1
|
Dadfar M, Kukkar KK, Parikh PJ. Reduced parietal to frontal functional connectivity for dynamic balance in late middle-to-older adults. Exp Brain Res 2025; 243:111. [PMID: 40208322 DOI: 10.1007/s00221-025-07070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
In this study, we investigated the changes in functional connectivity between cortical regions for balance control during a challenging balance task with advancing age. Fourteen young and fourteen late middle-to-older adults performed a challenging balance task that manipulated somatosensory information while their brain activity was recorded using electroencephalography. Both groups showed common activation regions within the posterior cingulate cortex (PCC) and premotor cortex (PMC) during the balance task. The late middle-to-older group showed significantly weaker PCC to PMC functional connectivity than the young group. This finding indicated poor sensorimotor processes during altered reliance on somatosensory inputs for balance maintenance. The regularity of foot center of pressure fluctuations measured using sample entropy was greater in the late middle-to-older group than the young group, suggesting a shift from automatic control to cognitive control of balance. Weaker PCC to PMC connectivity in late middle-to-older adults was associated with greater regularity of foot center of pressure fluctuations. In late middle-to-older adults, an additional cortical region was activated, the prefrontal cortex, during the balance task. Our findings suggest a shift from the parietal-to-frontal sensorimotor network to the prefrontal network for dynamic control of balance with advancing age.
Collapse
Affiliation(s)
- Mahdis Dadfar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Jakubowski KL, Martino G, Beck ON, Sawicki GS, Ting LH. Center of mass states render multijoint torques throughout standing balance recovery. J Neurophysiol 2025; 133:206-221. [PMID: 39658948 PMCID: PMC11967846 DOI: 10.1152/jn.00367.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Successful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from neurally-mediated feedforward tonic muscle activation that modulates muscle short-range stiffness, which provides instantaneous "mechanical feedback" to the perturbation. In contrast, neural feedback pathways activate muscles in response to sensory input, generating joint torques after a delay. However, the specific contributions from feedforward and feedback pathways to the balance-correcting torque response are poorly understood. As feedforward- and feedback-mediated torque responses to balance perturbations act at different delays, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response, to reconstruct joint torques using parallel feedback loops. Each loop is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated whether a torque-SRM could decompose the reactive torques during balance-correcting responses to backward support surface translations at four magnitudes into the instantaneous "mechanical feedback" torque modulated by feedforward neural commands before the perturbation and neurally-delayed feedback components. The SRM accurately reconstructed torques at the hip, knee, and ankle, across all perturbation magnitudes (R2 > 0.84 and VAF > 0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease.NEW & NOTEWORTHY Reactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to the center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.
Collapse
Affiliation(s)
- Kristen L Jakubowski
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Giovanni Martino
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Owen N Beck
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- Insitute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
- Institute for Human Machine Cognition, Pensacola, Florida, United States
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Rahimi N, Kamankesh A, Amiridis IG, Daneshgar S, Sahinis C, Hatzitaki V, Enoka RM. Distinguishing among standing postures with machine learning-based classification algorithms. Exp Brain Res 2024; 243:3. [PMID: 39601870 DOI: 10.1007/s00221-024-06959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
The purpose of our study was to evaluate the accuracy with which classification algorithms could distinguish among standing postures based on center-of-pressure (CoP) trajectories. We performed a secondary analysis of published data from three studies: Study A) assessment of balance control on firm or foam surfaces with eyes-open or closed, Study B) quantification of postural sway in forward-backward and side-to-side directions during four standing-balance tasks that differed in difficulty, and Study C) an evaluation of the impact of two modes of transcutaneous electrical nerve stimulation on balance control in older adults. Three classification algorithms (decision tree, random forest, and k-nearest neighbor) were used to classify standing postures based on the extracted features from CoP trajectories in both the time and time-frequency domains. Such classifications enable the identification of differences and similarities in control strategy. Our results, especially those involving time-frequency features, demonstrated that distinct CoP trajectories could be identified from the extracted features in all conditions and postures in each study. Although the overall classification accuracy was similar using time-frequency features (~ 86%) for the three studies, there were substantial differences in accuracy across conditions and postures in Studies A and B but not in Study C. Nonetheless, the models were far superior to the published results with conventional metrics in distinguishing between the conditions and postures. Moreover, a Shapley Additive exPlanation analysis was able to identify the most important features that contributed to the classification performance of the models.
Collapse
Affiliation(s)
- Negar Rahimi
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Alireza Kamankesh
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Sajjad Daneshgar
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilia Hatzitaki
- Laboratory of Motor Behavior and Adapted Physical Activity, Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
4
|
da Silva Costa AA, Moraes R, den Otter R, Gennaro F, Bakker L, Rocha Dos Santos PC, Hortobágyi T. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol Aging 2024; 141:85-101. [PMID: 38850592 DOI: 10.1016/j.neurobiolaging.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance. DATA AVAILABILITY: The datasets used in this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands.
