1
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
2
|
Li N, Wang Y, Rao J, Ma Z, Zhang B, Dou Z, Wang K, Qiu F. Chemical profiling and quality evaluation of raw and vinegar-processing frankincense by multiple UPLC-MS/MS techniques. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:234-245. [PMID: 39107233 DOI: 10.1002/pca.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Frankincense is used for analgesic, tumor-suppressive, and anti-inflammatory treatments in Traditional Chinese Medicine but poses toxicological concerns. Vinegar processing is a common technique used to reduce the toxicity of frankincense. OBJECTIVE This study aimed to investigate the chemical composition and quality evaluation of raw and vinegar-processing frankincense by multiple UPLC-MS/MS techniques. Additionally, we purposed refining the vinegar processing technique and identifying potentially harmful ingredients in the raw frankincense. METHODOLOGY Sub-chronic oral toxicity studies were conducted on raw and vinegar-processing frankincense in rats. The composition of frankincense was identified by UPLC-Q-TOF-MS/MS. Chemometrics were used to differentiate between raw and vinegar-processing frankincense. Potential chemical markers were identified by selecting differential components, which were further exactly determined by UPLC-QQQ-MS/MS. Moreover, the viability of the HepG2 cells of those components with reduced contents after vinegar processing was assessed. RESULTS The toxicity of raw frankincense is attenuated by vinegar processing, among which vinegar-processing frankincense (R40) (herb weight: rice vinegar weight = 40:1) exhibited the lowest toxicity. A total of 83 components were identified from frankincense, including 40 triterpenoids, 37 diterpenoids, and 6 other types. The contents of six components decreased after vinegar-processing, with the lowest levels in R40. Three components, specifically 3α-acetoxy-11-keto-β-boswellic acid (AKBA), 3α-acetoxy-α-boswellic acid (α-ABA), and 3α-acetoxy-β-boswellic acid (β-ABA), inhibited the viability of HepG2 cells. The processing of frankincense with vinegar at a ratio of 40:1 could be an effective method of reducing the toxicity in raw frankincense. CONCLUSION Our research improves understanding of the toxic substance basis and facilitates future assessments of frankincense quality.
Collapse
Affiliation(s)
- Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bingyang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Sura MB, Cheng YX. Medicinal plant resin natural products: structural diversity and biological activities. Nat Prod Rep 2024; 41:1471-1542. [PMID: 38787644 DOI: 10.1039/d4np00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Covering: up to the mid of 2023Plants secrete defense resins rich in small-molecule natural products under abiotic and biotic stresses. This comprehensive review encompasses the literature published up to mid-2023 on medicinal plant resin natural products from six main contributor genera, featuring 275 citations that refer to 1115 structurally diverse compounds. The scope of this review extends to include essential information such as the racemic nature of metabolites found in different species of plant resins, source of resins, and revised structures. Additionally, we carefully analyze the reported biological activities of resins, organizing them based on the their structures. The findings offer important insights into the relationship between their structure and activity. Furthermore, this detailed examination can be valuable for researchers and scientists in the field of medicinal plant resin natural products and will promote continued exploration and progress in this area.
Collapse
Affiliation(s)
- Madhu Babu Sura
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Aihara H, Kounai D, Kasamatsu A, Shiraiwa J, Matsuzawa A, Kamo S, Sugita K. Protecting Group-Free Total Synthesis of (-)-Boscartin H. J Org Chem 2024; 89:8924-8930. [PMID: 38816923 DOI: 10.1021/acs.joc.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report the first protecting group-free total synthesis of (-)-boscartin H, which features a 5-12-5-fused tricyclic structure. The key steps, which include a diastereoselective THF-ring-forming/aldol reaction sequence and ring-closing metathesis, afforded high stereoselectivity with (-)-boscartin H obtained in 3.6% overall yield using a 11-step long linear sequence. In addition, X-ray crystallography clearly confirmed the stereochemistry of boscartin H.
