1
|
Elkomy NMIM, El-Shaibany A, Al-Mahbashi H, Abdelkhalek AS, Elnagar GM, Elaasser MM, Raslan AE. Evaluation of in-vitro antioxidant activity, acute oral toxicity, and pancreatic and hepatic protective effects of Aloe rubroviolacea flowers extract against CCl 4 toxicity in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118768. [PMID: 39218129 DOI: 10.1016/j.jep.2024.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe rubroviolacea (Arabian Aloe) was widely cultured and commonly used in traditional medicine. Aloe species was highly recommended in folk medicine for abdominal pain, intestinal infection, intestinal colic, obesity, and gynaecological pain after childbirth. AIM OF THE WORK The present work aimed to conduct chemical profiling, in-vitro antioxidant activity, in-vivo oral acute toxicity study of A. rubroviolacea flowers ethanolic extract (ARFEE) along with exploring pancreatic and hepatic protective effects of ARFEE against carbon tetrachloride (CCl4) toxicity in a rat model. Molecular docking study of ARFEE and 3D structure activity relationship was also demonstrated to investigate the proposed antioxidant mechanism. MATERIALS AND METHODS The chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC) techniques. Total phenolic and flavonoid contents in ARFEE were estimated by Folin-Ciocalteu and AlCl3 colorimetric methods, respectively. In-vitro antioxidant DPPH assay was performed using ascorbic acid as a reference standard. Moreover, In-vivo acute toxicity study using fixed doses of ARFEE (0.1, 0.5, 1, 2 and 3 g/kg orally) was conducted. CCl4 toxicity was induced by using a single dose of CCl4 (1 ml/kg, i.p.) on 5th day, silymarin (50 mg/kg/day, orally) as a standard and two different doses of ARFEE (250, 500 mg/kg, orally) daily for 5 days before CCl4 injection. RESULTS GC-MS analysis displayed the existence of 36 chemical compounds, the majority of which were fatty acids and their esters, in addition to phytosterols. The total phenolic content of ARFEE was 25.09 ± 1.65 mg of gallic acid equivalent/g extract dry weight (mg GAE/g DW), while the total flavonoid content was 17.48 ± 0.64 mg of quercetin equivalent/g extract dry weight (mg QE/g DW). Our results showed that the ARFEE had a potential in-vitro antioxidant activity as strong as ascorbic acid. No mortality or signs of toxicity were observed after ARFEE intake. Additionally, ARFEE ameliorated CCl4 toxicity on hepatic and pancreatic tissues. Molecular docking study resulted in potent promising natural compounds contained in ARFEE with anti-oxidant potential. CONCLUSION Based on oral safety, good anti-oxidant and pancreato- and hepato-protective activities of ARFEE against CCl4 toxicity, ARFEE is probably a potent agent for treatment of liver ailments.
Collapse
Affiliation(s)
- Nesreen M I M Elkomy
- Pharmacology and toxicology department, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Amina El-Shaibany
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Yemen.
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine and Clinical Toxicology, College of Medicine, Sana'a University, Sanaa, Yemen.
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt; Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt.
| | - Ali E Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
2
|
Xiong R, Liu H, Zhang S, Wang L, Liu L, Pan S, Zhang Y, Zhu F, Liu Y, Lai X. Integrating network pharmacology and experimental verification to reveal the ferroptosis-associated mechanism of Changpu-Yizhi-Wan in the treatment of Alzheimer's disease. Metab Brain Dis 2025; 40:106. [PMID: 39820731 DOI: 10.1007/s11011-024-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
To explore the pharmacological mechanism of Changpu-Yizhi-Wan (CYW) in the treatment of Alzheimer's disease (AD) from the perspective of ferroptosis based on network pharmacology and experimental verification. The Encyclopedia of Traditional Chinese Medicine 2.0 (ETCM2.0) database was used to collect the active components of CYW, and the putative targets were predicted in ETCM2.0 and SwissTargetPrediction database. The AD related targets were collected from GeneCards, comparative toxicogenomics database (CTD), Online Mendelian Inheritance in Man (OMIM), DisGeNET and Therapeutic Target Database (TTD), the ferroptosis related targets were collected from FerrDb V2 database, and the common targets of CYW, AD and ferroptosis were calculated by Venny2.1 platform. Protein-protein interaction (PPI) analysis was performed by STRING database, and the active compounds-target network and the PPI network were constructed using Cytoscape software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway enrichment analysis were performed through DAVID database. RSL3 was used to induce HT22 cells to establish a neuronal ferroptosis cell model, and the inhibitory effect of CYW on neuronal ferroptosis was evaluated by cell viability assay, intracellular iron assay and lipid peroxidation staining. The ferroptosis-associated key protein expressions of Nrf2, SLC7A11, GPX4 and FTH1 were detected by Western blot. A total of 100 candidate compounds were identified from CYW, and 1129 putative targets were obtained. 3924 AD-related targets and 564 ferroptosis-related targets were collected, respectively. There were 78 common targets between them and CYW targets, which were potential targets for CYW to regulate ferroptosis in the treatment of AD. PPI network analysis identified 10 key targets, including TP53, IL6, STAT3, HIF1A, NFE2L2, and others. GO, KEGG and Reactome enrichment analysis showed that 78 potential targets were involved in the regulation of ferroptosis and Nrf2-mediated gene transcription. Molecular docking showed that some active components of CYW had good affinity with Nrf2. In RSL3-induced HT22 cells, CYW significantly improved cell viability, reduced intracellular iron levels and inhibited lipid peroxidation, and improved the protein expression of Nrf2, SLC7A11, GPX4 and FTH1. The pharmacological mechanism of CYW in the treatment of AD may be related to the regulation of Nrf2/SLC7A11/GPX4/FTH1 axis to inhibit neuronal ferroptosis.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Hengxu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Shipeng Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Wang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Sicen Pan
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yu Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Fengying Zhu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Xiaodan Lai
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China.