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lisanne Bakker
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Department of Kinesiology, Hungarian University of Sports Science, Budapest 1123, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Context-dependent reduction in corticomuscular coupling for balance control in chronic stroke survivors. Exp Brain Res 2024; 242:2093-2112. [PMID: 38963559 DOI: 10.1007/s00221-024-06884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the functional coupling between the cortex and the muscle for balance control is affected following stroke remains to be known. We investigated the changes in coupling between the cortex and leg muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Fourteen participants with stroke and ten healthy controls performed a challenging balance task. They stood on a computerized support surface that was either fixed (low difficulty condition) or sway-referenced with varying gain (medium and high difficulty conditions). We computed corticomuscular coherence between electrodes placed over the sensorimotor area (electroencephalography) and leg muscles (electromyography) and assessed balance performance using clinical and laboratory-based tests. We found significantly lower delta frequency band coherence in stroke participants when compared with healthy controls under medium difficulty condition, but not during low and high difficulty conditions. These differences were found for most of the distal but not for proximal leg muscle groups. No differences were found at other frequency bands. Participants with stroke showed poor balance clinical scores when compared with healthy controls, but no differences were found for laboratory-based tests. The observation of effects at distal but not at proximal muscle groups suggests differences in the (re)organization of the descending connections across two muscle groups for balance control. We argue that the observed group difference in delta band coherence indicates balance context-dependent alteration in mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support surface for balance maintenance following stroke.
Collapse
Affiliation(s)
- Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Nishant Rao
- Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Jakubowski KL, Ludvig D, Lee SSM, Perreault EJ. Aging Does Not Alter Ankle, Muscle, and Tendon Stiffness at Low Loads Relevant to Stance. Ann Biomed Eng 2024; 52:2556-2568. [PMID: 38816561 PMCID: PMC11647747 DOI: 10.1007/s10439-024-03547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, there has been limited investigation into age-dependent changes in muscle stiffness. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads relevant to standing and the stance phase of walking, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p > 0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p = 0.008), muscle (37%; p = 0.02), and tendon stiffness (22%; p = 0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p = 0.004). Together, these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.
Collapse
Affiliation(s)
- Kristen L Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, USA.
- Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA.
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sabrina S M Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
8
|
Jakubowski KL, Martino G, Beck ON, Sawicki GS, Ting LH. Center of mass states render multi-joint torques throughout standing balance recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607976. [PMID: 39229207 PMCID: PMC11370471 DOI: 10.1101/2024.08.14.607976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Successful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from feedforward neural signals that modulate the musculoskeletal system's intrinsic mechanical properties, namely muscle short-range stiffness, and neural feedback pathways that activate muscles in response to sensory input. Although feedforward and feedback pathways are known to modulate the torque at each joint, the role of each pathway to the balance-correcting response across joints is poorly understood. Since the feedforward and feedback torque responses act at different delays following perturbations to balance, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response to perturbations, to consist of parallel feedback loops with different delays. Each loop within the model is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated if a parallel loop SRM could decompose the reactive torques into the feedforward and feedback contributions during balance-correcting responses to backward support surface translations at four magnitudes. The SRM accurately reconstructed reactive joint torques at the hip, knee, and ankle, across all perturbation magnitudes (R 2 >0.84 & VAF>0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease. NEWS AND NOTEWORTHY Reactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.
Collapse
|
9
|
O'Bryan SJ, Hiam D, Lamon S. Single-session measures of quadriceps neuromuscular function are reliable in healthy females and unaffected by age. Eur J Appl Physiol 2024; 124:1719-1732. [PMID: 38189826 PMCID: PMC11130065 DOI: 10.1007/s00421-023-05395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE This study aimed to determine the inter-session reliability of quadriceps neuromuscular function measurements in healthy young and older females. METHODS Twenty-six females aged 19-74 years completed two identical experimental sessions on different days. Quadriceps neuromuscular function measurements included isometric maximal voluntary force, high- and low-frequency twitch force, voluntary and evoked (H-reflex, M-wave) electromyography (EMG), and estimated maximal torque, velocity and power derived from torque-velocity relationships. Intra-class correlation coefficients (ICCs), coefficients of variation (CoV) and Bland-Altman plots assessed inter-session reliability. The effect of age on reliability was assessed by linear regression. RESULTS Excellent reliability (ICC > 0.8) was shown for all voluntary and evoked mechanical outcomes. Vastus lateralis EMG outcomes showed excellent reliability (ICC > 0.8) with CoVs < 12%, which were better than those of vastus medialis and rectus femoris. Age was not associated with reliability for 27/28 outcomes (P > 0.05). CONCLUSION Excellent reliability of voluntary and evoked force and vastus lateralis EMG outcomes measured in healthy females can be attained in one experimental session, irrespective of age. Female neuromuscular function can be accurately assessed across the lifespan with minimal inconvenience, increasing feasibility for future research. The random error should however be considered when quantifying age-related differences in neuromuscular function.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Geelong, VIC, 3125, Australia.
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Geelong, VIC, 3125, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Geelong, VIC, 3125, Australia
| |
Collapse
|
10
|
Holmes MD, Vindigni D, Moreland A, Bolton PS. What are the temporal and physical characteristics of locally applied vibration that modulate balance in older adults? - A systematic review of the literature. Gait Posture 2024; 111:75-91. [PMID: 38657476 DOI: 10.1016/j.gaitpost.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Compromised balance is known to contribute to falls, which are associated with increased morbidity and mortality for older adults. Evidence suggests that the application of local vibration to the lower limbs of older adults has the potential to modulate balance. RESEARCH QUESTION To identify the temporal and mechanical parameters of vibration applied locally to the lower limbs of older adults that modulate measures of balance, and to define the short- and long-term effects of vibration on balance in this population. METHODS The PRISMA 2020 guidelines were used to conduct a systematic search including the PUBMED, EMBASE, and Scopus databases to identify peer-reviewed literature where vibration was applied to the lower limbs of older adults to modulate balance. Data was extracted using a study-specific data extraction form and risk of bias assessed. Where possible, effect sizes were calculated. RESULTS Of 7777 records screened, ten randomised controlled trials and 43 prospective laboratory-based studies met the inclusion criteria. Vibration frequencies ranged from 1 to 272 Hz, most studies (n=41) used ≤100 Hz. Amplitude ranged from 0.2 to 3.0 mm, most studies (n=28) used ≤1 mm. Effects of short-term vibration (applied for seconds to hours) were measured during and/or immediately after application. Short-term suprathreshold perceived muscle/tendon vibration had a 'large' destabilising effect size on balance in healthy older adults, but little or no effect on older fallers. Short-term subthreshold vibration to the soles of the feet had a 'small' stabilising effect size. Suprathreshold muscle, tendon or sole vibration applied for 10-30 min over days to weeks improved balance measures, but most (8 of 10) had increased risk of bias. SIGNIFICANCE The heterogeneity of methodology, populations, and vibration and balance parameters precluded conclusions about the relative effects of lower limb vibration in older adults. However, these results suggest that the application of local vibration to the lower limbs of older adults can modulate balance in the short- and long-term.