Collapse
Affiliation(s)
- Hiroto Aihara
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Daisuke Kounai
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akihiko Kasamatsu
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Junya Shiraiwa
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akinobu Matsuzawa
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shogo Kamo
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazuyuki Sugita
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
5
|
Babbar R, Sharma P, Arora R, Sharma T, Garg M, Singh S, Kumar S, Sindhu RK. Unveiling the phyto-restorative potential of ethereal distillates for atopic dermatitis: an advanced therapeutic approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0103. [PMID: 38708994 DOI: 10.1515/jcim-2024-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Atopic dermatitis is acknowledged as a vital inflammatory disorder associated with the integumentary system of the body and is characterized by the formation of thick reddish-grey scars and erythema formation on skin, prevalent amidst the populace. Numerous synthetic drugs are available for treatment like antihistamines, immunosuppressants, glucocorticoids etc., but contrarily, essential oil therapy is exclusively lime lighted to favour the purpose. The utilization of available engineered drugs, possess the marked adverse effects owing to prolonged duration of therapy and therefore, essential oils are explored well and proved to exhibit the anti-eczematic, anti-inflammatory and antipruritic properties. Ethereal distillates own the assorted and selective therapeutic properties attributable to presence of bioactive compounds liable to treat this torturous and integumentary disorder, likely lavender oil, patchouli oil, frankincense oil etc., have been found to exert their pharmacological actions by impeding the liberation and action of inflammatory mediators and immunological hyperactivities that are engaged in exacerbating this idiopathic illness. The current attempt provided the update with the aim to bring forth the naturally originated treatment that is pertinent to provide the invulnerable therapy by circumventing the noxious symptoms i.e. erythema formation and inflamed lesions.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | - Parth Sharma
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | - Twinkle Sharma
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | - Madhukar Garg
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, 29051 Guru Jambheshwar University of Science and Technology , Hisar, Haryana, India
| | - Satyender Kumar
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| | - Rakesh K Sindhu
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Joseph A, Abhilash MB, Mulakal JN, Madhavamenon KI. Pharmacokinetics of a Natural Self-emulsifying Reversible Hybrid-Hydrogel (N'SERH) Formulation of Full-Spectrum Boswellia serrata Oleo-Gum Resin Extract: Randomised Double-Blinded Placebo-Controlled Crossover Study. Biol Pharm Bull 2024; 47:1583-1593. [PMID: 39343544 DOI: 10.1248/bpb.b24-00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oleo-gum-resin of Boswellia serrata, an Ayurvedic herb for the treatment of chronic inflammatory diseases, contains both volatile (terpenes) and nonvolatile (boswellic acids) molecules as responsible for its bioactivity. The present randomized, double-blinded, placebo-controlled, crossover study evaluated the human pharmacokinetics of a 'natural' hybrid-hydrogel formulation of a unique full-spectrum boswellia extract (BFQ-20) (standardized for both volatile and nonvolatile bioactives) in comparison with unformulated extract (U-BE), for the first time. Mass spectrometry coupled with LC (UPLC-MS/MS) and gas chromatography (GC-MS/MS) measurements of the plasma concentration of boswellic acids and α-thujene at different post-administration time points followed by a single dose (400 mg) of U-BE and BFQ-20, to healthy volunteers (n = 16), offered 4-fold enhancement in the overall bioavailability of boswellic acids from BFQ-20, [area under the curve (AUC) (BFQ-20) = 9484.17 ± 767.82 ng * h/mL vs. AUC (U-BE) = 2365.87 ± 346.89 ng * h/mL], with the absorption maximum (Tmax) at 6.3 h post-administration and elimination half-life (T1/2) of 15.5 h (p < 0.001). While plasma α-thujene was not detectable upon U-BE administration, BFQ-20 provided significant absorption, [AUC (BFQ-20): 298.60 ± 35.48 ng * h/mL; Cmax: 68.80 ± 18.60 ng/mL; Tmax: 4.12 ± 0.38 h; T1/2: 16.24 ± 1.12 h]. Further investigation of the anti-inflammatory effect revealed 70.5% inhibition of paw edema in rats compared to 38.0% for U-BE. In summary, the natural self-emulsifying reversible hybrid-hydrogel (N'SERH) formulation of boswellia extract using fenugreek mucilage (FenuMat®) significantly increased the solubility (58-fold), stability, and bioavailability of both the volatile and non-volatile bioactives which in turn improved the anti-inflammatory efficacy of Boswellia extract.
Collapse
Affiliation(s)
- Ashil Joseph
- R&D Centre, Akay Bioactives, Akay Natural Ingredients Private Limited
| | | | | | | |
Collapse
|
7
|
Tian Y, Fan R, Yin Z, Huang Y, Huang D, Yuan F, Yin A, Tang G, Pu R, Yin S. Glochodpurnoid B from Glochidion puberum Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Colorectal Cancer Cells. Molecules 2023; 28:molecules28020511. [PMID: 36677570 PMCID: PMC9867043 DOI: 10.3390/molecules28020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Glochidpurnoids A and B (1 and 2), two new coumaroyl or feruloyl oleananes, along with 17 known triterpenoids (3-19) were obtained from the stems and twigs of Glochidion puberum. Their structures were elucidated by extensive spectroscopic data analyses, chemical methods, and single crystal X-ray diffraction. All compounds were screened for cytotoxicity against the colorectal cancer cell line HCT-116, and 2, 3, 5, 6, 11, and 17 showed remarkable inhibitory activities (IC50: 0.80-2.99 μM), being more active than the positive control 5-fluorouracil (5-FU). The mechanistic study of 2, the most potent compound, showed that it could induce endoplasmic reticulum (ER) stress-mediated apoptosis and improve the sensitivity of HCT-116 cells to 5-FU.
Collapse
Affiliation(s)
- Yang Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhao Yin
- Department of Geratology, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, China
| | - Yongping Huang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangyu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Third People’s Hospital of Dongguan, Dongguan 523326, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Pu
- Department of Clinical Laboratory, The Third People’s Hospital of Dongguan, Dongguan 523326, China
- Correspondence: (R.P.); (S.Y.); Tel.: +86-18002900838 (R.P.); +86-20-39943090 (S.Y.)
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (R.P.); (S.Y.); Tel.: +86-18002900838 (R.P.); +86-20-39943090 (S.Y.)