| |
Collapse
|
3
|
Liu SQ, Yang YP, Hussain N, Jian YQ, Li B, Qiu YX, Yu HH, Wang HZ, Wang W. Dibenzocyclooctadiene lignans from the family Schisandraceae: A review of phytochemistry, structure-activity relationship, and hepatoprotective effects. Pharmacol Res 2023; 195:106872. [PMID: 37516152 DOI: 10.1016/j.phrs.2023.106872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Liver injury is a common pathological process characterized by massive degeneration and abnormal death of liver cells. With increase in dead cells and necrosis, liver injury eventually leads to nonalcoholic fatty liver disease (NAFLD), hepatic fibrosis, and even hepatocellular carcinoma (HCC). Consequently, it is necessary to treat liver injury and to prevent its progression. The drug Bicylol is widely employed in China to treat chronic hepatitis B virus (HBV) and has therapeutic potential for liver injury. It is the derivative of dibenzocyclooctadiene lignans extracted from Schisandra chinensis (SC). The Schisandraceae family is a rich source of dibenzocyclooctadiene lignans, which possesses potential liver protective activity. This study aimed to comprehensively summarize the phytochemistry, structure-activity relationship and molecular mechanisms underlying the liver protective activities of dibenzocyclooctadiene lignans from the Schisandraceae family. Here, we had discussed the analysis of absorption or permeation properties of 358 compounds based on Lipinski's rule of five. So far, 358 dibenzocyclooctadiene lignans have been reported, with 37 of them exhibited hepatoprotective effects. The molecular mechanism of the active compounds mainly involves antioxidative stress, anti-inflammation and autophagy through Kelch-like ECH-associating protein 1/nuclear factor erythroid 2 related factor 2/antioxidant response element (Keap1/Nrf2/ARE), nuclear factor kappa B (NF-кB), and transforming growth factor β (TGF-β)/Smad 2/3 signaling pathways. This review is expected to provide scientific ideas for future research related to developing and utilizing the dibenzocyclooctadiene lignans from Schisandraceae family.
Collapse
Affiliation(s)
- Shi-Qi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu 16100, Pakistan
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Zhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, Deculescu-Ioniță T, Duțu LE, Popescu ML, Luță EA, Nițulescu GM, Olaru OT, Gîrd CE. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:1680. [PMID: 35807632 PMCID: PMC9269044 DOI: 10.3390/plants11131680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022]
Abstract
Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.
Collapse
Affiliation(s)
- Liliana Costea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos”, University of Galați, 35 A.I. Cuza Str., 800010 Galați, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Manuela Ghica
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Teodora Deculescu-Ioniță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Ligia Elena Duțu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Maria Lidia Popescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| |
Collapse
|
5
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
6
|
Ai Y, Shi W, Zuo X, Sun X, Chen Y, Wang Z, Li R, Song X, Dai W, Mu W, Ding K, Li Z, Li Q, Xiao X, Zhan X, Bai Z. The Combination of Schisandrol B and Wedelolactone Synergistically Reverses Hepatic Fibrosis Via Modulating Multiple Signaling Pathways in Mice. Front Pharmacol 2021; 12:655531. [PMID: 34149411 PMCID: PMC8211319 DOI: 10.3389/fphar.2021.655531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatic fibrosis represents an important event in the progression of chronic liver injury to cirrhosis, and is characterized by excessive extracellular matrix proteins aggregation. Early fibrosis can be reversed by inhibiting hepatocyte injury, inflammation, or hepatic stellate cells activation, so the development of antifibrotic drugs is important to reduce the incidence of hepatic cirrhosis or even hepatic carcinoma. Here we demonstrate that Schisandrol B (SolB), one of the major active constituents of traditional hepato-protective Chinese medicine, Schisandra sphenanthera, significantly protects against hepatocyte injury, while Wedelolactone (WeD) suppresses the TGF-β1/Smads signaling pathway in hepatic stellate cells (HSCs) and inflammation, the combination of the two reverses hepatic fibrosis in mice and the inhibitory effect of the combination on hepatic fibrosis is superior to that of SolB or WeD treatment alone. Combined pharmacotherapy represents a promising strategy for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yongqiang Ai
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wei Shi
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaobin Zuo
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoming Sun
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhilei Wang
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xueai Song
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mu
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Takanche JS, Kim JE, Han SH, Yi HK. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153107. [PMID: 31790903 DOI: 10.1016/j.phymed.2019.153107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gomisin A is a lignan isolated from the hexane of Schisandra chinensis fruit extract with antioxidant properties. Oxidative stress mediated by high glucose is one of the major complications of diabetes mellitus. PURPOSE This study investigates the role of gomisin A in osteoblast differentiation under high glucose-induced oxidative stress in MC3T3 E1 cells and determines its relationship with heme oxygenase-1 (HO-1) and mitochondrial biogenesis. METHODS MC3T3 E1 cells were treated by gomisin A following induced by high glucose levels and glucose oxidase to investigate the inhibitory effect of gomisin A against high glucose oxidative stress. Western blot analysis, alizarin red staining, alkaline phosphatase (ALP) activity, analysis of reactive oxygen species (ROS) and confocal microscopy were used to determine mitochondrial biogenesis, oxidative stress, osteoblast differentiation and mineralization. To analyze the role of HO-1, the MC3T3 E1 cells were treated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). RESULTS Gomisin A enhanced the expression of HO-1, increased mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A), antioxidant enzymes (copper-zinc superoxide dismutases and manganese superoxide dismutase), osteoblast differentiation molecules (bone morphogenic protein-2/7, osteoprotegerin and Runt-related transcription factor-2) and mineralization by upregulation of ALP and alizarin red staining, which were decreased by ZnPP and high glucose oxidative stress. Similarly, gomisin A inhibited ROS which was increased by ZnPP and the high glucose-mediated oxidative stress. CONCLUSIONS The findings demonstrated the antioxidative effects of gomisin A, and its role in mitochondrial biogenesis and osteoblast differentiation. It potentially regulated osteoblast differentiation under high glucose-induced oxidative stress via upregulation of HO-1 and maintenance of mitochondrial homeostasis. Thus, gomisin A may represent a potential therapeutic agent for prevention of bone fragility fractures and implant failure triggered by diabetes.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea.