Collapse
Affiliation(s)
- Matthew D Holmes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Australian Chiropractic College, Adelaide, SA 5000, Australia.
| | - Dein Vindigni
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ashleigh Moreland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
11
|
Bakker LBM, Lamoth CJC, Vetrovsky T, Gruber M, Caljouw SR, Nieboer W, Taube W, van Dieën JH, Granacher U, Hortobágyi T. Neural Correlates of Balance Skill Learning in Young and Older Individuals: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:3. [PMID: 38185708 PMCID: PMC10772137 DOI: 10.1186/s40798-023-00668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Despite the increasing number of research studies examining the effects of age on the control of posture, the number of annual fall-related injuries and deaths continues to increase. A better understanding of how old age affects the neural mechanisms of postural control and how countermeasures such as balance training could improve the neural control of posture to reduce falls in older individuals is therefore necessary. The aim of this review is to determine the effects of age on the neural correlates of balance skill learning measured during static (standing) and dynamic (walking) balance tasks in healthy individuals. METHODS We determined the effects of acute (1-3 sessions) and chronic (> 3 sessions) balance skill training on balance in the trained and in untrained, transfer balance tasks through a systematic review and quantified these effects by robust variance estimation meta-analysis in combination with meta-regression. We systematically searched PubMed, Web of Science, and Cochrane databases. Balance performance and neural plasticity outcomes were extracted and included in the systematic synthesis and meta-analysis. RESULTS Forty-two studies (n = 622 young, n = 699 older individuals) were included in the systematic synthesis. Seventeen studies with 508 in-analysis participants were eligible for a meta-analysis. The overall analysis revealed that acute and chronic balance training had a large effect on the neural correlates of balance skill learning in the two age groups combined (g = 0.79, p < 0.01). Both age groups similarly improved balance skill performance in 1-3 training sessions and showed little further improvements with additional sessions. Improvements in balance performance mainly occurred in the trained and less so in the non-trained (i.e., transfer) balance tasks. The systematic synthesis and meta-analysis suggested little correspondence between improved balance skills and changes in spinal, cortical, and corticospinal excitability measures in the two age groups and between the time courses of changes in balance skills and neural correlates. CONCLUSIONS Balance skill learning and the accompanying neural adaptations occur rapidly and independently of age with little to no training dose-dependence or correspondence between behavioral and neural adaptations. Of the five types of neural correlates examined, changes in only spinal excitability seemed to differ between age groups. However, age or training dose in terms of duration did not moderate the effects of balance training on the changes in any of the neural correlates. The behavioral and neural mechanisms of strong task-specificity and the time course of skill retention remain unclear and require further studies in young and older individuals. REGISTRATION PROSPERO registration number: CRD42022349573.
Collapse
Affiliation(s)
- Lisanne B M Bakker
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands.
| | - Claudine J C Lamoth
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Markus Gruber
- Department of Sport Science, Human Performance Research Centre, University of Konstanz, Constance, Germany
| | - Simone R Caljouw
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Ward Nieboer
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD, Groningen, The Netherlands
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Pecs, Hungary
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
12
|
Scalia M, Parrella M, Borzuola R, Macaluso A. Comparison of acute responses in spinal excitability between older and young people after neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:353-363. [PMID: 37524980 DOI: 10.1007/s00421-023-05288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE This study aims at comparing acute responses in spinal excitability, as measured by H-reflex, between older and young individuals, following a single session of NMES superimposed onto voluntary isometric contractions of the ankle plantar-flexor muscles (NMES+), with respect to passive NMES (pNMES) and voluntary isometric contractions only (ISO). METHODS Thirty-two volunteers, 16 older (OLDER) and 16 young (YOUNG), were asked to sustain a constant force at 20% of maximal voluntary isometric contraction (MVIC) of the ankle plantar-flexor muscles in the dominant limb during each of the 3 conditions (NMES+ , pNMES and ISO). Fifteen repetitions of 6 s were performed, with a resting interval of 6 s between repetitions. Before and after each condition, soleus H-reflexes were elicited by percutaneous electrical stimulation of the posterior tibial nerve and H-reflex amplitudes recorded by surface EMG. RESULTS In OLDER, H-reflex amplitude did not change following any experimental condition (ISO: p = 0.203; pNMES: p = 0.542; NMES+: p = 0.431) compared to baseline. On the contrary, in YOUNG, H-reflex amplitudes significantly increased (p < 0.000) and decreased (p = 0.001) following NMES+ and pNMES, respectively, while there was no significant change in reflex responses following ISO (p = 0.772). CONCLUSION The lack of change in H-reflex responses following either NMES+ or pNMES might reflect a reduced ability of older people in modulating spinal excitability after the conditions. Specifically, an age-related alteration in controlling mechanisms at presynaptic level was suggested.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
13
|
Jakubowski KL, Ludvig D, Lee SS, Perreault EJ. At matched loads, aging does not alter ankle, muscle, or tendon stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568676. [PMID: 38045313 PMCID: PMC10690239 DOI: 10.1101/2023.11.25.568676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, age-dependent changes in muscle stiffness have yet to be tested. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p>0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p=0.008), muscle (37%; p=0.02), and tendon stiffness (22%; p=0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p=0.004). Together these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.