| |
Collapse
|
8
|
Li C, Sun CZ, Yang YH, Ma N, Wang YJ, Zhang FX, Pei YH. A novel strategy by integrating chemical profiling, molecular networking, chemical isolation, and activity evaluation to target isolation of potential anti-ACE2 candidates in Forsythiae Fructus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153888. [PMID: 35026501 DOI: 10.1016/j.phymed.2021.153888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is regarded as a large database containing hundreds to thousands of chemical constituents that can be further developed as clinical drugs, such as artemisinin in Artemisia annua. However, effectively exploring novel candidates is still a challenge faced by researchers. PURPOSE In this work, an integrated strategy combining chemical profiling, molecular networking, chemical isolation, and activity evaluation (CMCA strategy) was proposed and applied to systematically characterize and screen novel candidates, and Forsythiae fructus (FF) was used as an example. STUDY DESIGN It contained four parts. First, the chemical compounds in FF were detected by ultra-high-performance liquid chromatography-mass spectrometry (UPLC/Q-TOF MS) with data-dependent acquisition, and further, the targeted compounds were screened out based on an in-house database. In the meantime, the representative MS/MS fragmentation behaviors of different chemical structure types were summarized. Second, homologous constituents were grouped and organized based on feature-guided molecular networking, and the nontargeted components with homologous mass fragmentation behaviors were characterized. Third, the novel compounds were isolated and unambiguously identified by nuclear magnetic resonance (NMR). Finally, the anti-angiotensin-converting enzyme 2 (ACE2) activities of isolated chemical constituents were further evaluated by in vitro experiments. RESULTS A total of 278 compounds were profiled in FF, including 151 targeted compounds and 127 nontargeted compounds. Among them, 16 were unambitiously identified by comparison with reference standards. Moreover, 25 were classified into potential novel compounds. Two novel compounds were unambiguously identified by using conventional chromatographic methods, and they were named phillyrigeninside D (peak 254) and forsythenside O (peak 155). Furthermore, the ACE2 activity of the compounds in FF was evaluated by modern pharmacological methods, and among them, suspensaside A was confirmed to present obvious anti-ACE2 activity. CONCLUSION Our work provides meaningful information for revealing potential FF candidates for the treatment of COVID-19, along with new insight for exploring novel candidates from complex systems.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chen-Zhi Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Nan Ma
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ya-Jing Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
9
|
Huang K, Chen Y, Liang K, Xu X, Jiang J, Liu M, Zhou F. Review of the Chemical Composition, Pharmacological Effects, Pharmacokinetics, and Quality Control of Boswellia carterii. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6627104. [PMID: 35069765 PMCID: PMC8776457 DOI: 10.1155/2022/6627104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This review aimed to systematically summarize studies that investigated the bioactivities of compounds and extracts from Boswellia. METHODS A literature review on the pharmacological properties and phytochemicals of B. carterii was performed. The information was retrieved from secondary databases such as PubMed, Chemical Abstracts Services (SciFinder), Google Scholar, and ScienceDirect. RESULTS The various Boswellia extracts and compounds demonstrated pharmacological properties, such as anti-inflammatory, antitumour, and antioxidant activities. B. carterii exhibited a positive effect on the treatment and prevention of many ageing diseases, such as diabetes, cancer, cardiovascular disease, and neurodegenerative diseases. CONCLUSION Here, we highlight the pharmacological properties and phytochemicals of B. carterii and propose further evidence-based research on plant-derived remedies and compounds.
Collapse
Affiliation(s)
- Kai Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanrong Chen
- First Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Kaiyong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Xu
- Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Marefati N, Beheshti F, Mokhtari-Zaer A, Shafei MN, Salmani H, Sadeghnia HR, Hosseini M. The effects of Olibanum on oxidative stress indicators, cytokines, brain derived neurotrophic factor and memory in lipopolysaccharide challenged rats. TOXIN REV 2022; 41:129-142. [DOI: 10.1080/15569543.2020.1855653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amin Mokhtari-Zaer
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Liu FS, Zhang TT, Xu J, Jing QX, Gong C, Dong BJ, Li DH, Liu XQ, Li ZL, Yuan Z, Hua HM. New tirucallane-type triterpenoids from the resin of Boswellia carteriiand their NO inhibitory activities. Chin J Nat Med 2021; 19:686-692. [PMID: 34561080 DOI: 10.1016/s1875-5364(21)60099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 10/20/2022]
Abstract
Six new tirucallane-type triterpenoids (1-6), along with ten known triterpenoids, were isolated from methylene chloride extract of the resin of Boswellia carterii Birdw. By the application of the comprehensive spectroscopic data, the structures of the compounds were clarified. The experimental electronic circular dichroism spectra were compared with those calculated, which allowed to assign the absolute configurations. Compounds 5 and 6 possesed a 2, 3-seco tirucallane-type triterpenoid skeleton, which were first reported. Their inhibitory activity against NO formation in LPS-activated BV-2 cells were evaluated. Compound 9 showed appreciable inhibitory effect, with an IC50 value of 7.58 ± 0.87 μmol·L-1.
Collapse
Affiliation(s)
- Fang-Shen Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting-Ting Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qin-Xue Jing
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chi Gong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bang-Jian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Qiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhong Yuan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Deng YH, Zhang S, Hu W, Wu W, Dong CM, Kang FH, Wang WX, Chen DK, Xu KP, Zou ZX. Triterpenoids with antiproliferative activities from the twigs and leaves of Melaleuca linariifolia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:796-802. [PMID: 32608251 DOI: 10.1080/10286020.2020.1779708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
One new pentacyclic triterpenoid, urs-12,16-dien-3-one (1), together with twelve known pentacyclic triterpenoids (2‒13), were isolated from the twigs and leaves of Melaleuca linariifolia. Their structures were characterized by their 1D- and 2 D-NMR spectra analysis and mass spectra studies. Furthermore, all isolated compounds were tested the inhibitory effect on proliferation of six human cancer cell lines in vitro, including NCI-H441, NCI-H460, A549, SKOV3, hela, and caki-1 cells. Among them, compounds 3, 5, 7, 9, 12, and 13 exhibited moderate antiproliferative activities with IC50 values ranging from 3.85 to 33.31 μM.
