1
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
2
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024; 29:2113. [PMID: 38731604 PMCID: PMC11085266 DOI: 10.3390/molecules29092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Edible grey oyster mushroom, Pleurotus sajor-caju, β (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom β-glucan using Hevea β-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
3
|
Han X, Luo R, Ye N, Hu Y, Fu C, Gao R, Fu S, Gao F. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol 2022; 219:1244-1260. [PMID: 36063888 DOI: 10.1016/j.ijbiomac.2022.08.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022]
Abstract
β-Glucan, an essential natural polysaccharide widely distributed in cereals and microorganisms, exhibits extensive biological activities, including immunoregulation, anti-inflammatory, antioxidant, antitumor properties, and flora regulation. Recently, increasing evidence has shown that β-glucan has activities that may be useful for treating intestinal diseases, such as inflammatory bowel disease (IBD), and colorectal cancer. The advantages of β-glucan, which include its multiple roles, safety, abundant sources, good encapsulation capacity, economic development costs, and clinical evidence, indicate that β-glucan is a promising polysaccharide that could be developed as a health product or medicine for the treatment of intestinal disease. Unfortunately, few reports have summarized the progress of studies investigating natural β-glucan in intestinal diseases. This review comprehensively summarizes the structure-activity relationship of β-glucan, its pharmacological mechanism in IBD and colorectal cancer, its absorption and transportation mechanisms, and its application in food, medicine, and drug delivery, which will be beneficial to further understand the role of β-glucan in intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, Sichuan 611100, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
4
|
Bastos R, Oliveira PG, Gaspar VM, Mano JF, Coimbra MA, Coelho E. Brewer's yeast polysaccharides - A review of their exquisite structural features and biomedical applications. Carbohydr Polym 2022; 277:118826. [PMID: 34893243 DOI: 10.1016/j.carbpol.2021.118826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (β1→3), (β1→6), (α1→4), (β1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of β-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight β-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and β-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (β1→6)-glucans lead to higher receptor affinity.
Collapse
Affiliation(s)
- Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia G Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Watanabe K, Yamano M, Masujima Y, Ohue-Kitano R, Kimura I. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice. Biochem Biophys Rep 2021; 27:101095. [PMID: 34401531 PMCID: PMC8358642 DOI: 10.1016/j.bbrep.2021.101095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice. Curdlan improves gut microbial composition in high-fat diet-fed (HFD) mice. The effects of HFD-induced hyperglycemia are mitigated by curdlan supplementation. Curdlan supplementation increases plasma insulin and GLP-1 levels. Curdlan increases fecal short-chain fatty acids (SCFAs) and secondary bile acids.
Collapse
Affiliation(s)
- Keita Watanabe
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mayu Yamano
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
6
|
Biological Effects of β-Glucans on Osteoclastogenesis. Molecules 2021; 26:molecules26071982. [PMID: 33915775 PMCID: PMC8036280 DOI: 10.3390/molecules26071982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.
Collapse
|
7
|
Toullec C, Le Bideau J, Geoffroy V, Halgand B, Buchtova N, Molina-Peña R, Garcion E, Avril S, Sindji L, Dube A, Boury F, Jérôme C. Curdlan-Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration. Polymers (Basel) 2021; 13:polym13040526. [PMID: 33578913 PMCID: PMC7916722 DOI: 10.3390/polym13040526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023] Open
Abstract
Polysaccharides have received a lot of attention in biomedical research for their high potential as scaffolds owing to their unique biological properties. Fibrillar scaffolds made of chitosan demonstrated high promise in tissue engineering, especially for skin. As far as bone regeneration is concerned, curdlan (1,3-β-glucan) is particularly interesting as it enhances bone growth by helping mesenchymal stem cell adhesion, by favoring their differentiation into osteoblasts and by limiting the osteoclastic activity. Therefore, we aim to combine both chitosan and curdlan polysaccharides in a new scaffold for bone regeneration. For that purpose, curdlan was electrospun as a blend with chitosan into a fibrillar scaffold. We show that this novel scaffold is biodegradable (8% at two weeks), exhibits a good swelling behavior (350%) and is non-cytotoxic in vitro. In addition, the benefit of incorporating curdlan in the scaffold was demonstrated in a scratch assay that evidences the ability of curdlan to express its immunomodulatory properties by enhancing cell migration. Thus, these innovative electrospun curdlan–chitosan scaffolds show great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Clément Toullec
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Jean Le Bideau
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France;
| | - Valerie Geoffroy
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, ONIRIS, Université de Nantes, F-44042 Nantes, France; (V.G.); (B.H.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
| | - Boris Halgand
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, ONIRIS, Université de Nantes, F-44042 Nantes, France; (V.G.); (B.H.)
- UFR Odontologie, Université de Nantes, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Nela Buchtova
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
| | - Rodolfo Molina-Peña
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
| | - Emmanuel Garcion
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
| | - Sylvie Avril
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
| | - Laurence Sindji
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa;
| | - Frank Boury
- CRCINA, SFR ICAT, University Angers, Université de Nantes, Inserm, F-49000 Angers, France; (C.T.); (N.B.); (R.M.-P.); (E.G.); (S.A.); (L.S.)
- Correspondence: (F.B.); (C.J.)