Collapse
Affiliation(s)
- Kristen L. Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA
| | - Daniel Ludvig
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA
- Shirley Ryan AbilityLab, Chicago, IL
| | - Sabrina S.M. Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Canada
| | - Eric J. Perreault
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA
- Shirley Ryan AbilityLab, Chicago, IL
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Jo D, Bilodeau M. Sex differences concerning the effects of ankle muscle fatigue on static postural control and spinal proprioceptive input at the ankle. Front Hum Neurosci 2023; 17:1015597. [PMID: 37476006 PMCID: PMC10355328 DOI: 10.3389/fnhum.2023.1015597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Aims The main aim of this study was to determine sex differences in postural control changes with ankle muscle fatigue during a standing forward leaning (FL) task under different vision conditions. The secondary aim was to examine sex differences in the effect of fatigue on soleus (SOL) H-reflex amplitude, a measure of motoneuron excitability with activation of Ia afferents. Methods Fifteen healthy young adult males (mean age: 28.0 years) and 16 healthy young adult females (mean age: 26.1 years) were asked to perform four consecutive FL tasks [30 s; two with eyes open (EO) and two with eyes closed (EC)] before, and immediately following a fatiguing exercise consisting of alternating ankle plantarflexion (6 s) and dorsiflexion (2 s) maximal isometric contractions, and at 5 and 10 min of recovery. Center of pressure (COP) sway variables (mean position, standard deviation, ellipse area, average velocity, and frequency), an ankle co-contraction index, and a ratio of SOL H-reflex to the maximum amplitude of the compound muscle action potential (M-max) were obtained during the FL tasks. A rating of perceived fatigue (RPF) was also documented at the different time points. Results Time to task failure (reduction of 50% in maximal voluntary isometric contraction torque of ankle plantar flexors) and the increase in RPF value were not significantly different between males and females. Both sex groups showed similar and significant increases (p < 0.05) in mean COP sway velocity with no significant changes in co-contraction indices. No significant effects of fatigue and related interactions were found for SOL H/M-max ratio. Discussion The absence of a significant sex difference in postural control change (sway and co-contraction) with fatigue could be explained by similar perceived (RPF) and performance fatigability (exercise duration) between males and females in the present study. Fatigue did not lead to significant changes in SOL spinal motoneuron excitability with activation of Ia afferents.
Collapse
Affiliation(s)
- Donguk Jo
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Aging and Movement Laboratory, Bruyère Research Institute, Ottawa, ON, Canada
| | - Martin Bilodeau
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Aging and Movement Laboratory, Bruyère Research Institute, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- LIFE Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Nevanperä S, Hu N, Walker S, Avela J, Piirainen JM. Modulation of H-reflex and V-wave responses during dynamic balance perturbations. Exp Brain Res 2023; 241:1599-1610. [PMID: 37142781 DOI: 10.1007/s00221-023-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
Collapse
Affiliation(s)
- Samuli Nevanperä
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
| | - Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Jarmo M Piirainen
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| |
Collapse
|
16
|
Theodosiadou A, Henry M, Duchateau J, Baudry S. Revisiting the use of Hoffmann reflex in motor control research on humans. Eur J Appl Physiol 2023; 123:695-710. [PMID: 36571622 DOI: 10.1007/s00421-022-05119-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Research in movement science aims at unravelling mechanisms and designing methods for restoring and maximizing human functional capacity, and many techniques provide access to neural adjustments (acute changes) or long-term adaptations (chronic changes) underlying changes in movement capabilities. First described by Paul Hoffmann over a century ago, when an electrical stimulus is applied to a peripheral nerve, this causes action potentials in afferent axons, primarily the Ia afferents of the muscle spindles, which recruit homonymous motor neurons, thereby causing an electromyographic response known as the Hoffmann (H) reflex. This technique is a valuable tool in the study of the neuromuscular function in humans and has provided relevant information in the neural control of movement. The large use of the H reflex in motor control research on humans relies in part to its relative simplicity. However, such simplicity masks subtleties that require rigorous experimental protocols and careful data interpretation. After highlighting basic properties and methodological aspects that should be considered for the correct use of the H-reflex technique, this brief narrative review discusses the purpose of the H reflex and emphasizes its use as a tool to assess the effectiveness of Ia afferents in discharging motor neurones. The review also aims to reconsider the link between H-reflex modulation and Ia presynaptic inhibition, the use of the H-reflex technique in motor control studies, and the effects of ageing. These aspects are summarized as recommendations for the use of the H reflex in motor control research on humans.