Collapse
Affiliation(s)
- Yin-Hua Deng
- Department of Pharmacy, The First Hospital Affiliated to Hunan Normal University, Changsha 410002, China
| | - Sha Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wei Hu
- Department of Pharmaceutical Science, Yiyang Medical college, Yiyang 413000, China
| | - Wei Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chun-Mao Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Feng-Hua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - De-Kun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
13
|
Al-Harrasi A, Khan AL, Rehman NU, Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. PHYTOCHEMISTRY 2021; 184:112660. [PMID: 33524859 DOI: 10.1016/j.phytochem.2021.112660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This review is not intended to describe the triterpenes isolated from the Boswellia genus, since this information has been covered elsewhere. Instead, the aim is to provide insights into the biosynthesis of triterpenes in Boswellia. This genus, which has 24 species, displays fascinating structural diversity and produces a number of medicinally important triterpenes, particularly boswellic acids. Over 300 volatile components have been reported in the essential oil of Boswellia, and more than 100 diterpenes and triterpenes have been isolated from this genus. Given that no triterpene biosynthetic enzymes have yet been isolated from any members of the Boswellia genus, this review will cover the likely biosynthetic pathways as inferred from structures in nature and the probable types of biosynthetic enzymes based on knowledge of triterpene biosynthesis in other plant species. It highlights the importance of frankincense and the factors and threats affecting its production. It covers triterpene biosynthesis in the genus Boswellia, including dammaranes, tirucallic acids, lupanes, oleananes, ursanes and boswellic acids. Strategies for elucidating triterpene biosynthetic pathways in Boswellia are considered. Furthermore, the possible mechanisms behind wound-induced resin synthesis by the tree and related gene expression profiling are covered. In addition, the influence of the environment and the genotype on the biosynthesis of resin and on variations in the compositions and types of resins will also be reviewed.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Boswellia serrata Resin Extract in Diets of Nile Tilapia, Oreochromis niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus aureus. Animals (Basel) 2021; 11:ani11020446. [PMID: 33567795 PMCID: PMC7914940 DOI: 10.3390/ani11020446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary The current study evaluated the effects of Boswellia serrata resin extract (BSRE) as a feed additive on the growth performance, immune response, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus. Fish were fed on four basal diets complemented with four levels of BSRE 0, 5, 10, or 15 g kg−1. The results of this study proposed that BSRE addition can enhance the antioxidant activity, immune status, and disease resistance of O. niloticus to S. aureus infection. The level of 5 g kg−1 BSRE can improve fish growth without causing harmful effects on fish health. Higher levels of BSRE are not recommended as they badly affected the histoarchitecture of many vital organs. Abstract The influences of Boswellia serrata resin extract (BSRE) as a feed additive on the growth performance, immune response, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus L. were assessed. One hundred-forty four fingerlings (initial weight: 21.82 ± 0.48 g) were randomly allotted into four groups with three replicates where they were fed on one of four treatments with four levels of Boswellia serrata resin extract 0, 5, 10, or 15 g kg−1, BSRE0, BSRE5, BSRE10, BSRE15, respectively for eight weeks. After the end of the feeding trial, the fish were challenged with Staphylococcus aureus, and mortalities were noted. The final body weight, total body weight gain, and the total feed intake were quadratically increased in BSRE5 treatment (p < 0.01). The protein productive efficiency (PPE) was linearly and quadratically increased in all BSRE supplemented treatments (p < 0.01). Dietary addition of BSRE raised the fish crude protein content and reduced the fat content in a level-dependent manner (p < 0.01). The ash content was raised in the BSRE15 group (p < 0.01). Dietary BSRE supplementation decreased the serum levels of glucose, total cholesterol, triglycerides, and nitric oxide. It increased the serum levels of total protein, albumin, total globulins, α1 globulin, α2 globulin, ß globulin, ɣ globulin, Catalase, and SOD (superoxide dismutase) activity, GSH (reduced glutathione), lysozyme activity, and MPO (myeloperoxidase) in a level-dependent manner (p < 0.05). The BSRE15 diet increased the serum level of ALT (alanine aminotransferase) and decreased creatinine serum level (p < 0.05). Dietary BSRE supplementation increased the relative percentage of survival % (RPS) of S. aureus challenged fish. The histoarchitecture of the gills and kidney was normal in the BSRE5 treatment and moderately changed in BSRE10 and BSRE15 treatments. The splenic lymphoid elements were more prevalent, and the melano-macrophage centers (MMC) were mild to somewhat activated in BSRE supplemented treatments. Dietary BSRE supplementation improved the intestinal histomorphology. It can be concluded that BSRE addition can enhance the antioxidant activity, immune status, and disease resistance of O. niloticus to S. aureus infection. The level of 5 g kg−1 BSRE can improve fish growth without causing harmful effects on fish health. The highest levels of BSRE are not recommended as they badly affected the histoarchitecture of many vital organs.
Collapse
|
15
|
Alara OR, Abdurahman NH, Ukaegbu CI, Alara JA. Optimization of microwave-assisted extraction of phenolic compounds from Ocimum gratissimum leaves and its LC–ESI–MS/MS profiling, antioxidant and antimicrobial activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2020; 80:39-57. [PMID: 32027979 DOI: 10.1016/j.semcancer.2020.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.