| |
Collapse
|
8
|
Wright WC, Chenge J, Chen T. Structural Perspectives of the CYP3A Family and Their Small Molecule Modulators in Drug Metabolism. LIVER RESEARCH 2019; 3:132-142. [PMID: 32789028 PMCID: PMC7418881 DOI: 10.1016/j.livres.2019.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 enzymes function to catalyze a wide range of reactions, many of which are critically important for drug response. Members of the human cytochrome P450 3A (CYP3A) family are particularly important in drug clearance, and they collectively metabolize more than half of all currently prescribed medications. The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways. Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression. Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition, metabolism, modulation by small molecules, and biological consequence, highlighting some of those with clinical significance. We also present structural perspectives to further characterize the basis of these comparisons.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Corresponding author: Taosheng Chen, Department of Chemical Biology and Therapeutics, MS 1000, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel: (901) 595-5937; Fax: (901) 595-5715;
| |
Collapse
|
9
|
Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats. Life Sci 2018; 216:207-214. [PMID: 30452970 DOI: 10.1016/j.lfs.2018.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 01/18/2023]
Abstract
AIMS Inducible nitric oxide synthase (iNOS) pathway has been in the limelight since its discovery as a key mediator in the process of liver fibrogenesis. Therefore, the objective of the current study was to elucidate the in vivo molecular mechanism underlying the hepatic preventive relevance of eugenol (EUG) and telmisartan (TEL) through iNOS pathway modulation against carbon tetrachloride (CCl4)-induced hepatic injury. METHODS Sixty healthy male albino rats were used in this study. Serum aminotransferases activities and NO levels were assessed. Hepatic malondialdehyde (MDA), total nitrite/nitrate content and reduced glutathione (GSH) concentration were estimated. Liver NF-kB, TNF-α, IL-6 and iNOS proteins expressions were investigated by western blot assay. Histopathological examination was done. KEY FINDINGS CCl4 resulted in damage to centrilobular regions of the liver, elevation of serum aminotransferases, rise in oxidative parameters level, and up-regulation of NF-kB, TNF-α, IL-6 as well as iNOS proteins expressions. Treatment of fibrotic rats with either EUG or TEL significantly alleviated CCl4-induced biochemical, inflammatory and histopathological changes. Moreover, the combined administration of EUG with TEL has an ameliorative effect which is greater than either of them alone. SIGNIFICANCE In conclusion, the combination therapy between EUG and TEL is more effective than either drug alone which is attributed to suppression of NO production and iNOS protein expression. The results support that use of EUG and TEL exerts beneficial effects in the attenuation of CCl4-induced liver fibrosis in rats.
Collapse
|
10
|
Alam MF, Safhi MM, Anwer T, Siddiqui R, Khan G, Moni SS. Therapeutic potential of Vanillylacetone against CCl 4 induced hepatotoxicity by suppressing the serum marker, oxidative stress, inflammatory cytokines and apoptosis in Swiss albino mice. Exp Mol Pathol 2018; 105:81-88. [PMID: 29909158 DOI: 10.1016/j.yexmp.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
The aim of this research was to investigate the therapeutic potential of Vanillylacetone against carbon tetrachloride (CCl4) induced hepatotoxicity in mice through understanding the serum marker, oxidative stress mechanism and cytokine networks. Carbon tetrachloride is highly hepatotoxic used as research based on animal model. The mice were classified into five groups and each had eight mice. Group-I was controlled and the vehicle was given orally. Group-II was toxic and carbon tetrachloride (1.5 ml/kg) twice a week for 15 days was administered by intra-peritoneal injections. Group- III and IV were pre-treated with Vanillylacetone 50 & 100 mg kg-1 body weight given every day p.o. while, Group-V received only Vanillylacetone (100 mg kg-1 body weight) for 15 days orally. The finding indicates that the administration of CCl4 causes significant elevation of enzyme markers, oxidative stress, inflammatory cytokine and apoptotic markers in Group-II as compared to Group-I. The administration of Vanillylacetone (50 and100 mg kg-1) significantly suppresses the elevated serum enzymes, oxidative stress (TBARS), an inflammatory cytokine (IL2 and TNFα) and apoptotic markers (Caspase-3 and 9) in Group-III and IV as compared to Group-II. It was also noticed that the higher dose of Vanillylacetone (100 mg) is more effective than lower dose of Vanillylacetone (50 mg). There were no significant changes observed with higher dose of Vanillylacetone (100 mg kg-1) in Group-V as compared to Group-I. Histopathological analysis also supported the above findings. Overall, this results shows that Vanillylacetone has a good antioxidant and therapeutic properties which can help in preventing the chemically (CCl4) induced hepatotoxicity.