Collapse
Affiliation(s)
- Anastasia Theodosiadou
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Mélanie Henry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium.
| |
Collapse
|
17
|
Uematsu A, Tsuchiya K, Fukushima H, Hortobágyi T. Effects of Motor-Cognitive Dual-Task Standing Balance Exergaming Training on Healthy Older Adults' Standing Balance and Walking Performance. Games Health J 2023. [PMID: 36944151 DOI: 10.1089/g4h.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Objective: This study examined the effects of motor-cognitive dual-task exergaming standing balance training on healthy older adults' static, dynamic, and walking balance. Methods: Twenty-four adults older than 70 years (control group: n = 9, males = 6, balance training group: n = 15, males = 8) completed the experiment. Dual-tasking standing balance training comprised the accurate control of a ping-pong ball on a tray held with both hands, while standing on one leg (analog training) and three modules of Wii Fit™ exergaming (digital training). The duration of balance training was ∼15 minutes per day, 2 days per week for 8 weeks, in total 16 sessions. We measured one-leg standing time, functional reach distance, walking balance evaluated by the distance walked on a narrow beam (4-cm long, 4-cm wide, and 2-cm high) with single and dual tasking, habitual and maximal walking speed, and muscle strength of the hip extensor, hip abductor, hip adductor, knee extensor, and plantarflexor muscle groups in the right leg at baseline and after 8 weeks. Results: Control group decreased, but balance training group increased one-leg standing time. Only the balance training group improved functional reach distance and hip and knee extensor strength. There was no change in walking speed and walking balance in either group. In the balance training group, changes in maximal speed correlated with changes in dual-tasking walking balance and changes in one-leg standing time correlated with changes in single-tasking walking balance. Conclusion: These results suggest that 16 sessions of motor-cognitive dual-task standing exergaming balance training substantially improved healthy older adults' static and dynamic balance and leg muscle strength but failed to improve walking speed and walking balance. Balance exercises specific to walking balance need to be included in balance training to improve walking balance.
Collapse
Affiliation(s)
- Azusa Uematsu
- Faculty of Sociology, Otemon Gakuin University, Ibaraki, Japan
| | - Kazushi Tsuchiya
- Department of Rehabilitation Medicine, Yoshioka Hospital, Tendo, Japan
| | | | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
- Somogy Country Kaposi Mór Teaching Hospital, Káposvar, Hungary
- Center for Human Movement Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Konieczny M, Domaszewski P, Skorupska E, Borysiuk Z, Słomka KJ. Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7527. [PMID: 36236626 PMCID: PMC9573255 DOI: 10.3390/s22197527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Intermuscular synchronization is one of the fundamental aspects of maintaining a stable posture and is of great importance in the aging process. This study aimed to assess muscle synchronization and postural stabilizer asymmetry during quiet standing and the limits of stability using wavelet analysis. Intermuscular synchrony and antagonistic sEMG-sEMG (surface electromyography) coherence asymmetry were evaluated in the tibialis anterior and soleus muscles. METHODS The study involved 20 elderly (aged 65 ± 3.6) and 20 young (aged 21 ± 1.3) subjects. The task was to perform a maximum forward bend in a standing position. The prone test was divided into three phases: quiet standing (10 s), dynamic learning, and maintenance of maximum leaning (20 s). Wavelet analysis of coherence was performed in the delta and beta bands. RESULTS Young subjects modulated interface coherences to a greater extent in the beta band. Analysis of postural stability during standing tasks showed that only the parameter R2b (the distance between the maximal and minimal position central of pressure), as an indicator for assessing the practical limits of stability, was found to be significantly associated with differences in aging. CONCLUSION The results showed differences in the beta and delta band oscillations between young and older subjects in a postural task involving standing quietly and leaning forward.
Collapse
Affiliation(s)
- Mariusz Konieczny
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-068 Opole, Poland
| | - Przemysław Domaszewski
- Department of Health Sciences, Institute of Health Sciences, University of Opole, 45-060 Opole, Poland
| | - Elżbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-068 Opole, Poland
| | - Kajetan J. Słomka
- Institute of Sport Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
19
|
Riedmann U, Fink A, Weber B, Koschutnig K. Functional Connectivity as an Index of Brain Changes Following a Unicycle Intervention: A Graph-Theoretical Network Analysis. Brain Sci 2022; 12:brainsci12081092. [PMID: 36009155 PMCID: PMC9405869 DOI: 10.3390/brainsci12081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Grey matter volume reductions in the right superior temporal gyrus (rSTG) were observed in young adults who learned to ride a unicycle. As these decreases were correlated with the acquired ability in unicycling, the authors interpreted the change as a brain tissue reorganization to increase postural control’s automated and efficient coordination. The current study aims to further corroborate this interpretation by looking at changes in the functional brain network in the very same sample of participants. For this reason, we applied graph theory, a mathematics field used to study network structure functionality. Four global and two local graph-theoretical parameters were calculated to measure whole brain and rSTG specific changes in functional network activity following the three-week-unicycle training. Findings revealed that the Local Efficiency of the rSTG was significantly elevated after the intervention indicating an increase in fault tolerance of the rSTG, possibly reflecting decentralisation of rSTG specific functions to neighbouring nodes. Thus, the increased Local Efficiency may indicate increased task efficiency by decentralising the processing of functions crucial for balance.
