1
|
Ivanović A, Petrović J, Stanić D, Nedeljković J, Ilić M, Jukić MM, Pejušković B, Pešić V. Single subanesthetic dose of ketamine exerts antioxidant and antidepressive-like effect in ACTH-induced preclinical model of depression. Mol Cell Neurosci 2025; 133:104006. [PMID: 40157469 DOI: 10.1016/j.mcn.2025.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and oxidative stress represent important mechanisms that have been implicated in etiopathology of depression. Although first antidepressants were introduced in clinical practice more than six decades ago, approximately 30 % of patients with a diagnosis of depression show treatment resistance. A noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has shown promising rapid antidepressant effects and has been approved for treatment-resistant depression (TRD). In the present study, we investigated antioxidant and antidepressant-like activity of a single subanesthetic dose of ketamine (10 mg/kg, ip) in a rodent model of TRD induced by adrenocorticotropic hormone (10 μg ACTH/day, sc, 21 days). Behavioral assessment was performed, and plasma biomarkers of oxidative stress and DNA damage in peripheral blood lymphocytes (PBLs) were determined. We observed that ACTH produced depressive-like behavior and significant increase in superoxide anion (O2·-), advanced oxidation protein products (AOPP), malondialdehyde (MDA) and total oxidant status (TOS) in male Wistar rats. This effect was accompanied by reduced activity of antioxidant enzymes - superoxide dismutase (SOD) and paraoxonase1 (PON1) in plasma and increase in DNA damage in PBLs. In the described model of TRD, we have demonstrated antidepressant effects of ketamine for the first time. Our results reveal that ketamine was effective in reducing O2.-, AOPP, MDA and TOS, while enhancing SOD and PON1 activity in ACTH-rats. Collectively, our study sheds light on molecular mechanisms implicated in antioxidant activity of ketamine, thus incentivizing further investigation of its effects on ROS metabolism and antioxidant defenses in clinical trials, particularly in depression.
Collapse
Affiliation(s)
- Ana Ivanović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Jelena Petrović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Dušanka Stanić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia.
| | - Jelena Nedeljković
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Miloš Ilić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Marin M Jukić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia; Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bojana Pejušković
- Institute of Mental Health, School of Medicine, University of Belgrade, Palmotićeva 37, 11000 Belgrade, Serbia
| | - Vesna Pešić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11121 Belgrade, Serbia
| |
Collapse
|
2
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
3
|
Shirose K, Yoshikawa M, Kan T, Miura M, Watanabe M, Matsuda M, Kobayashi H, Kawaguchi M, Ito K, Suzuki T. Imipramine Increases Norepinephrine and Serotonin in the Salivary Glands of Rats. BIOLOGY 2024; 13:679. [PMID: 39336106 PMCID: PMC11428968 DOI: 10.3390/biology13090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Xerostomia induced by antidepressants such as imipramine has long been thought to be due to their anticholinergic effects. However, even antidepressants with low anticholinergic effects may have a high incidence of xerostomia. In salivary glands, norepinephrine activates alpha-adrenergic receptors in blood vessels and beta-adrenergic receptors in acinar cells, respectively, causing a decrease in the blood flow and an increase in the protein secretion, resulting in the secretion of viscous saliva with low water content and high protein content. A previous study demonstrated that perfusion of the submandibular glands of rats with serotonin significantly decreased saliva secretion. The results of the present study revealed the following: (1) that norepinephrine and serotonin, but not epinephrine nor dopamine, were detected in the interstitial fluids in rat submandibular glands; (2) that norepinephrine and serotonin concentrations in the dialysate was 4.3 ± 2.8 nM and 32.3 ± 19.6 nM at stable level, respectively; (3) that infusion with imipramine, a reuptake inhibitor of norepinephrine and serotonin, significantly and dose-dependently increased both norepinephrine and serotonin concentrations in the dialysate; and (4) that intraperitoneal administration of imipramine significantly increased both norepinephrine and serotonin concentrations in the dialysate. These results suggested that one of the mechanisms of xerostomia induced by reuptake inhibitors of norepinephrine and serotonin involves the activation of adrenergic and serotonin receptors in the salivary glands, respectively.
