation(s)
- Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes , France
| | | | | | | | | |
Collapse
|
25
|
Ohya H, Shibayama Y, Ogura J, Narumi K, Kobayashi M, Iseki K. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2. Biol Pharm Bull 2015; 38:582-6. [PMID: 25739790 DOI: 10.1248/bpb.b14-00740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Regorafenib is a small molecule inhibitor of tyrosine kinases, and has been shown to improve the outcomes of patients with advanced colorectal cancer and advanced gastrointestinal stromal tumors. The transport profiles of regorafenib by various transporters were evaluated. HEK293/organic anion transporting polypeptide 1B1 (OATP1B1) cells exhibited increased drug sensitivity to regorafenib. Regorafenib inhibited the uptake of 3H-estrone sulfate by HEK293/OATP1B1 cells in a dose-dependent manner, but did not affect its elimination by P-glycoproteins. The concentration of regorafenib was significantly lower in LLC-PK1/multidrug resistance protein 2 (MRP2) cells than in LLC-PK1 cells treated with the MRP2 inhibitor, MK571. MK571 abolished the inhibitory effects of regorafenib on intracellular accumulation in LLC-PK1/MRP2 cells. The uptake of regorafenib was significantly higher in HEK293/OATP1B1 cells than in OATP1B1-mock cells. Transport kinetics values were estimated to be Km=15.9 µM and Vmax=1.24 nmol/mg/min. No significant difference was observed in regorafenib concentrations between HEK293/OATP1B3 and OATP1B3-mock cells. These results indicated that regorafenib is a substrate for MRP2 and OATP1B1, and also suggest that the substrate preference of regorafenib may implicate the pharmacokinetic profiles of regorafenib.
Collapse
Affiliation(s)
- Hiroki Ohya
- Laboratory of Clinical Pharmaceutics and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | | | | | | | | | | |
Collapse
|
26
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Grime K, Paine SW. Species differences in biliary clearance and possible relevance of hepatic uptake and efflux transporters involvement. Drug Metab Dispos 2013; 41:372-8. [PMID: 23139379 DOI: 10.1124/dmd.112.049312] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
From a search of the available literature, a database of 22 drugs of all charge types and several different therapeutic classes was compiled to compare rat and human biliary clearance data. Dog biliary excretion data were also found for nine of the drugs. For 19 of the 22 drugs (86%), rat unbound biliary clearance values, when normalized for body weight, exceeded those for humans by factors ranging from 9 to over 2500-fold, whereas human/dog differences were much less dramatic. It was possible to define hepatic uptake and efflux transporter involvement for many of the drugs. On the basis of the findings, it is postulated that regardless of the biliary efflux transporters implicated, when drugs do not require active hepatic uptake to access the liver there may be fairly insignificant differences in rat, dog, and human biliary clearance. Conversely, when the organic anion-transporting polypeptide drug transporters are involved, one may expect at least a 10-fold discrepancy in rat to human biliary clearance normalized for body weight and corrected for plasma protein binding.
Collapse
Affiliation(s)
- Ken Grime
- Respiratory and Inflammation Drug Metabolism and Pharmacokinetics, Astra Zeneca R&D, Mölndal, Sweden.
| | | |
Collapse
|
28
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|