Collapse
|
20
|
Sarto F, Pizzichemi M, Chiossi F, Bisiacchi PS, Franchi MV, Narici MV, Monti E, Paoli A, Marcolin G. Physical active lifestyle promotes static and dynamic balance performance in young and older adults. Front Physiol 2022; 13:986881. [PMID: 36060698 PMCID: PMC9428313 DOI: 10.3389/fphys.2022.986881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although regular physical activity exposure leads to positive postural balance control (PBC) adaptations, few studies investigated its effects, or the one of inactivity, on PBC in populations of different age groups. Thus, this study investigated the impact of a physically active lifestyle on static and dynamic PBC in young and older adults. Thirty-five young physically active subjects (YA), 20 young sedentary subjects (YS), 16 physically active older adults (OA), and 15 sedentary older adults (OS) underwent a static and a dynamic PBC assessment. A force platform and an instrumented proprioceptive board were employed to measure the center of pressure (COP) trajectory and the anteroposterior oscillations, respectively. In static conditions, no significant differences were detected among groups considering the overall postural balance performance represented by the area of confidence ellipse values. Conversely, the YA highlighted a higher efficiency (i.e., lower sway path mean velocity) in PBC maintenance compared to the other groups (YA vs OA: p = 0.0057, Cohen's d = 0.94; YA vs OS p = 0.043, d = 1.07; YA vs YS p = 0.08, d = 0.67). OS exhibited an overall worse performance in dynamic conditions than YA and YS. Surprisingly, no differences were found between YS and OA for all the static and dynamic parameters considered. In conclusion, our results suggest that a physically active lifestyle may promote static and dynamic balance performance in young and older adults, thus with potentially positive effects on the age-related decline of postural balance performance. Dynamic PBC assessment seems more sensitive in detecting differences between groups than the static evaluation.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Francesco Chiossi
- Department of General Psychology, University of Padova, Padua, Italy
- LMU Munich, Munich, Germany
| | | | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Monti
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
21
|
Papavasileiou A, Hatzitaki V, Mademli L, Patikas DA. Temporal modulation of H-reflex in young and older people: Acute effects during Achilles tendon vibration while standing. Exp Gerontol 2022; 165:111844. [DOI: 10.1016/j.exger.2022.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
|
22
|
Brahms M, Heinzel S, Rapp M, Mückstein M, Hortobágyi T, Stelzel C, Granacher U. The acute effects of mental fatigue on balance performance in healthy young and older adults - A systematic review and meta-analysis. Acta Psychol (Amst) 2022; 225:103540. [PMID: 35245722 DOI: 10.1016/j.actpsy.2022.103540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = -0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive.
Collapse
Affiliation(s)
- Markus Brahms
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany.
| | - Stephan Heinzel
- Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Michael Rapp
- University of Potsdam, Research Focus Cognitive Sciences, Division of Social and Preventive Medicine, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Marie Mückstein
- International Psychoanalytic University, Stromstraße 1, 10555 Berlin, Germany
| | - Tibor Hortobágyi
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Christine Stelzel
- International Psychoanalytic University, Stromstraße 1, 10555 Berlin, Germany
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
Papavasileiou A, Mademli L, Hatzitaki V, Patikas DA. Electromyographic responses to unexpected Achilles tendon vibration-induced perturbations during standing in young and older people. Exp Brain Res 2022; 240:1017-1027. [PMID: 35171309 DOI: 10.1007/s00221-022-06309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate age-related differences in electromyographic (EMG) responses to unexpected Achilles tendon vibration (ATV) perturbations while standing blindfold. ATV with variable and random duration (12-15 s) and rest periods (20-24 s) was applied on 18 young and 16 older volunteers. The anterior/posterior center of pressure (CoP) and the soleus (SOL) and tibialis anterior (TA) EMG were analyzed for 1 s before and 8 s after the ATV onset and offset. ATV induced a posterior shift of CoP in both groups, with more pronounced shift in the older group. During ATV onset, the older group demonstrated less SOL and more TA EMG increase compared to the young group. During the first 0.5 s of ATV offset, SOL EMG was decreased in both age groups, while TA showed a burst of EMG activity that was greater in the older group. No difference in the latencies of EMG peaks or valleys was observed between the groups. It is concluded that ATV induces greater posterior CoP shift in older adults, and they adopt a recovery strategy, characterized by a decreased SOL activation and an increased TA activation. These differences are possibly attributed to the increased fear of falling, decreased limits of stability and reduced capacity of older people to reweight their sensory inflow when proprioception is distorted.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece
| | - Lida Mademli
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece
| | - Vassilia Hatzitaki
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios A Patikas
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece.
| |
Collapse
|
24
|
Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights 2022; 16:11779322211062722. [PMID: 35023907 PMCID: PMC8743926 DOI: 10.1177/11779322211062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/06/2022] Open
Abstract
The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer's, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
Collapse
|
25
|
Quijoux F, Nicolaï A, Chairi I, Bargiotas I, Ricard D, Yelnik A, Oudre L, Bertin‐Hugault F, Vidal P, Vayatis N, Buffat S, Audiffren J. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol Rep 2021; 9:e15067. [PMID: 34826208 PMCID: PMC8623280 DOI: 10.14814/phy2.15067] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Postural control is often quantified by recording the trajectory of the center of pressure (COP)-also called stabilogram-during human quiet standing. This quantification has many important applications, such as the early detection of balance degradation to prevent falls, a crucial task whose relevance increases with the aging of the population. Due to the complexity of the quantification process, the analyses of sway patterns have been performed empirically using a number of variables, such as ellipse confidence area or mean velocity. This study reviews and compares a wide range of state-of-the-art variables that are used to assess the risk of fall in elderly from a stabilogram. When appropriate, we discuss the hypothesis and mathematical assumptions that underlie these variables, and we propose a reproducible method to compute each of them. Additionally, we provide a statistical description of their behavior on two datasets recorded in two elderly populations and with different protocols, to hint at typical values of these variables. First, the balance of 133 elderly individuals, including 32 fallers, was measured on a relatively inexpensive, portable force platform (Wii Balance Board, Nintendo) with a 25-s open-eyes protocol. Second, the recordings of 76 elderly individuals, from an open access database commonly used to test static balance analyses, were used to compute the values of the variables on 60-s eyes-open recordings with a research laboratory standard force platform.