Collapse
Affiliation(s)
- Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Masaaki Miura
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | | | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Takeshi Suzuki
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| |
Collapse
|
4
|
Peña JE, Corbett BF, Tamminga CA, Bhatnagar S, Hitti FL. Investigating Resistance to Antidepressants in Animal Models. Neuroscience 2024; 548:69-80. [PMID: 38697464 DOI: 10.1016/j.neuroscience.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.
Collapse
Affiliation(s)
- Julianna E Peña
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
5
|
Iwai T, Mishima R, Hirayama S, Nakajima H, Oyama M, Watanabe S, Fujii H, Tanabe M. SYK-623, a δ Opioid Receptor Inverse Agonist, Mitigates Chronic Stress-Induced Behavioral Abnormalities and Disrupted Neurogenesis. J Clin Med 2024; 13:608. [PMID: 38276114 PMCID: PMC10817044 DOI: 10.3390/jcm13020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Rei Mishima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shigeto Hirayama
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Honoka Nakajima
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| | - Hideaki Fujii
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (T.I.); (R.M.); (H.N.); (M.O.); (S.W.)
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (S.H.); (H.F.)
| |
Collapse
|
6
|
Kin K, Yasuhara T, Kawauchi S, Kameda M, Hosomoto K, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Sasaki T, Date I. Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Res 2019; 1717:52-59. [DOI: 10.1016/j.brainres.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
7
|
Snitow ME, Zanni G, Ciesielski B, Burgess-Jones P, Eisch AJ, O'Brien WT, Klein PS. Adult hippocampal neurogenesis is not necessary for the response to lithium in the forced swim test. Neurosci Lett 2019; 704:67-72. [PMID: 30940476 PMCID: PMC6594907 DOI: 10.1016/j.neulet.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
Chronic lithium treatment stimulates adult hippocampal neurogenesis, but whether increased neurogenesis contributes to its therapeutic mechanism remains unclear. We use a genetic model of neural progenitor cell (NPC) ablation to test whether a lithium-sensitive behavior requires hippocampal neurogenesis. NPC-ablated mice were treated with lithium and assessed in the forced swim test (FST). Lithium reduced time immobile in the FST in NPC-ablated and control mice but had no effect on activity in the open field, a control for the locomotion-based FST. These findings show that hippocampal NPCs that proliferate in response to chronic lithium are not necessary for the behavioral response to lithium in the FST. We further show that 4-6 week old immature hippocampal neurons are not required for this response. These data suggest that increased hippocampal neurogenesis does not contribute to the response to lithium in the forced swim test and may not be an essential component of its therapeutic mechanism.
Collapse
Affiliation(s)
- Melinda E Snitow
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Giulia Zanni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brianna Ciesielski
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pamela Burgess-Jones
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neuroscience, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - W Timothy O'Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Peter S Klein
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Cheng J, Wu H, Liu H, Li H, Zhu H, Zhou Y, Li H, Xu W, Xie J. Exposure of Hyperandrogen During Pregnancy Causes Depression- and Anxiety-Like Behaviors, and Reduced Hippocampal Neurogenesis in Rat Offspring. Front Neurosci 2019; 13:436. [PMID: 31139042 PMCID: PMC6519321 DOI: 10.3389/fnins.2019.00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The hippocampus is a region in which neurogenesis persists and retains substantial plasticity throughout lifespan. Accumulating evidences indicate an important role of androgens and androgenic signaling in the regulation of offspring hippocampal neurogenesis and the survival of mature or immature neurons and gliocyte. Hyperandrogenic disorders have been associated with depression and anxiety. Previous studies have found that pregnant hyperandrogenism may increase the susceptibility of the offspring to depression or anxiety and lead to abnormal hippocampal neurogenesis in rats. In this study, pregnant rats were given subcutaneous injection of aromatase inhibitor letrozole in order to establish a maternal hyperandrogenic environment for the fetal rats. The lithium chloride (LICl) was used as an intervention agent since a previous study has shown that lithium chloride could promote neurogenesis in the hippocampus. The results revealed that pregnant administration of letrozole resulted in depressive- and anxious-like behaviors in the adolescent period. A remarkable decrease in immature nerve cells marked by doublecortin and mature neurons co-expressed by Brdu and NeuN in adult years were detected in the hippocampal dentate gyrus of adolescent rats. Lithium chloride alleviated the effects on neurobehavioral and promoted the differentiation and proliferation of neural progenitor cells, while a hyperandrogenic intrauterine environment had no effects on astrocytes marked by GFAP in the dentate gyrus. Furthermore, the Wnt/β-catenin signaling pathway related to normal development of hippocampus was examined but there was no significant changes in Wnt signaling pathway members. Our study provides evidence that exposure of androgen during pregnancy leads to alterations in depressive, anxious and stereotypical behaviors and these phenotypes are possibly associated with changes in neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Juan Cheng
