1
|
Pires JM, Negri G, Duarte-Almeida JM, Carlini EA, Mendes FR. Phytochemical analysis and investigation of analgesic, anti-inflammatory, and antispasmodic activities of hydroethanolic extracts of Alternanthera dentata, Ocimum carnosum, and Plectranthus barbatus, three species with vernacular names derived from analgesic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118508. [PMID: 38950795 DOI: 10.1016/j.jep.2024.118508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant vernacular names can provide clues about the popular use of a species in different regions and are valuable sources of information about the culture or vocabulary of a population. Several medicinal plants in Brazil have received names of medicines and brand-name products. AIM OF THE STUDY The present work aimed to evaluate the chemical composition and pharmacological activity in the central nervous system of three species known popularly by brand names of analgesic, anti-inflammatory, antispasmodic, and digestive drugs. MATERIALS AND METHODS Hydroethanolic extracts of Alternanthera dentata (AD), Ocimum carnosum (OC), and Plectranthus barbatus (PB) aerial parts were submitted to phytochemical analysis by HPLC-PAD-ESI-MS/MS and evaluated in animal models at doses of 500 and 1000 mg/kg. Mice were tested on hot plate, acetic acid-induced writing, formalin-induced licking, and intestinal transit tests. Aspirin and morphine were employed as standard drugs. RESULTS The three extracts did not change the mice's response on the hot plate. Hydroethanolic extracts of AD and PB reduced the number of writhes and licking time, while OC was only effective on the licking test at dose of 1000 mg/kg. In addition, AD and OC reduced intestinal transit, while PB increased gut motility. CONCLUSIONS Pharmacological tests supported some popular uses, suggesting peripheral antinociceptive and anti-inflammatory effects, while the phytochemical analysis showed the presence of several flavonoids in the three hydroethanolic extracts and steroids in PB, with some barbatusterol derivatives described for the first time in the species.
Collapse
Affiliation(s)
- Júlia Movilla Pires
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Giuseppina Negri
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Joaquim Mauricio Duarte-Almeida
- Centro Oeste Dona Lindu Campus / Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, MG, Brazil.
| | - Elisaldo Araújo Carlini
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Fúlvio Rieli Mendes
- Center for Natural and Human Sciences, Universidade Federal do ABC, Alameda da Universidade, SN, São Bernardo do Campo, 09606-045, SP, Brazil.
| |
Collapse
|
2
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
El Midaoui A, Khallouki F, Couture R, Moldovan F, Ismael MA, Ongali B, Akoume MY, Alem C, Ait Boughrous A, Zennouhi W, Roqai MC, Hajji L, Ghzaiel I, Vejux A, Lizard G. Thymus atlanticus: A Source of Nutrients with Numerous Health Benefits and Important Therapeutic Potential for Age-Related Diseases. Nutrients 2023; 15:4077. [PMID: 37764861 PMCID: PMC10534698 DOI: 10.3390/nu15184077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Thymus atlanticus (Lamiaceae) is a plant endemic to the Mediterranean basin that is found in significant quantities in the arid regions of Morocco. Thymus atlanticus is used in traditional medicine to treat infectious and non-infectious diseases. It is also used for the isolation of essential oils and for the seasoning of many dishes in the Mediterranean diet. The major constituents of Thymus atlanticus are saponins, flavonoids, tannins, alkaloids, various simple and hydroxycinnamic phenolic compounds, and terpene compounds. Several of these compounds act on signaling pathways of oxidative stress, inflammation, and blood sugar, which are parameters often dysregulated during aging. Due to its physiochemical characteristics and biological activities, Thymus atlanticus could be used for the prevention and/or treatment of age-related diseases. These different aspects are treated in the present review, and we focused on phytochemistry and major age-related diseases: dyslipidemia, cardiovascular diseases, and type 2 diabetes.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
| | - Florina Moldovan
- Research Center of CHU Sainte Justine, Faculty of Dentistry, Université de Montréal, Montreal, QC H3T 1J4, Canada; (F.M.); (M.Y.A.)
| | | | - Brice Ongali
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada; (R.C.); (B.O.)
| | - Marie Yvonne Akoume
- Research Center of CHU Sainte Justine, Faculty of Dentistry, Université de Montréal, Montreal, QC H3T 1J4, Canada; (F.M.); (M.Y.A.)
| | - Chakib Alem
- Research Team in Biochemistry and Natural Resources, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Meknes 20250, Morocco;
| | - Ali Ait Boughrous
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Wafa Zennouhi
- Department of Biology, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, Meknes 50050, Morocco; (F.K.); (A.A.B.); (W.Z.)
| | - Mhammed Chaoui Roqai
- Ecole des Hautes Etudes de Biotechnologie et de Santé (EHEB), 183 Bd de la Résistance, Casablanca 20250, Morocco;
| | - Lhoussain Hajji
- Laboratory of Bioactives and Environmental Health, Faculty of Sciences, Moulay Ismail University, Meknes 50050, Morocco;
| | - Imen Ghzaiel
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| | - Anne Vejux
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| | - Gérard Lizard
- Laboratory “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, Bio-peroxIL/EA7270, Université de Bourgogne/Inserm, 21000 Dijon, France; (I.G.); (A.V.)
| |
Collapse
|
4
|
Vasorelaxant Mechanism of Herbal Extracts from Mentha suaveolens, Conyza canadensis, Teucrium polium and Salvia verbenaca in the Aorta of Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248752. [PMID: 36557886 PMCID: PMC9784123 DOI: 10.3390/molecules27248752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8-14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine.