Collapse
Affiliation(s)
- Mohammad Firoz Alam
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia.
| | - Mohammed M Safhi
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Tarique Anwer
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Rahimullah Siddiqui
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Gyas Khan
- Division of Pharmaceutical Biotechnology, Pharmaceutics Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Sivakumar Sivagurunathan Moni
- Division of Pharmaceutical Biotechnology, Pharmaceutics Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| |
Collapse
|
11
|
Chinese herbal formula Fuzheng Huayu alleviates CCl 4-induced liver fibrosis in rats: a transcriptomic and proteomic analysis. Acta Pharmacol Sin 2018; 39:930-941. [PMID: 29094729 DOI: 10.1038/aps.2017.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a consequence of chronic liver disease that can progress to liver cirrhosis or even hepatocarcinoma. Fuzheng Huayu (FZHY), a Chinese herbal formula, has been shown to exert anti-fibrotic effects. To better understand the molecular mechanisms underlying the anti-fibrotic effects of FZHY, we analyzed transcriptomic and proteomic combination profiles in CCl4-induced liver fibrosis in rats, which were treated with extracted FZHY powder (0.35 g·kg-1·d-1, ig) for 3 weeks. We showed that FZHY administration significantly improved liver function, alleviated hepatic inflammatory and fibrotic changes, and decreased the hydroxyproline content in the livers of CCl4-treated rats. When their liver tissues were examined using microarray and iTRAQ, we found 255 differentially expressed genes (fold change ≥1.5, P<0.05) and 499 differentially expressed proteins (fold change ≥1.2, P<0.05) in the FZHY and model groups. Functional annotation with DAVID (The Database for Annotation, Visualization and Integrated Discovery) showed that 15 enriched gene ontology terms, including drug metabolic process, response to extracellular stimulus, response to vitamins, arachidonic acid metabolic process, response to wounding, and oxidation reduction might be involved in the anti-fibrotic effects of FZHY; whereas KEGG pathway analysis revealed that eight enriched pathways, including arachidonic acid metabolism, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism might also be involved. Moreover, the protein-protein interaction network demonstrated that 10 core genes/proteins overlapped, with Ugt2a3, Cyp2b1 and Cyp3a18 in retinol metabolism pathway overlapped to a higher degree. Compared to the model rats, the livers of FZHY-treated rats had significantly higher mRNA and protein expression levels of Ugt2a3, Cyp2b1 and Cyp3a18. Furthermore, the concentration of retinoic acid was significantly higher in the FZHY-treated rats compared with the model rats. The results suggest that the anti-fibrotic effects of FZHY emerge through multiple targets, multiple functions, and multiple pathways, including FZHY-regulated retinol metabolism, xenobiotic metabolism by cytochrome P450, and drug metabolism through up-regulated Ugt2a3, Cyp2b1, and Cyp3a18. These genes may play important anti-fibrotic roles in FZHY-treated rats.