Collapse
|
17
|
Li XJ, Kim KW, Kim DC, Oh H, Liu XQ, Kim YC. Three Novel Monoterpenoid Glycosides From Fruits Of Eleutherococcus Henryi. Nat Prod Res 2019; 35:1299-1306. [PMID: 31359784 DOI: 10.1080/14786419.2019.1645661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The phytochemical investigation on the fruits of Eleutherococcus henryi (Araliaceae) resulted in the discovery of three novel monoterpene glycosides, eleuhenryiside A (1), eleuhenryiside B (2), and eleuhenryiside C (3), as well as a known lignan, (-)-kobusin (4). Their chemical structures were elucidated by mass, 1 D- and 2 D-NMR spectroscopy. The chemical structures of new compounds 1-3 were determined to be (2E,6R)-6-hydroxy-2,6-dimethyl-2,7-octadien-1-yl-(6'-O-acetyl)-O-β-glucopyranoside, (2Z,6R)-6-hydroxy-2,6-dimethyl-2,7-octadien-1-yl-(6'-O-acetyl)-O-β-glucopyranoside, and (-)-(4 R)-4,7-dihydroxy-1-menthene 7-O-β-glucopyranoside, respectively. The anti-neuroinflammatory and anti-inflammatory activities of these compounds were evaluated with LPS-stimulated BV2 microglia and RAW264.7 macrophage, respectively. The results showed that new compounds 1 and 3 have inhibitory effects of NO production with IC50 values of 32.50 ± 1.60 and 3.54 ± 0.20 μM in LPS-stimulated BV2 microglia. Also, (-)-kobusin (4) has abilities to inhibit NO production with the IC50 values of 14.25 ± 2.69 and 36.35 ± 6.27 μM in BV2 and RAW264.7 cells, respectively, which indicated that it may possess the potential anti-neuroinflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Xiao-Jun Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.,Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kwan-Woo Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Xiang-Qian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, Republic of Korea
| |
Collapse
|
18
|
|
19
|
Zhang PM, Wu ZB, Zhang C, Zeng KW, Jiang Y, Tu PF. Two new chromene derivatives from Artemisia songarica. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:943-950. [PMID: 30417661 DOI: 10.1080/10286020.2018.1497017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Two new chromene derivatives, songaricachromenes A (1) and B (2), were isolated from Artemisia songarica, along with 10 known compounds (3-12). The structures and stereochemistry of the new compounds were elucidated by analyses of the NMR, MS, and electronic circular dichroism (ECD) data. All the isolates (1-12) were evaluated for their NO inhibitory effects on LPS-stimulated BV-2 microglial cells.
Collapse
Affiliation(s)
- Pu-Ming Zhang
- a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Zhi-Bo Wu
- b Alashan League Institute of Forestry Sand Control , Alashan 750306 , China
| | - Chen Zhang
- a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Ke-Wu Zeng
- a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yong Jiang
- a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Peng-Fei Tu
- a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
20
|
Byler KG, Setzer WN. Protein Targets of Frankincense: A Reverse Docking Analysis of Terpenoids from Boswellia Oleo-Gum Resins. MEDICINES 2018; 5:medicines5030096. [PMID: 30200355 PMCID: PMC6163972 DOI: 10.3390/medicines5030096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Background: Frankincense, the oleo-gum resin of Boswellia trees, has been used in traditional medicine since ancient times. Frankincense has been used to treat wounds and skin infections, inflammatory diseases, dementia, and various other conditions. However, in many cases, the biomolecular targets for frankincense components are not well established. Methods: In this work, we have carried out a reverse docking study of Boswellia diterpenoids and triterpenoids with a library of 16034 potential druggable target proteins. Results:Boswellia diterpenoids showed selective docking to acetylcholinesterase, several bacterial target proteins, and HIV-1 reverse transcriptase. Boswellia triterpenoids targeted the cancer-relevant proteins (poly(ADP-ribose) polymerase-1, tankyrase, and folate receptor β), inflammation-relevant proteins (phospholipase A2, epoxide hydrolase, and fibroblast collagenase), and the diabetes target 11β-hydroxysteroid dehydrogenase. Conclusions: The preferential docking of Boswellia terpenoids is consistent with the traditional uses and the established biological activities of frankincense.
Collapse
Affiliation(s)
- Kendall G Byler
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
21
|
New tetracyclic triterpenoids from Jatropha gossypiifolia induce cell-cycle arrest and apoptosis in RKO cells. Fitoterapia 2018; 130:145-151. [PMID: 30172825 DOI: 10.1016/j.fitote.2018.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
Four new tetracyclic-type triterpenoids, jatrogossols A - D (1-4), along with 5 known analogues (5-9), were isolated from the ethanol extract of the branches and leaves of Jatropha gossypiifolia. The absolute configurations of 1-4 were defined by using a combination of electronic circular dichroism data analysis and single-crystal X-ray diffraction data. The cytotoxicities of the triterpenoids were evaluated using RKO and HepG2 human cancer cell lines. Compound 8 was cytotoxic against RKO colon cancer cells with an IC50 value of 12.5 μM. The morphological features of apoptosis were evaluated in 8-treated RKO cells. Compound 8 effectively induced apoptosis of RKO, which was associated with G1 or S phase cell cycle arrest. Flow cytometric analysis showed that treatment with 8 significantly induced RKO cell apoptosis in a dose-dependent manner.