Collapse
|
5
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
6
|
Bahi DA, Dreyer JL. Chronic knockdown of the tetraspanin gene CD81 in the mouse nucleus accumbens modulates anxiety and ethanol-related behaviors. Physiol Behav 2022; 254:113894. [PMID: 35764142 DOI: 10.1016/j.physbeh.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
CD81, a member of the tetraspanin family, plays important roles in many physiological processes, such as cell motility, attachment, and entry. Yet, CD81 functions in the brain remain unclear. In this study, we investigated the effects of CD81 knockdown, using lentiviral vectors (LV), on anxiety- and ethanol-related behaviors. For this purpose, mice were stereotaxically injected with CD81 shRNA-expressing LV into the nucleus accumbens (Nacc) and were assessed for anxiety-like behavior using the elevated plus maze (EPM) and open field (OF) tests. Alcohol's sedative effects were studied using loss-of-righting-reflex (LORR) and voluntary ethanol intake was assessed using a two-bottle choice (TBC) procedure. Results showed that mice depleted of CD81 exhibited an anxiolytic-like response in the EPM and OF tests with no effect on locomotor activity. In addition, genetic reduction of CD81 in the Nacc increased mice' sensitivity to alcohol's sedative effects in the LORR test, although plasma alcohol concentrations were unaffected. Interestingly, CD81 loss-of-function-induced anxiolysis was accompanied by a significant decrease in ethanol, but not saccharin nor quinine, intake in the TBC procedure. Finally, and following CD81 mRNA quantification, Pearson's correlations showed a significant positive relationship between accumbal CD81 mRNA with anxiety and ethanol-related behaviors. Our data indicate that CD81 is implicated in the pathogenesis of anxiety and alcoholism. Indeed the targeted disruption of CD81, with the resultant decrease in CD81 mRNA in the Nacc, converted ethanol-"preferring" mice into ethanol "non-preferring" mice. Collectively, these findings demonstrate that future CD81-targeted pharmacotherapies may be beneficial for the treatment of anxiety and alcoholism.
Collapse
Affiliation(s)
- Dr Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700, Fribourg, Switzerland
| |
Collapse
|
7
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Ellagitannin, Phenols, and Flavonoids as Antibacterials from Acalypha arvensis (Euphorbiaceae). PLANTS 2022; 11:plants11030300. [PMID: 35161281 PMCID: PMC8840177 DOI: 10.3390/plants11030300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
There is a significant need to gain access to new and better antibacterial agents. Acalypha arvensis, a plant from the Euphorbiaceae family, has been used in traditional medicine for centuries to treat infectious diseases. This manuscript reports the isolation, characterization, and antibacterial screening of 8 natural products extracted from maceration of aerial parts of Acalypha arvensis. Specifically, three extracts were assessed (n-hexane, ethyl acetate, and ethanol), in which antibacterial activity was evaluated against diverse bacterial strains. The ethanolic extract showed the best activity against methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa strains, which supports the medicinal properties attributed to this plant. The chromatographic fractions AaR4 and AaR5 were the most bioactive, in which the ellagitannin natural product known as corilagin (1) was identified for the first time in this plant. Therefore, it can be said that this is the main chemical responsible for the observed antibacterial activity. However, we also identified chlorogenic acid (2), rutin (3), quercetin-3-O-glucoside (4), caffeic acid (5), among others (6–8). Hence, this plant can be considered to be a good alternative to treat health-related issues caused by various bacteria.
Collapse
|
9
|
Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M, Iqbal Yatoo M, Thakur P, Iqbal HM, Chaicumpa W, Michalak I, Elnesr SS, Farag MR. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1900230] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mudasir B. Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesDeen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar, Srinagar, Jammu and Kashmir, India
| | - Pallavi Thakur
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hafiz M.N. Iqbal
- Tecnologico De Monterrey, School of Engineering and Sciences, Campus Monterrey, Mexico
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Lin Y, Zhang Z, Wang S, Cai J, Guo J. Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders. Rev Endocr Metab Disord 2020; 21:421-429. [PMID: 32889666 DOI: 10.1007/s11154-020-09586-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
With the change of life style, glucolipid metabolic disorders (GLMD) has become one of the major chronic disorders causing public health and clinical problems worldwide. Previous studies on GLMD pay more attention to peripheral tissues. In fact, the central nervous system (CNS) plays an important role in controlling the overall metabolic balance. With the development of technology and the in-depth understanding of the CNS, the relationship between neuro-endocrine-immunoregulatory (NEI) network and metabolism had been gradually illustrated. As the hub of NEI network, hypothalamus-pituitary-adrenal (HPA) axis is important for maintaining the balance of internal environment in the body. The relationship between HPA axis and GLMD needs to be further studied. This review focuses on the role of HPA axis in GLMD and reviews the research progress on drugs for GLMD, with the hope to provide the direction for exploring new drugs to treat GLMD by taking the HPA axis as the target and improve the level of prevention and control of GLMD.
Collapse
Affiliation(s)
- Yanduan Lin
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ziwei Zhang
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Siyu Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jinyan Cai
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
11
|
Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. PLANTS 2020; 9:plants9091244. [PMID: 32967179 PMCID: PMC7570315 DOI: 10.3390/plants9091244] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India;
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi 835205, India;
| | - Mulfi I. M. Alkhinjar
- Saudi Center for Disease Prevention and Control, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine College of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|