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
- Correspondence: (F.B.); (C.J.)
| |
Collapse
|
8
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
9
|
Chemistry and microbial sources of curdlan with potential application and safety regulations as prebiotic in food and health. Food Res Int 2020; 133:109136. [PMID: 32466929 DOI: 10.1016/j.foodres.2020.109136] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/24/2022]
Abstract
Curdlan - a homopolysaccharide is comprised of glucose using β-1,3-glycosidic bond and produced by different types of microorganisms as exopolysaccharide. Curdlan gel is stable during freezing and thawing processes which find several applications in food and pharmaceutical industries. It acts as a prebiotic, stabilizer and water-holding, viscosifying and texturing agent. Additionally, curdlan gel is used as a food factor to develop the new products e.g. milk fat substitute, non-fat whipped cream, retorting (freeze-drying) process of Tofu, low-fat sausage, and low-fat hamburger. However, a great variation exists among different countries regarding the regulatory aspects of curdlan as food additives, dietary components or prebiotic substances. Therefore, the present review paper aims to discuss safety issues and the establishment of common guidelines and legislation globally, focusing on the use the applications of curdlan in the food sector including the development of noodles, meat-based products, and fat-free dairy products. This review analyzes and describes in detail the potential of curdlan as a sustainable alternative additive in health and food industries, emphasizing on the chemical composition, production, properties, and potential applications.
Collapse
|
10
|
Takahashi K, Nakagawasai O, Nemoto W, Odaira T, Sakuma W, Onogi H, Nishijima H, Furihata R, Nemoto Y, Iwasa H, Tan-No K, Tadano T. Effect of Enterococcus faecalis 2001 on colitis and depressive-like behavior in dextran sulfate sodium-treated mice: involvement of the brain-gut axis. J Neuroinflammation 2019; 16:201. [PMID: 31672153 PMCID: PMC6822456 DOI: 10.1186/s12974-019-1580-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), including those with ulcerative colitis and Crohn's disease, have higher rates of psychiatric disorders, such as depression and anxiety; however, the mechanism of psychiatric disorder development remains unclear. Mice with IBD induced by dextran sulfate sodium (DSS) in drinking water exhibit depressive-like behavior. The presence of Lactobacillus in the gut microbiota is associated with major depressive disorder. Therefore, we examined whether Enterococcus faecalis 2001 (EF-2001), a biogenic lactic acid bacterium, prevents DSS-induced depressive-like behavior and changes in peripheral symptoms. METHODS We evaluated colon inflammation and used the tail suspension test to examine whether EF-2001 prevents IBD-like symptoms and depressive-like behavior in DSS-treated mice. The protein expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), X-linked inhibitor of apoptosis protein (XIAP), and cleaved caspase-3 in the rectum and hippocampus was assessed by western blotting. Hippocampal neurogenesis, altered nuclear factor-kappa B (NFκB) p65 morphometry, and the localization of activated NFκB p65 and XIAP were examined by immunohistochemistry. RESULTS Treatment with 1.5% DSS for 7 days induced IBD-like pathology and depressive-like behavior, increased TNF-α and IL-6 expression in the rectum and hippocampus, activated caspase-3 in the hippocampus, and decreased hippocampal neurogenesis. Interestingly, these changes were reversed by 20-day administration of EF-2001. Further, EF-2001 administration enhanced NFκB p65 expression in the microglial cells and XIAP expression in the hippocampus of DSS-treated mice. CONCLUSION EF-2001 prevented IBD-like pathology and depressive-like behavior via decreased rectal and hippocampal inflammatory cytokines and facilitated the NFκB p65/XIAP pathway in the hippocampus. Our findings suggest a close relationship between IBD and depression.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wakana Sakuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Hiroshi Onogi
- Faculty of Health Science, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, Miyagi, 981-8522, Japan
| | - Hiroaki Nishijima
- Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ryuji Furihata
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yukio Nemoto
- Kampo and Herbal Medicine Research Center, Yokohama University of Pharmacy, 601 Matanocho, Totsuka-ku, Yokohama City, Kanagawa, 245-0066, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co, Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo, 100-0014, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.,Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| |
Collapse
|
11
|
Zhang Q, Liu J, Ma L, Bai N, Xu H. LOX-1 is involved in TLR2 induced RANKL regulation in peri-implantitis. Int Immunopharmacol 2019; 77:105956. [PMID: 31655342 DOI: 10.1016/j.intimp.2019.105956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To explore whether receptor activator of nuclear factor kappa-B ligand (RANKL) is involved in the nosogenesis of peri-implantitis and to reveal the regulatory mechanism in Porphyromonas gingivalis induced RANKL production. METHODS Therefore, we collected peri-implant crevicular fluid (PICF) and gingival tissues from healthy implants and peri-implantitis patients. The expression of RANKL in samples was tested by ELISA, Western blot and immunofluorescence staining. The production of RANKL in THP-1 macrophages stimulated with P. gingivalis was detected by qRT-PCR and Western blot. Then macrophages were pre-treated with neutralizing antibodies of Toll-like receptor 2 (TLR2) or lectin-type oxidized LDL receptor 1 (LOX-1) and inhibitors of TLR2, LOX-1 or Erk1/2 before P. gingivalis stimulation to evaluate the roles of TLR2, LOX-1 and Erk1/2 in RANKL production by qRT-PCR and Western blot. RESULTS The protein level of RANKL was higher in PICF of peri-implantitis patients than healthy implants. We observed increased RANKL expression in P. gingivalis infected macrophages compared to controls. RANKL induced by P. gingivalis stimulation was mediated by TLR2 and Erk1/2 signaling pathway in THP-1 macrophages. LOX-1 is involved in TLR2 induced RANKL expression. CONCLUSION RANKL was involved in peri-implantitis, and regulated by TLR2, LOX-1 and Erk1/2 signaling against P. gingivalis infection. As the novel inflammation pathway triggers, TLR2 and LOX-1 which mediate RANKL production seems to be potential drug targets of peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, Shandong Province, China
| |
Collapse
|