Collapse
Affiliation(s)
- Flavien Quijoux
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
- ORPEA GroupPuteauxFrance
| | - Alice Nicolaï
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
| | - Ikram Chairi
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
- Groupe MSDAUniversité Mohammed VI PolytechniqueBenguerirMaroc
| | - Ioannis Bargiotas
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
| | - Damien Ricard
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
- Service de Neurologie de l’Hôpital d’Instruction des Armées de PercySSAClamartFrance
- Ecole du Val‐de‐GrâceEcole de Santé des ArméesParisFrance
| | - Alain Yelnik
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
- PRM DepartmentGH Lariboisière F. WidalAP‐HPUniversité de ParisUMR 8257ParisFrance
| | - Laurent Oudre
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
| | | | - Pierre‐Paul Vidal
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
- Institute of Information and ControlHangzhou Dianzi UniversityZhejiangChina
| | - Nicolas Vayatis
- Centre Borelli UMR 9010/Université Paris‐SaclayENS Paris‐SaclayCNRSSSA, InsermUniversité de ParisParisFrance
| | - Stéphane Buffat
- Laboratoire d’accidentologie de biomécanique et du comportement des conducteursGIE Psa Renault GroupesNanterreFrance
| | - Julien Audiffren
- Department of NeuroscienceUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
26
|
Dallaire M, Gagnon G, Fortin É, Nepton J, Severn AF, Côté S, Smaili SM, Gonçalves de Oliveira Araújo HA, de Oliveira MR, Ngomo S, Bouchard J, da Silva RA. The Impact of Parkinson's Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review. Geriatrics (Basel) 2021; 6:105. [PMID: 34842716 PMCID: PMC8628755 DOI: 10.3390/geriatrics6040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Parkinson's disease is most prevalent among elderly people, 65 years and over, and leads to an alteration in motor control associated with postural instability. Current evidence shows that postural control decreases with the aging process. In addition, postural control is more altered in healthy aged men than in women. Until today, few studies have evaluated the combined impact of Parkinson's disease and sex on postural control. This review has allowed to evaluate the impact of Parkinson's disease and sex on postural control measurements in elderly people. METHODOLOGY Studies have been selected from two main databases: PubMed and EBSCO using the keywords "Parkinson", "postural control OR balance" and "sex". Articles related to the evaluation of postural control, including men and women with Parkinson's aged over 65 years old, regardless of stage, were included (n = 179). Articles were excluded if not written in French or English or not presenting original content. RESULTS Ten (10) studies out of 179 that fulfilled inclusion and exclusion criteria were reported in the final analysis, which cumulates a total of 944 individuals with Parkinson's (410 women). In general, results show greater postural instability among people with Parkinson's compared to healthy subjects, and this according to different objective measurements using stabilographic parameters from force platforms. Only two studies out of ten evaluated postural control while briefly considering distinctions between sex, but without showing a significant difference between men and women with Parkinson's. Parkinson's severity, length of time of Parkinson's disease and cognitive state of the person are the three variables with a negative impact on postural control. CONCLUSION Older people with Parkinson's disease have greater postural instability. Sex does not seem to influence the postural control of elderly people with Parkinson's, although more studies are necessary.
Collapse
Affiliation(s)
- Mathieu Dallaire
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
| | - Guillaume Gagnon
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Émilie Fortin
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Josée Nepton
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Anne-France Severn
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Sharlène Côté
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Suhaila Mahmoud Smaili
- Doctoral Program in Rehabilitation Sciences, UEL/UNOPAR, Londrina 86041-120, Brazil; (S.M.S.S.); (H.A.G.d.O.A.)
| | | | - Márcio Rogério de Oliveira
- Doctoral and Masters Program in Physical Exercise on Health Promotion, Universidade Pitagoras UNOPAR, Londrina 86041-120, Brazil;
| | - Suzy Ngomo
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Julie Bouchard
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
| | - Rubens A. da Silva
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
- Doctoral Program in Rehabilitation Sciences, UEL/UNOPAR, Londrina 86041-120, Brazil; (S.M.S.S.); (H.A.G.d.O.A.)
| |
Collapse
|
27
|
Magnard J, Berrut G, Couturier C, Cattagni T, Cornu C, Deschamps T. Perceptual Inhibition Is Not a Specific Component of the Sensory Integration Process Necessary for a Rapid Voluntary Step Initiation in Healthy Older Adults. J Gerontol B Psychol Sci Soc Sci 2020; 75:1921-1929. [PMID: 31074828 DOI: 10.1093/geronb/gbz060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES We investigated whether performing step initiation during a proprioceptive perturbation would require greater perceptual or motor inhibitory control in older adults. METHOD Fifty-two healthy adults (young: n = 26, mean age 22.5 years vs. older: n = 26, mean age 70.1 years) performed a stepping reaction time task, with different inhibition requirements (i.e., perceptual vs. motor inhibitory conflict), with two proprioceptive configurations: with and without application of Achilles tendon vibrations. RESULTS Beyond a systematically greater stepping reaction time in older adults (p < .01), no difference was found between the perceptual versus motor inhibitory conflict resolution, regardless of age and proprioceptive configuration. Furthermore, slower reaction time was observed for young participants in the presence of Achilles tendon vibrations unlike older adults, who showed the same reactive stepping performance with or without vibrations (p < .05). DISCUSSION These findings show that perceptual inhibition cannot be considered as specifically involved in the central processing of proprioceptive signals, at least not in active older adults. Rather than motor system malfunctioning or a reduced amount of proprioceptive afference, we propose that cortical-proprioceptive processing in older adults remains as effective as in young adults, regardless of the high attentional requirements for step responses.