Collapse
|
22
|
Al-Shidhani S, Rehman NU, Mabood F, Al-Broumi M, Hussain H, Hussain J, Csuk R, Al-Harrasi A. Quantification of Incensole in Three Boswellia Species by NIR Spectroscopy Coupled with PLSR and Cross-Validation by HPLC. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:300-307. [PMID: 29314317 DOI: 10.1002/pca.2743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/24/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Incensole can be considered as a biomarker for Boswellia species which is a diterpene that has received remarkable pharmacological interest recently due to its potent anti-inflammatory and anti-depressant activity. OBJECTIVE Near-infrared (NIR) spectroscopy coupled with PLSR (partial least squares regression) as a robust, rapid and alternative method was used to quantify the content of incensole in three species namely B. papyrifera, B. sacra and B. serrata and cross-validated by high-performance liquid chromatography (HPLC). MATERIALS AND METHODS NIR spectrophotometer was used for the quantification of incensole standards and Boswellia species in absorption mode in the wavelength range between 700 and 2500 nm. A PLSR model was built from the obtained spectral data using 70% of the incensole working standard solutions (training set), ranging from 0.5 to 100 ppm. The PLSR model obtained has a R2 value of 98% with a correlationship of 0.99 and a good prediction with root mean square error for prediction (RMSEP) value of 3.2%. RESULTS The results indicated that the methanol (MeOH) extract of B. papyrifera resin has the highest concentration of incensole (18.4%) followed by n-hexane (13.5%) and ethyl acetate (3.6%) while trace amounts was detected in the fractions of B. sacra and no incensole was detected in the fractions of B. serrata. CONCLUSION The findings are in total agreement with the HPLC analysis suggesting that NIR spectroscopy coupled with PLSR is a robust, rapid and non-destructive alternate method for the quantification of incensole in B. papyrifera. Copyright © 2018 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sulaiman Al-Shidhani
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Najeeb Ur Rehman
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Fazal Mabood
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Muhammed Al-Broumi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa-616, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman
| |
Collapse
|
23
|
Anti-inflammatory pentacyclic triterpenes from the stems of Euonymus carnosus. Fitoterapia 2017; 118:21-26. [DOI: 10.1016/j.fitote.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 11/15/2022]
|
24
|
Morikawa T, Matsuda H, Yoshikawa M. A Review of Anti-inflammatory Terpenoids from the Incense Gum Resins Frankincense and Myrrh. J Oleo Sci 2017; 66:805-814. [DOI: 10.5650/jos.ess16149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| | | | | |
Collapse
|
25
|
Wang YG, Ma QG, Tian J, Ren J, Wang AG, Ji TF, Yang JB, Su YL. Hepatoprotective triterpenes from the gum resin of Boswellia carterii. Fitoterapia 2015; 109:266-73. [PMID: 26739386 DOI: 10.1016/j.fitote.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/26/2022]
Abstract
Ten tirucallane-type triterpenes named boscartene A-J and a nor-tetracyclic triterpene boscartene K, together with ten known compounds were isolated from the gum resin of Boswellia carterii Birdw. Their structures and absolute configurations were elucidated by extensive spectroscopic analysis. In vitro assay, some of these compounds (10 μM) showed moderate hepatoprotective activities against d-galactosamine-induced HL-7702 cell damage.
Collapse
Affiliation(s)
- Yan-Gai Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, People's Republic of China.
| | - Qin-Ge Ma
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyan 473061, People's Republic of China.
| | - Jin Tian
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Jin Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Ai-Guo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Jian-Bo Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Ya-Lun Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
26
|
Ren J, Wang YG, Wang AG, Wu LQ, Zhang HJ, Wang WJ, Su YL, Qin HL. Cembranoids from the Gum Resin of Boswellia carterii as Potential Antiulcerative Colitis Agents. JOURNAL OF NATURAL PRODUCTS 2015; 78:2322-2331. [PMID: 26457560 DOI: 10.1021/acs.jnatprod.5b00104] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eight new cembranoids, boscartins A-H (1, 2, and 4-9), and the known incensole oxide were isolated from the gum resin of Boswellia carterii. The absolute configurations of 1, 2, 4, and incensole oxide were unequivocally resolved using single-crystal X-ray diffraction analysis with Cu Kα radiation, and the absolute configuration of 5 was resolved via electronic circular dichroism data. The antiulcerative colitis activities of the compounds were evaluated in an in vitro x-box-binding protein 1 (XBP 1) transcriptional activity assay using dual luciferase reporter detection. At 10 μM, compounds 1, 5, 6, and 7 significantly activated XBP 1 transcription with EC50 values of 0.34, 1.14, 0.88, and 0.42 μM, respectively, compared with the pGL3-basic vector control.