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Haojuan Wu
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Huawei Liu
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| | - Hua Li
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| | - Hua Zhu
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| | - Yongmei Zhou
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| | - Hongxia Li
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Joint Laboratory of Reproductive Medicine, SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiang Xie
- Chengdu Third People's Hospital, Affiliated Hospital of Southwest JiaoTong University Medical School, Chengdu, China
| |
Collapse
|
9
|
Mechanisms of ketamine on mice hippocampi shown by gas chromatography-mass spectrometry-based metabolomic analysis. Neuroreport 2019; 29:704-711. [PMID: 29742621 DOI: 10.1097/wnr.0000000000001020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, we used a gas chromatography-mass spectrometry-based metabolomics method to evaluate the effects of ketamine on mice hippocampi. Multivariate statistical analysis and ingenuity pathway analysis were then used to identify and explore the potential mechanisms and biofunction of ketamine. Compared with the control (CON) group, 14 differential metabolites that involved amino acid metabolism, energy metabolism, and oxidative stress metabolism were identified. After combination with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) administration, six of the 14 metabolites remained significantly differentially expressed between the ketamine (KET) and KET+NBQX groups, including glycine, alanine, glutamine, aspartic acid, myoinositol, and ascorbate, whereas no difference was found in the levels of the other eight metabolites between the KET and KET+NBQX groups, including phosphate, 4-aminobutyric acid, urea, creatine, L-malic acid, galactinol, inosine, and aminomalonic. Our findings indicate that ketamine exerts antidepressant effects through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition-dependent mechanism and a mechanism not affected by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition. Which provides further insight into the therapeutic mechanisms of ketamine in the hippocampus.
Collapse
|
10
|
Insulin-stimulated mTOR activation in peripheral blood mononuclear cells associated with early treatment response to lithium augmentation in rodent model of antidepressant-resistance. Transl Psychiatry 2019; 9:113. [PMID: 30877268 PMCID: PMC6420640 DOI: 10.1038/s41398-019-0434-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/24/2018] [Accepted: 11/25/2018] [Indexed: 01/24/2023] Open
Abstract
Lithium has been shown to have some therapeutic efficacy as an adjunctive treatment for intractable forms of major depression. Activation of mammalian target of rapamycin (mTOR) and inhibition of glycogen synthase kinase-3β (GSK3β) have been implicated in its putative mechanisms of action. These proteins are integral components of the insulin signaling pathway, which may serve as a critical co-regulator of drug action. Utilizing an animal model of tricyclic antidepressant resistance, we investigated the relationship between insulin signaling and antidepressant response to lithium augmentation. Pre-treatment with adrenocorticotropic hormone (ACTH 100 µg/day i.p.) for 14 days effectively blocked the immobility-reducing effects of an acute dose of imipramine (10 mg/kg i.p.) in the forced swim test (FST). Lithium augmentation (100 mg/kg i.p.) rescued the antidepressant-like effects of imipramine in this model. Total and phosphorylated (p) levels of protein kinase B (Akt), mTOR, and GSK3β protein were quantified in the infralimbic cortex (ILPFC) following FST stress via Western blot. Levels of mTOR and pmTOR were further quantified in isolated peripheral blood mononuclear cells (PBMCs) following insulin stimulation (10 mg/mL for 5 min) via ELISA. Elevated levels of phosphorylated insulin signaling proteins were present in the ILPFC of ACTH-pretreated animals that received both imipramine and lithium, together with a concurrent increase in mTOR activation in PBMCs. Large correlations were observed between immobility time and insulin-stimulated mTOR levels in PBMCs. We propose that PBMC insulin challenge may be a useful probe for predicting antidepressant response to lithium administration, and potentially other therapies acting via similar mechanisms of action.