Collapse
|
12
|
Park SM, Lee TH, Zhao R, Kim YS, Jung JY, Park CA, Jegal KH, Ku SK, Kim JK, Lee CW, Kim YW, Cho IJ, An WG, Kim SC. Amelioration of inflammatory responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats. Int J Mol Med 2018; 41:2771-2783. [PMID: 29436586 PMCID: PMC5846657 DOI: 10.3892/ijmm.2018.3465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023] Open
Abstract
Socheongryong-Tang (SCRT) is a natural medicine prescription that has been mainly used in East Asia for the treatment of inflammatory disorders, including asthma and allergic rhinitis. The present study evaluated the anti-inflammatory effects of SCRT on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in a rat model of carrageenan (CA)-induced paw edema. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and prostaglandin E2 (PGE2) in the culture supernatant were quantified and nitric oxide (NO) production was monitored. In addition, the effect of SCRT on the protein expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was assessed by western blot analysis. Furthermore, the effects of SCRT on acute inflammation in vivo and changes in the histomorphometry and histopathology of paw skin were observed using CA-treated rats. SCRT (1 mg/ml) inhibited the LPS-induced changes in the protein expression of NF-κB, JNK, ERK1/2, iNOS and COX-2, as well as the production of NO, PGE2 and cytokines. In the rat paw edema assay, administration of 1 g/kg of lyophilized powder obtained from the aqueous extracts of SCRT for 3 consecutive days inhibited the CA-induced increases in skin thickness, mast cell degranulation, and infiltration of inflammatory cells in the ventral and dorsal pedis skin within 4 h. These results demonstrated that SCRT exerts its anti-inflammatory activities in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, including PGE2, NO and cytokines, via suppression of the NF-κB and JNK and ERK1/2 signaling pathways. In addition, the data of the CA-induced paw edema indicated an anti-edema effect of SCRT. SCRT (1 g/kg) reduced acute edematous inflammation through inhibition of mast cell degranulation and infiltration of inflammatory cells. Therefore, the present study provided scientific evidence for the anti-inflammatory activities of SCRT as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Sang Mi Park
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Tae Hoon Lee
- Gyeongsan 38610; Department of Biological Sciences, College of Biomedical Sciences and Engineering, Inje University, Gimhae 621-749, Republic of Korea
| | - Rongjie Zhao
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Youn Sook Kim
- Department of Biomedical Sciences, School of Medicine
| | - Ji Yun Jung
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Chung A. Park
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Kyung Hwan Jegal
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Sae Kwang Ku
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Jae Kwang Kim
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Chul Won Lee
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Young Woo Kim
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Il Je Cho
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Won G. An
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Sang Chan Kim
- Medical Research Center-Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| |
Collapse
|
13
|
Kim JS, Jeong SH, Han SH, Yi HK. Gomisin A modulates aging progress via mitochondrial biogenesis in human diploid fibroblast cells. Clin Exp Pharmacol Physiol 2018; 45:547-555. [DOI: 10.1111/1440-1681.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jeong-Seok Kim
- Department of Physical Education; College of Education; Chonbuk National University; Jeonju South Korea
- Department of Oral Biochemistry; Institute of Oral Bioscience; School of Dentistry; Chonbuk National University; Jeonju South Korea
| | - Seon-Hwa Jeong
- Department of Oral Biochemistry; Institute of Oral Bioscience; School of Dentistry; Chonbuk National University; Jeonju South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research; National Institute of Horticultural & Herbal Science, RDA; Chungbuk South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry; Institute of Oral Bioscience; School of Dentistry; Chonbuk National University; Jeonju South Korea
| |
Collapse
|
14
|
Lyles JT, Tyler P, Bradbury EJ, Nelson K, Brown CF, Pierce ST, Quave CL. Comparative Phytochemical Analysis of Chinese and Bay Starvine (Schisandra spp.): Potential for Development as a New Dietary Supplement Ingredient. J Diet Suppl 2017; 14:640-652. [PMID: 28384001 DOI: 10.1080/19390211.2017.1304483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schisandra chinensis (Chinese starvine) is a popular dietary supplement with a rich history of use in traditional Chinese medicine. Schisandra glabra (bay starvine) is the only North American representative of the genus, and little is known about its history of traditional use, chemistry, and potential biological activity. In this study, we conducted comparative high-performance liquid chromatography-diode array detector (HPLC-DAD) analysis on S. glabra and S. chinensis fruits. Additional characterization of S. glabra was performed by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS). Quantitative analysis of four bioactive marker compounds revealed that S. glabra does not have statistically higher levels of schisandrin A or schisandrol B than S. chinensis. S. glabra has lower levels of schisandrol A and γ-schisandrin. Total phenolic contents of the two species' fruits were not statistically different. S. glabra had higher total tannin content than S. chinensis. We discuss the relevance of this analytical analysis to the study of S. glabra as a potential dietary supplement ingredient and give specific consideration to the conservation challenges involved in commercially developing a regionally threatened species, even in semicultivated conditions.
Collapse
Affiliation(s)
- James T Lyles
- a Center for the Study of Human Health, Emory College of Arts and Sciences , Atlanta , GA , USA.,b The Bent Creek Institute , Asheville , NC , USA
| | - Paula Tyler
- a Center for the Study of Human Health, Emory College of Arts and Sciences , Atlanta , GA , USA
| | - E Jane Bradbury
- c Emory Herbarium, Emory College of Arts and Sciences , Atlanta , GA , USA.,d Herbal Anthropology Project , San Francisco , CA , USA
| | - Kate Nelson
- e Department of Dermatology , Emory University School of Medicine , Atlanta , GA , USA
| | - Carl F Brown
- f Department of Environmental Sciences , Emory College of Arts and Sciences , Atlanta , GA , USA
| | - Stefanie T Pierce
- f Department of Environmental Sciences , Emory College of Arts and Sciences , Atlanta , GA , USA
| | - Cassandra L Quave
- a Center for the Study of Human Health, Emory College of Arts and Sciences , Atlanta , GA , USA.,c Emory Herbarium, Emory College of Arts and Sciences , Atlanta , GA , USA.,e Department of Dermatology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
15
|
Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
16
|
Li X, Fan X, Li D, Zeng X, Zeng H, Wang Y, Zhou Y, Chen Y, Huang M, Bi H. Schisandra sphenanthera Extract Facilitates Liver Regeneration after Partial Hepatectomy in Mice. Drug Metab Dispos 2016; 44:647-52. [PMID: 26932815 DOI: 10.1124/dmd.115.068288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/26/2016] [Indexed: 01/20/2023] Open
Abstract
Liver regeneration after surgical liver resection is crucial for the restoration of liver mass and the recovery of liver function.Schisandra sphenanthera extract (Wuzhi tablet, WZ) is a preparation of an extract from the dried ripe fruit of Schisandra sphenanthera Rehd. et Wils, a traditional hepatoprotective herb. Previously, we found that WZ could induce liver regeneration-related genes against acetaminophen-induced liver injury. However, whether WZ can directly facilitate liver regeneration after liver resection remains unknown. We investigated whether WZ has potential in promoting liver regeneration after a partial hepatectomy (PHX) in mice. Remnant livers were collected 1, 1.5, 2, 3, 5, 7, and 10 days after PHX. Hepatocyte proliferation was assessed using the Ki-67 labeling index. Western blot analysis was performed on proteins known to be involved in liver regeneration. The results demonstrated that WZ significantly increased the liver-to-body weight ratio of mice after PHX but had no effect on that of mice after a sham operation. Additionally, the peak hepatocyte proliferation was observed at 1.5 days in PHX/WZ-treated mice but at 2 days in PHX/saline-treated mice, as evidenced by the Ki-67 positive ratio. Furthermore, WZ significantly increased the protein expression of ligand-induced phosphorylation of epidermal growth factor receptor and up-regulated cyclin D1, cyclin D-dependent kinase 4, phosphorylated retinoblastoma, and proliferating cell nuclear antigen protein expression and down-regulated the expression of cell cycle inhibitors p21 and p27 in the regenerative process after PHX. These results demonstrate that WZ significantly facilitates hepatocyte proliferation and liver regeneration after PHX.