Collapse
Affiliation(s)
- Jin Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yan-Gai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Ai-Guo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Lian-Qiu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Hai-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Wen-Jie Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Ya-Lun Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Hai-Lin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| |
Collapse
|
27
|
Zheng L, Cong HJ, Wu B, Xue M, Xiang T, Yao ZQ, Lin WH. HPLC–Q-TOF–MS/MS Analysis of the Constituents in the Rat Biological Fluids After Oral Administration of Qing Ru Xiao granules. J Chromatogr Sci 2015; 53:1562-9. [DOI: 10.1093/chromsci/bmv058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 01/29/2023]
|
28
|
Rueda DC, Raith M, De Mieri M, Schöffmann A, Hering S, Hamburger M. Identification of dehydroabietc acid from Boswellia thurifera resin as a positive GABAA receptor modulator. Fitoterapia 2014; 99:28-34. [DOI: 10.1016/j.fitote.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
29
|
Zhou J, Li CJ, Yang JZ, Ma J, Li Y, Bao XQ, Chen XG, Zhang D, Zhang DM. Lupane triterpenoids from the stems of Euonymus carnosus. JOURNAL OF NATURAL PRODUCTS 2014; 77:276-284. [PMID: 24467317 DOI: 10.1021/np400851k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fifteen new lupane-type triterpenoids (1-15) and 10 known triterpenoids (16-25) were isolated from the stems of Euonymus carnosus. The structures of the new compounds were elucidated on the basis of spectroscopic analyses, and the absolute configuration of compound 1 was confirmed by X-ray crystallographic analysis using anomalous scattering of Cu Kα radiation. In addition, the compounds were tested for their cytotoxic activity against five human cancer cell lines and their ability to inhibit LPS-induced nitric oxide production in the murine microglia BV2 cell line. Compound 11 exhibited moderate cytotoxicity against several human cancer cell lines, and compounds 1, 2, 4, 5, 20, and 25 showed neuritis inhibitory activity against microglial inflammation factor, with IC50 values of 7.39, 7.48, 7.80, 3.48, 2.54, and 6.09 μM, respectively.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Al-Harrasi A, Ali L, Rehman NU, Hussain H, Hussain J, Al-Rawahi A, Langley GJ, Wells NJ, Abbas G. Nine triterpenes from Boswellia sacra Flückiger and their chemotaxonomic importance. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Yoon SW, Jeong JS, Kim JH, Aggarwal BB. Cancer Prevention and Therapy: Integrating Traditional Korean Medicine Into Modern Cancer Care. Integr Cancer Ther 2013; 13:310-31. [PMID: 24282099 DOI: 10.1177/1534735413510023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In spite of billions of dollars spent on cancer research each year, overall cancer incidence and cancer survival has not changed significantly in the last half century. Instead, the recent projection from the World Health Organization suggests that global cancer incidence and death is expected to double within the next decade. This requires an "out of the box" thinking approach. While traditional medicine used for thousands of years is safe and affordable, its efficacy and mechanism of action are not fully reported. Demonstrating that traditional medicine is efficacious and how it works can provide a "bed to bench" and "bench to bed" back approach toward prevention and treatment of cancer. This current review is an attempt to describe the contributions of traditional Korean medicine (TKM) to modern medicine and, in particular, cancer treatment. TKM suggests that cancer is an outcome of an imbalance of body, mind, and spirit; thus, it requires a multimodal treatment approach that involves lifestyle modification, herbal prescription, acupuncture, moxibustion, traditional exercise, and meditation to restore the balance. Old wisdoms in combination with modern science can find a new way to deal with the "emperor of all maladies."
Collapse
Affiliation(s)
- Seong Woo Yoon
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Soo Jeong
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Ji Hye Kim
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Wang YG, Ren J, Wang AG, Yang JB, Ji TF, Ma QG, Tian J, Su YL. Hepatoprotective prenylaromadendrane-type diterpenes from the gum resin of Boswellia carterii. JOURNAL OF NATURAL PRODUCTS 2013; 76:2074-2079. [PMID: 24195447 DOI: 10.1021/np400526b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chemical examination of the exuded gum resin of Boswellia carterii resulted in the isolation of nine new prenylaromadendrane-type diterpenes, boscartols A-I (1-9). The structures of these compounds were established by extensive 1D and 2D NMR spectroscopic analyses, mass spectrometric data, and circular dichroism spectra. Compounds 1-3, 5, 6, 8, and 9 (10 μM) showed moderate hepatoprotective activity against d-galactosamine-induced HL-7702 cell damage.
Collapse
Affiliation(s)
- Yan-gai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Two new monoterpenes from the fruits of Illicium lanceolatum. Molecules 2013; 18:11866-72. [PMID: 24077171 PMCID: PMC6269894 DOI: 10.3390/molecules181011866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
Two new monoterpenes, p-mentha-1(7),8-dien-2-O-β-D-glucoside and trans-2,4-dihydroxy-2,4-dimethyl-trans-1-acetic acid γ-lactone were isolated from the fruits of Illicium lanceolatum along with trans-2,4-dihydroxy-2,4-dimethyl-cis-1-acetic acid γ-lactone, (1R,2R,4R)-8-p-menthen-1,2-diol, trans-sobrerol, (1S,2S,4R)-p-menthane-1,2,8-triol and (1S, 2S, 4R, 8R)-p-menthane-1,2,9-triol. The structures of the isolates were confirmed by spectroscopic analysis and they showed no inhibitory effects on the in vitro growth of microbial organisms (Escherichia coli, Staphyloccocus aureus, Bacillus subtilis) at less than 1.0 mg/mL.