Collapse
|
11
|
Petrović J, Stanić D, Bulat Z, Puškaš N, Labudović-Borović M, Batinić B, Mirković D, Ignjatović S, Pešić V. Acth-induced model of depression resistant to tricyclic antidepressants: Neuroendocrine and behavioral changes and influence of long-term magnesium administration. Horm Behav 2018; 105:1-10. [PMID: 30025718 DOI: 10.1016/j.yhbeh.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022]
Abstract
Magnesium (Mg), is not only a modulator of the glutamatergic NMDA receptors' affinity, it also prevents HPA axis hyperactivity, thus possibly being implicated in neurobiological features of mood disorders. Further uncovering of molecular mechanisms underlying magnesium's proposed effects is needed due to the recent shift in research of treatment resistant depression (TRD) towards glutamatergic pathways. Here, we applied Mg via drinking water for 28 days (50 mg/kg/day), in ACTH-treated rats, an established animal model of depression resistant to tricyclic antidepressants. Using this model in male rats we measured (1) changes in hippocampal neurogenesis and behavioral alterations, (2) adrenal hormones response to acute stress challenge and (3) levels of biometals involved in regulation of monoamines turnover in rat prefrontal cortex. Our results support beneficial behavioral impact of Mg in TRD model together with increased hippocampal neurogenesis and BDNF expression. Furthermore, Mg prevented ACTH-induced disruption in HPA axis function, by normalizing the levels of plasma ACTH, corticosterone and interleukin-6, and by increasing the peripheral release of adrenaline, noradrenaline and serotonin after the acute stress challenge. Finally, the influence on copper/zinc ratio suggested probable magnesium's involvement in monoamine turnover in PFC. Our findings provide further insights into the possible pathways implicated in the behavioral modulation effects of Mg, as well as its central and peripheral effects in ACTH-induced TRD model. Thus, further investigation of molecular signaling related to the glutamatergic transmission and role of Mg, could reveal prospects to novel treatment strategies that could be of particular importance for patients suffering from TRD.
Collapse
Affiliation(s)
- Jelena Petrović
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Dušanka Stanić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, Faculty of Pharmacy, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", School of Medicine, University of Belgrade, Serbia
| | - Milica Labudović-Borović
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", School of Medicine, University of Belgrade, Serbia
| | - Bojan Batinić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Duško Mirković
- Department of Medical Biochemistry, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Svetlana Ignjatović
- Department of Medical Biochemistry, University of Belgrade, Faculty of Pharmacy, Serbia
| | - Vesna Pešić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, Serbia.