Collapse
Affiliation(s)
- Xi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Xuezhen Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Yawen Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (X.L., D.L., X.Z., H.Z., Y.W., Y.Z., Y.C., M.H., H.B.); Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen (X.F.), People's Republic of China
| |
Collapse
|
17
|
Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol Sin 2016; 37:382-9. [PMID: 26806302 DOI: 10.1038/aps.2015.120] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Abstract
AIM The nuclear factor erythroid 2-related factor 2 (NRF2) acts through the antioxidant response element (ARE) to regulate the expression of many detoxifying and antioxidant genes responsible for cytoprotective processes. We previously reported that Schisandrol B (SolB) isolated from Schisandra sphenanthera produced a protective effect against acetaminophen (APAP)-induced liver injury. In this study we investigated whether the NRF2/ARE signaling pathway was involved in this hepato-protective effect. METHODS Male C57BL/6 mice were treated with SolB (200 mg · kg(-1) · d(-1), ig) for 3 d before injection of APAP (400 mg/kg, ip). Serum and liver tissue samples were collected 6 h later. The mRNA and protein expression were measured using qRT-PCR and Western blot assay, respectively. The activation of NRF2 was examined in HepG2 cells using luciferase reporter gene assay. RESULTS SolB pretreatment significantly alleviated the hepatic injury (large patchy necrosis and hyperemia of the hepatic sinus), the increase of serum AST, ALT levels and hepatic MDA contents, and the decrease of liver and mitochondrial glutathione levels in APAP-treated mice. Furthermore, SolB pretreatment significantly increased nuclear accumulation of NRF2 and increased hepatic expression of NRF2 downstream proteins, including GCLC, GSR, NQO1, GSTs, MRP2, MRP3 and MRP4 in APAP-treated mice. Moreover, treatment with SolB (2.5-20 μmol/L) dose-dependently increased the activity of NRF2 reporter gene in HepG2 cells. CONCLUSION SolB exhibits a remarkable protective effect against APAP-induced hepatotoxicity, partially via activation of the NRF2/ARE pathway and regulation of NRF2 target genes, which induce detoxification and increase antioxidant capacity.
Collapse
|
18
|
Hepatocyte Growth Factor Mediates the Antifibrogenic Action of Ocimum bacilicum Essential Oil against CCl4-Induced Liver Fibrosis in Rats. Molecules 2015. [PMID: 26213907 PMCID: PMC6331802 DOI: 10.3390/molecules200813518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The current investigation aimed to evaluate the antifibrogenic potential of Ocimum basilicum essential oil (OBE) and further to explore some of its underlying mechanisms. Three groups of rats were used: group I (control), group II (CCl4 model) and group III (OBE-treated) received CCl4 and OBE 2 weeks after the start of CCl4 administration. Oxidative damage was assessed by the measurement of MDA, NO, SOD, CAT, GSH and total antioxidant capacity (TAC). Liver fibrosis was assessed histopathologically by Masson’s trichrome staining and α-smooth muscle actin (α-SMA) immunostaining. Expression of hepatocyte growth factor (HGF) and cytochrome P450 (CYP2EI isoform) was estimated using real-time PCR and immunohistochemistry. OBE successfully attenuated liver injury, as shown by histopathology, decreased serum transaminases and improved oxidative status of the liver. Reduced collagen deposition and α-SMA immuopositive cells indicated an abrogation of hepatic stellate cell activation by OBE. Furthermore, OBE was highly effective in stimulating HGF mRNA and protein expression and inhibiting CCl4-induced CYP2E1 down-regulation. The mechanism of antifibrogenic action of OBE is hypothesized to proceed via scavenging free radicals and activating liver regeneration by induction of HGF. These data suggest the use of OBE as a complementary treatment in liver fibrosis.