Collapse
|
34
|
Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, Xu X, Liu Y. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J 2013; 7:153. [PMID: 24028654 PMCID: PMC3847453 DOI: 10.1186/1752-153x-7-153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023] Open
Abstract
The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, Matsumoto T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem 2012; 20:4968-77. [DOI: 10.1016/j.bmc.2012.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/20/2023]
|
36
|
Henkel A, Kather N, Mönch B, Northoff H, Jauch J, Werz O. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem Pharmacol 2011; 83:115-21. [PMID: 22001311 DOI: 10.1016/j.bcp.2011.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
Lipophilic extracts of gum resins of Boswellia species (BSE) are used in folk medicine to treat various inflammatory disorders and infections. The molecular background of the beneficial pharmacological effects of such extracts is still unclear. Various boswellic acids (BAs) have been identified as abundant bioactive ingredients of BSE. Here we report the identification of defined BAs as direct inhibitors of lipopolysaccharide (LPS) functionality and LPS-induced cellular responses. In pull-down experiments, LPS could be precipitated using an immobilized BA, implying direct molecular interactions. Binding of BAs to LPS leads to an inhibition of LPS activity which was observed in vitro using a modified limulus amoebocyte lysate assay. Analysis of different BAs revealed clear structure-activity relationships with the classical β-BA as most potent derivative (IC(50)=1.8 μM). In RAW264.7 cells, LPS-induced expression of inducible nitric oxide synthase (iNOS, EC 1.14.13.39) was selectively inhibited by those BAs that interfered with LPS activity. In contrast, interferon-γ-induced iNOS induction was not affected by BAs. We conclude that structurally defined BAs are LPS inhibiting agents and we suggest that β-BA may contribute to the observed anti-inflammatory effects of BSE during infections by suppressing LPS activity.
Collapse
Affiliation(s)
- Arne Henkel
- Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Yao-Yao Li
- a School of Life Sciences , Xiamen University , Xiamen, Fujian, 361005, China
- c School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, 250000, China
| | - Ming-Zi Wang
- b Engineering Research Center of Industrial Microbiology, Ministry of Education, School of Life Sciences, Fujian Normal University , Fuzhou, Fujian, 350108, China
| | - Yao-Jian Huang
- a School of Life Sciences , Xiamen University , Xiamen, Fujian, 361005, China
| | - Yue-Mao Shen
- a School of Life Sciences , Xiamen University , Xiamen, Fujian, 361005, China
- c School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, 250000, China
| |
Collapse
|
38
|
Morikawa T, Oominami H, Matsuda H, Yoshikawa M. New terpenoids, olibanumols D–G, from traditional Egyptian medicine olibanum, the gum-resin of Boswellia carterii. J Nat Med 2010; 65:129-34. [DOI: 10.1007/s11418-010-0472-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
|
39
|
Rahimi R, Shams-Ardekani MR, Abdollahi M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J Gastroenterol 2010; 16:4504-4514. [PMID: 20857519 PMCID: PMC2945480 DOI: 10.3748/wjg.v16.i36.4504] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 02/06/2023] Open
Abstract
The etiology of inflammatory bowel disease (IBD) is not yet known, but many factors such as defects in the immune system, oxidative stress, microbial content in the gastrointestinal tract, nuclear factor (NF)-κB, nitric oxide (NO), cyclooxygenase-2 (Cox-2), and leukotriene B4 (LB4) are thought to play a role in its pathogenesis. In traditional Iranian medicine (TIM), several medicinal plants are thought to be effective for the treatment of IBD. In this study, information on all of these remedies were derived from all available old sources such as documents or notes and books and were added to the information derived from modern medical databases covering all in vitro, in vivo and clinical trials. For some of these plants, only one or two mechanisms of action have been found such as in Cassia fistula, Lepidium sativum, and Bunium persicum. However, for some plants various mechanisms of action are known. For example, Commiphora mukul is effective in IBD due to its immunomodulatory, antioxidant, and antibacterial properties and it decreases NF-κB, NO and Cox-2. Another herb, Plantago ovata, has immunomodulatory, antioxidant, anti-inflammatory and wound healing activities and decreases NO and LB4. Considering the mechanisms of action of these plants, the combination of some of them may be useful because of their many mechanisms of action such as Pistacia lentiscus, Bunium persicum, Solanum nigrum, Plantago ovata, Boswellia, Solanum nigrum, Plantago ovata and Commiphora mukul. For some of the herbal products used in TIM such as oleogum resin from Commiphora myrrha, seeds of Ocimum basilicum, seeds of Linum usitatissimum, gum resin of Dracaena cinnabari, seeds of Plantago major, seeds of Lallementia royleana, and seeds of Allium porrum, there is no or not enough studies to confirm their benefits in IBD. It is suggested that an evaluation of the effects of these plants on different aspects of IBD should be performed.
Collapse
|
40
|
Morikawa T, Pan Y, Ninomiya K, Imura K, Matsuda H, Yoshikawa M, Yuan D, Muraoka O. Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa1. Bioorg Med Chem 2010; 18:1882-90. [DOI: 10.1016/j.bmc.2010.01.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 12/18/2022]
|
41
|
MORIKAWA T. Search for TNF-.ALPHA. Sensitivity Degradation Principles from Medicinal Foods-Hepatoprotective Amide Constituents from Thai Natural Medicine Piper chaba-. YAKUGAKU ZASSHI 2010; 130:785-91. [DOI: 10.1248/yakushi.130.785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Toshio MORIKAWA
- Pharmaceutical Research and Technology Institute Kinki University
| |
Collapse
|
42
|
Morikawa T, Oominami H, Matsuda H, Yoshikawa M. Four New Ursane-Type Triterpenes, Olibanumols K, L, M, and N, from Traditional Egyptian Medicine Olibanum, the Gum-Resin of Boswellia carterii. Chem Pharm Bull (Tokyo) 2010; 58:1541-4. [DOI: 10.1248/cpb.58.1541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Toshio Morikawa
- Kyoto Pharmaceutical University
- Pharmaceutical Research and Technology Institute, Kinki University
| | | | | | | |
Collapse
|
43
|
Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides. Bioorg Med Chem 2009; 17:7313-23. [PMID: 19775895 DOI: 10.1016/j.bmc.2009.08.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.
Collapse
Affiliation(s)
- Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|