| |
Collapse
|
12
|
Sasaki-Hamada S, Nakamura R, Nakao Y, Akimoto T, Sanai E, Nagai M, Horiguchi M, Yamashita C, Oka JI. Antidepressant-like effects exerted by the intranasal administration of a glucagon-like peptide-2 derivative containing cell-penetrating peptides and a penetration-accelerating sequence in mice. Peptides 2017; 87:64-70. [PMID: 27894924 DOI: 10.1016/j.peptides.2016.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 11/24/2016] [Indexed: 01/31/2023]
Abstract
The intracerebroventicular (i.c.v.) administration of glucagon-like peptide-2 (GLP-2) to rodents was shown to have antidepressant-like effects in imipramine-resistant depression-model mice. In order to utilize GLP-2 as a clinical treatment tool for depression, we herein focused on the intranasal delivery that is non-invasive approach, because the i.c.v. administration is invasive and impractical. In the present study, we prepared a GLP-2 derivative containing cell penetrating peptides (CPPs) and a penetration accelerating sequence (PAS) (PAS-CPPs-GLP-2) for the intranasal (i.n.) administration. PAS-CPPs-GLP-2 (i.n.) exhibited antidepressant-like effects in the forced-swim test (FST) and tail suspension test (TST) in naïve mice as well as adrenocorticotropic hormone (ACTH) treated-mice. However, PAS-CPPs-GLP-2 (i.v.) and the GLP-2 derivative containing CPPs without a PAS (CPPs-GLP-2) (i.n.) did not affect the immobility time in the mouse FST. Moreover, fluorescein isothiocyanate (FITC)-labeled PAS-CPPs-GLP-2 (i.n.), but not FITC-labeled CPPs-GLP-2 (i.n.) was distributed through the mouse brain after the FST session. These results suggest that PAS-CPPs-GLP-2 is effective for i.n. delivery to the brain, and may be useful in the clinical treatment of major depression.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Center for Translational Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryuji Nakamura
- Laboratory of Pharmacology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yusuke Nakao
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshiki Akimoto
- Laboratory of Pharmacology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Emi Sanai
- Laboratory of Pharmacology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Mio Nagai
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Michiko Horiguchi
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Chikamasa Yamashita
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Center for Translational Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
13
|
Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a019026. [PMID: 26801682 DOI: 10.1101/cshperspect.a019026] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric disorders continue to be among the most challenging disorders to diagnose and treat because there is no single genetic or anatomical locus that is causative for the disease. Current treatments are often blunt tools used to ameliorate the most severe symptoms, at the risk of disrupting functional neural systems. There is a critical need to develop new therapeutic strategies that can target circumscribed functional or anatomical domains of pathology. Adult hippocampal neurogenesis may be one such domain. Here, we review the evidence suggesting that adult hippocampal neurogenesis plays a role in emotional regulation and forms of learning and memory that include temporal and spatial memory encoding and context discrimination, and that its dysregulation is associated with psychiatric disorders, such as affective disorders, schizophrenia, and drug addiction. Further, adult neurogenesis has proven to be an effective model to investigate basic processes of neuronal development and converging evidence suggests that aberrant neural development may be an etiological factor, even in late-onset diseases. Constitutive neurogenesis in the hippocampus of the mature brain reflects large-scale plasticity unique to this region and could be a potential hub for modulation of a subset of cognitive and affective behaviors that are affected by multiple psychiatric disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
14
|
Kuz’menko TA, Divaeva LN, Morkovnik AS. 4-substituted 2-chloromethyl[1,2,4]triazolo[1,5-a]benzimidazoles and their transformations. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: Possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 2015; 292:184-93. [DOI: 10.1016/j.bbr.2015.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
|
16
|
Immunohistochemical determination of the site of antidepressant-like effects of glucagon-like peptide-2 in ACTH-treated mice. Neuroscience 2015; 294:156-65. [DOI: 10.1016/j.neuroscience.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/09/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
17
|
Caldarone BJ, Zachariou V, King SL. Rodent models of treatment-resistant depression. Eur J Pharmacol 2014; 753:51-65. [PMID: 25460020 DOI: 10.1016/j.ejphar.2014.10.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 01/06/2023]
Abstract
Major depression is a prevalent and debilitating disorder and a substantial proportion of patients fail to reach remission following standard antidepressant pharmacological treatment. Limited efficacy with currently available antidepressant drugs highlights the need to develop more effective medications for treatment- resistant patients and emphasizes the importance of developing better preclinical models that focus on treatment- resistant populations. This review discusses methods to adapt and refine rodent behavioral models that are predictive of antidepressant efficacy to identify populations that show reduced responsiveness or are resistant to traditional antidepressants. Methods include separating antidepressant responders from non-responders, administering treatments that render animals resistant to traditional pharmacological treatments, and identifying genetic models that show antidepressant resistance. This review also examines pharmacological and non-pharmacological treatments regimes that have been effective in refractory patients and how some of these approaches have been used to validate animal models of treatment-resistant depression. The goals in developing rodent models of treatment-resistant depression are to understand the neurobiological mechanisms involved in antidepressant resistance and to develop valid models to test novel therapies that would be effective in patients that do not respond to traditional monoaminergic antidepressants.