Collapse
|
19
|
Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol 2015; 89:1727-50. [PMID: 25963329 DOI: 10.1007/s00204-015-1525-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
Liver fibrosis results from chronic damage to the liver in conjunction with various pathways and is mediated by a complex microenvironment. Based on clinical observations, it is now evident that fibrosis is a dynamic, bidirectional process with an inherent capacity for recovery and remodeling. The major mechanisms involved in liver fibrosis include the repetitive injury of hepatocytes, the activation of the inflammatory response after injury stimulation, and the activation and proliferation of hepatic stellate cells (HSCs), which represents the major extracellular matrix (ECM)-producing cells, stimulated by hepatocyte injury and inflammation. The microenvironment in the liver is synergistically regulated abnormal ECM deposition, scar formation, angiogenesis, and fibrogenesis. Moreover, recent studies have clarified novel mechanism in fibrosis such as epigenetic regulation of HSCs, the leptin and PPARγ pathways, the coagulation system, and even autophagy. Uncovering the mechanisms of liver fibrogenesis provides a basis to develop potential therapies to reverse and treat the fibrotic response, thereby improving the outcomes of patients with chronic liver disease. Although both scientific and clinical challenges remain, emerging studies attempt to reveal the ideal anti-fibrotic drug that could be easily delivered to the liver with high specificity and low toxicity. This review highlights the mechanisms, including novel pathways underlying fibrogenesis that may be translated into preventive and treatment strategies, reviews both current and novel agents that target specific pathways or multiple targets, and discusses novel drug delivery systems such as nanotechnology that can be applied in the treatment of liver fibrosis. In addition, we also discuss some current treatment strategies that are being applied in animal models and in clinical trials.
Collapse
|
20
|
Jiang Y, Fan X, Wang Y, Chen P, Zeng H, Tan H, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration. Toxicol Sci 2014; 143:107-15. [PMID: 25319358 DOI: 10.1093/toxsci/kfu216] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI-GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration.
Collapse
Affiliation(s)
- Yiming Jiang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaomei Fan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Wang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pan Chen
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hang Zeng
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huasen Tan
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frank J Gonzalez
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Min Huang
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huichang Bi
- *School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Jang HI, Do GM, Lee HM, Ok HM, Shin JH, Kwon O. Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats. Nutr Res Pract 2014; 8:272-7. [PMID: 24944771 PMCID: PMC4058560 DOI: 10.4162/nrp.2014.8.3.272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.
Collapse
Affiliation(s)
- Han I Jang
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Gyeong-Min Do
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Hye Min Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Hyang Mok Ok
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Seongam-si, Gyeonggi-do, 461-713, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| |
Collapse
|
22
|
Jeong HJ, Han NR, Kim KY, Choi IS, Kim HM. Gomisin A decreases the LPS-induced expression of iNOS and COX-2 and activation of RIP2/NF-κB in mouse peritoneal macrophages. Immunopharmacol Immunotoxicol 2014; 36:195-201. [DOI: 10.3109/08923973.2014.909848] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Wang X, Hu D, Zhang L, Lian G, Zhao S, Wang C, Yin J, Wu C, Yang J. Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway. Food Chem Toxicol 2013; 63:119-27. [PMID: 24211520 DOI: 10.1016/j.fct.2013.10.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/30/2023]
Abstract
Gomisin A, one of the major dibenzocyclooctadiene lignans isolated from Schisandra chinensis Baill., has proved to possess a variety of pharmacological effects. The aim of the present study was to investigate the anti-inflammatory and neuroprotective effects of gomisin A as well as its potential molecular mechanisms. It was found that gomisin A not only inhibited the production of NO and PGE2 in a concentration-dependent manner but also suppressed the expressions of iNOS and COX-2 in LPS-stimulated N9 microglia without observable cytotoxicity. Gomisin A was also able to attenuate the mRNA expression and the production of pro-inflammatory factors TNF-α, IL-1β and IL-6. Moreover, LPS induced reactive oxygen species (ROS) production, NADPH oxidase activation, and gp91phox expression, which were markedly inhibited by gomisin A in microglia. Furthermore, the data showed that gomisin A significantly down-regulated the TLR4 protein expression, and inhibited nuclear transcription factor (NF)-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Additionally, gomisin A alleviated the cell death of SH-SY5Y neuroblastoma, rat primary cortical and hippocampal neurons induced by the conditioned-media from activated microglia. In summary, gomisin A may exert neuroprotective effects by attenuating the microglia-mediated neuroinflammatory response via inhibiting the TLR4-mediated NF-κB and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Di Hu
- Development and Utilization Key Laboratory of Northeast Plant Materials of Liaoning Province, Department of Pharmacognosy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Lijia Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Guoning Lian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Siqi Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chunming Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials of Liaoning Province, Department of Pharmacognosy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| |
Collapse
|
24
|
KONG MIN, LIU LIANLIAN, YI FEI, KHAN MUHAMMAD, RASUL AZHAR, YANG FAN, MA XIAOYAN, MA TONGHUI. Prevalence of infarct and villous clumps, and the expression of α-smooth muscle actin in the placental basal plate in severe preeclampsia. Mol Med Rep 2013; 8:1067-73. [DOI: 10.3892/mmr.2013.1651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/08/2013] [Indexed: 11/05/2022] Open