Collapse
Affiliation(s)
- Barbara J Caldarone
- Department of Neurology, Brigham and Women's Hospital and NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Venetia Zachariou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
| | - Sarah L King
- School of Psychology, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
18
|
Miyake A, Kitamura Y, Miyazaki I, Asanuma M, Sendo T. Effects of (+)-8-OH-DPAT on the duration of immobility during the forced swim test and hippocampal cell proliferation in ACTH-treated rats. Pharmacol Biochem Behav 2014; 122:240-5. [PMID: 24732636 DOI: 10.1016/j.pbb.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/10/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01-0.1 mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.
Collapse
Affiliation(s)
- Ayaka Miyake
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Ikuko Miyazaki
- Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
19
|
Kitamura Y, Hayashi H, Onoue Y, Kuwatsuka K, Miyake A, Miyazaki I, Asanuma M, Sendo T. Effects of Imipramine and Lithium on the Expression of Hippocampal Wnt 3a and Cyclin D1 in ACTH-Treated Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbbs.2014.411048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kim HJ, Kim W, Kong SY. Antidepressants for neuro-regeneration: from depression to Alzheimer's disease. Arch Pharm Res 2013; 36:1279-90. [PMID: 24129616 DOI: 10.1007/s12272-013-0238-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023]
Abstract
Recently identified new potential functions of antidepressants in the treatment of neurodegenerative will be introduced. Antidepressants are reported to regulate stem cell fate to regenerate neurons in the adult hippocampus and are effective in reducing toxic amyloid peptides and are known to increase neurotrophic factor such as brain-derived neurotrophic factor. Clinical trial data support that antidepressants have potential to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea,
| | | | | |
Collapse
|
21
|
Design, synthesis and molecular docking of some new 1,2,4-triazolobenzimidazol-3-yl acetohydrazide derivatives with anti-inflammatory-analgesic activities. Arch Pharm Res 2013; 36:1465-79. [DOI: 10.1007/s12272-013-0153-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
22
|
Kuwatsuka K, Hayashi H, Onoue Y, Miyazaki I, Koyama T, Asanuma M, Kitamura Y, Sendo T. The Mechanisms of Electroconvulsive Stimuli in BrdU-Positive Cells of the Dentate Gyrus in ACTH-Treated Rats. J Pharmacol Sci 2013; 122:34-41. [DOI: 10.1254/jphs.13015fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
23
|
O’Leary O, Zandy S, Dinan T, Cryan J. Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: A role for hippocampal cell proliferation. Neuroscience 2013; 228:36-46. [DOI: 10.1016/j.neuroscience.2012.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/23/2012] [Accepted: 09/29/2012] [Indexed: 12/01/2022]
|
24
|
Imipramine reverses depressive-like parameters in pneumococcal meningitis survivor rats. J Neural Transm (Vienna) 2011; 119:653-60. [PMID: 22160551 DOI: 10.1007/s00702-011-0749-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
Pneumococcal meningitis is a severe infectious disease of the central nervous system, associated with acute inflammation and might cause damage to the host, such as deafness, blindness, seizure, and learning deficits. However, infectious diseases can play a significant role in the etiology of neuropsychiatric disturbances. In this context, we evaluated depressive-like parameters; corticosterone and ACTH levels in pneumococcal meningitis surviving rats. Wistar rats underwent a magna cistern tap receiving either 10 μL sterile saline or a Streptococcus pneumoniae suspension at the concentration of 5 × 10(9) cfu/mL. After 3 days of meningitis induction procedure, the animals were treated with imipramine at 10 mg/kg or saline for 14 days (3rd-17th day). The consumption of sweet food was measured for 7 days (10th-17th day). The meningitis group decreased the sucrose intake and increased the levels of corticosterone and ACTH levels in the serum and TNF-α in the cortex; however, the treatment with imipramine reverted the reduction of sweet food consumption, normalized hormonal levels and TNF-α in the cortex. Our results supported the hypothesis that the pneumococcal meningitis surviving rats showed depressive-like behavior and alterations in the hypothalamus-pituitary-adrenal axis.
Collapse
|