|
25
|
Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB. Multimechanistic antifibrotic effect of biochanin a in rats: implications of proinflammatory and profibrogenic mediators. PLoS One 2013; 8:e69276. [PMID: 23874933 PMCID: PMC3712926 DOI: 10.1371/journal.pone.0069276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Biochanin A (BCA) is an isoflavone found in red clover and peanuts. Recently, it drew much attention as a promising anticancer and antioxidant. Due to its diversity in pharmacological actions, we were encouraged to investigate its potential as an antifibrotic, elucidating the different molecular mechanisms involved. DESIGN Rats were pretreated with BCA, then injected with carbon tetrachloride (CCl4) for 6 weeks. Changes in liver weight and histology were examined and levels of aspartate and alanine aminotransferases, cholesterol, triglycerides, alkaline phosphatase and total bilirubin measured. To assess hepatic efficiency, indocyanine green was injected and its clearance calculated and albumin, total proteins and insulin-like growth factor-1 expression were measured. Cytochrome P4502E1 activity, cytochrome P4501A1 expression, in addition to sulfotransferase1A1 expression were determined to deduce the effect of BCA on hepatic metabolism. As oxidative stress markers, lipid peroxides levels, reduced glutathione, superoxide dismutase and catalase activities, as well as the total antioxidant capacity, were assessed. Nitric oxide, inducible nitric oxide synthase and cyclooxygenase-2 were used as indicators of the inflammatory response. Signaling pathways involving tumor necrosis factor-alpha, nuclear factor-kappa B, transforming growth factor-beta1, matrix metalloproteinase-9 and alpha-smooth muscle actin were investigated accordingly. Extent of fibrosis was examined by Masson's stain and measuring hydroxyproline levels. RESULTS BCA pretreatment significantly protected against the chronic damage of CCl4. Liver injury, oxidative stress, inflammation and fibrosis markers decreased, while hepatic efficiency improved. CONCLUSION Our findings suggested that BCA administration protects against fibrotic complications, a property that can be contributed to the multimechanistic approach of the drug.
Collapse
Affiliation(s)
- Randa M Breikaa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
26
|
Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Arch Pharm Res 2013; 36:626-33. [DOI: 10.1007/s12272-013-0050-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
27
|
Shin DS, Kim KW, Chung HY, Yoon S, Moon JO. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res 2013; 36:608-18. [PMID: 23435910 DOI: 10.1007/s12272-013-0033-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
Sinapic acid is a member of the phenylpropanoid family and is abundant in cereals, nuts, oil seeds, and berries. It exhibits a wide range of pharmacological properties. In this study, we investigated the hepatoprotective and antifibrotic effects of sinapic acid on dimethylnitrosamine (DMN)-induced chronic liver injury in rats. Sinapic acid remarkably prevented DMN-induced loss of body weight. This was accompanied by a significant increase in levels of serum alanine transaminase, aspartate transaminase, and liver malondialdehyde content. Furthermore, sinapic acid reduced hepatic hydroxyproline content, which correlated with a reduction in the expression of type I collagen mRNA and histological analysis of collagen in liver tissue. Additionally, the expression of hepatic fibrosis-related factors such as α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), were reduced in rats treated with sinapic acid. Sinapic acid exhibited strong scavenging activity. In conclusion, we find that sinapic acid exhibits hepatoprotective and antifibrotic effects against DMN-induced liver injury, most likely due to its antioxidant activities of scavenging radicals, its capacity to suppress TGF-β1 and its ability to attenuate activation of hepatic stellate cells. This suggests that sinapic acid is a potentially useful agent for the protection against liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Dong-Su Shin
- College of Pharmacy, Pusan National University, Busan, 609-735, Korea.
| | | | | | | | | |
Collapse
|
28
|
Targeted Metabolomics of Serum Acylcarnitines Evaluates Hepatoprotective Effect of Wuzhi Tablet (Schisandra sphenanthera Extract) against Acute Acetaminophen Toxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:985257. [PMID: 23431354 PMCID: PMC3575671 DOI: 10.1155/2013/985257] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 12/27/2022]
Abstract
Possible prevention and therapeutic intervention strategies to counteract acetaminophen (APAP) hepatotoxicity would be of great value. Wuzhi tablet (WZ, extract of Schisandrae sphenanthera) possesses hepatoprotective effects against hepatitis and the hepatic dysfunction induced by various chemical hepatotoxins. In this study, the protective effect of WZ on APAP-induced hepatic injury was evaluated and targeted metabolomics by LC-MS-based metabolomics was used to examine whether WZ influences hepatic metabolism. The results demonstrated significant hepatoprotection of WZ against APAP-induced liver injury; pretreatment with WZ prior to APAP administration blocks the increase in serum palmitoylcarnitine and oleoylcarnitine and thus restores the APAP-impaired fatty acid β-oxidation to normal levels. These studies further revealed a significant and prolonged upregulation of the PPARα target genes Cpt1 and Acot1 by WZ mainly contributing to the maintenance of normal fatty acid metabolism and thus potentially contributing to the hepatic protection of WZ against APAP-induced hepatic toxicity. Taken together, the current study provides new insights into understanding the hepatoprotective effect of WZ against APAP-induced liver toxicity.
Collapse
|
29
|
Takimoto Y, Qian HY, Yoshigai E, Okumura T, Ikeya Y, Nishizawa M. Gomisin N in the herbal drug gomishi (Schisandra chinensis) suppresses inducible nitric oxide synthase gene via C/EBPβ and NF-κB in rat hepatocytes. Nitric Oxide 2013; 28:47-56. [DOI: 10.1016/j.niox.2012.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 01/13/2023]
|