Collapse
Affiliation(s)
- Justine Magnard
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Gilles Berrut
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France.,Department of Geriatrics, Nantes University Hospital, France
| | | | - Thomas Cattagni
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Thibault Deschamps
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| |
Collapse
|
28
|
Mildren RL, Schmidt ME, Eschelmuller G, Carpenter MG, Blouin JS, Inglis JT. Influence of age on the frequency characteristics of the soleus muscle response to Achilles tendon vibration during standing. J Physiol 2020; 598:5231-5243. [PMID: 32822066 DOI: 10.1113/jp280324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Proprioceptive sensory information from the ankle joint is critical for the control of upright posture and balance. We examined the influence of age (n = 54 healthy adults, 20-82 years old) on lower limb muscle responses to proprioceptive perturbations evoked by Achilles tendon vibration during standing. The frequency bandwidth of the muscle response became narrower, and the gain (the muscle response relative to the stimulus) and scaling (increases in response amplitude with increases in stimulus amplitude) decreased with age. Mechanics of the muscle-tendon unit (mechanical admittance) did not differ with age during standing, and thus probably did not mediate the age-related changes observed in soleus muscle responses to vibration. These findings add to our understanding of how altered proprioceptive responses may contribute to impaired mobility and falls with ageing. ABSTRACT Proprioceptive information from the ankle joint plays an important role in the control of upright posture and balance. Ageing influences many components of the sensorimotor system, which leads to poor mobility and falls. However, little is known about the influence of age on the characteristics of short latency muscle responses to proprioceptive stimuli during standing across frequencies that are encoded by muscle spindles. We examined the frequency characteristics of the soleus muscle response to noisy (10-115 Hz) Achilles tendon vibration during standing in 54 healthy adults across a broad age range (20-82 years). The results showed the frequency bandwidth of the soleus response (vibration-electromyography coherence) became progressively narrower with ageing. Coherence was significantly lower in middle-aged relative to young adults between ∼7-11 and 28-62 Hz, lower in older relative to middle-aged adults between ∼30-50 Hz and lower in older relative to young adults between ∼7-64 Hz. Muscle response gain was similar between age groups at low frequencies, although gain was lower in older relative to young adults between ∼28-54 Hz. Across the age range, the response amplitude (peak-to-peak cross-covariance) and the scaling of the response with stimulus amplitude were both negatively correlated with age. Muscle-tendon mechanics (admittance) did not differ with age, suggesting this did not mediate differences in soleus responses. Our findings suggest there is a progressive change in the soleus response to proprioceptive stimuli with ageing during standing, which could contribute to poorer mobility and falls.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Margot E Schmidt
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Gregg Eschelmuller
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| |
Collapse
|
29
|
Paulauskas H, Baranauskiene N, Wang J, Mikucioniene D, Eimantas N, Brazaitis M. Local knee heating increases spinal and supraspinal excitability and enhances plantar flexion and dorsiflexion torque production of the ankle in older adults. Eur J Appl Physiol 2020; 120:2259-2271. [PMID: 32776256 DOI: 10.1007/s00421-020-04449-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Aging is associated with progressive loss of active muscle mass and consequent decreases in resting metabolic rate and body temperature, and slowing of nerve conduction velocities and muscle contractility. These effectors compromise the ability of the elderly to maintain an upright posture during sudden balance perturbation, increase the risk of falls, and lead to self-imposed reduction in physical activity. Short-term superficial acute heating can modulate the neural drive transmission to exercising muscles without any marked change in deep-muscle temperature. METHODS To determine whether the short-term (5 min) application of local passive knee-surface heating (next-to-skin temperature, ~ 44 °C) in healthy older subjects of both sexes (64-74 years; eight men/eight women) enhances reflex excitability, we compared the voluntarily and electrically induced ankle muscle torque production and contractile properties with those of healthy younger subjects of both sexes (21-35 years, 10 men/10 women). RESULTS The application of local heating (vs. control) increased the maximal Hoffman reflex (Hmax), the maximal volitional wave (Vsup) amplitude, and the Hmax/Mmax amplitude ratio, and decreased Vsup latency only in older adults. In the older adults (vs. younger adults), the application of local heating (vs. control trial) was accompanied by a significant increase in maximal voluntary peak torque, rate of torque development, and isokinetic peak torque of plantar flexion/dorsiflexion muscle contraction. CONCLUSION The spinal and supraspinal reflex excitability of older adults increased during local knee-heating application. The improved motor drive transmission observed in older adults was accompanied by increased voluntarily induced torque production of the ankle muscles during isometric/isokinetic contractions.
Collapse
Affiliation(s)
- Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, 51424, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
30
|
Houston DJ, Lee JW, Unger J, Masani K, Musselman KE. Functional Electrical Stimulation Plus Visual Feedback Balance Training for Standing Balance Performance Among Individuals With Incomplete Spinal Cord Injury: A Case Series. Front Neurol 2020; 11:680. [PMID: 32793101 PMCID: PMC7390869 DOI: 10.3389/fneur.2020.00680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Individuals with an incomplete spinal cord injury (iSCI) are highly susceptible to falls during walking or standing. Our objective was to evaluate a therapeutic tool for standing balance that combined functional electrical stimulation, applied bilaterally to the plantarflexors and dorsiflexors, with visual feedback balance training (FES+VFBT). Five adults with iSCI completed 12 FES+VFBT sessions over 4 weeks. During the training sessions, participants completed each of the four balance exercises twice. Visual feedback of the center-of-pressure (COP) location was provided as participants completed the balance exercises and received FES to assist with performance of the exercises. A closed-loop FES system was used in which the COP was continually monitored and the level of electrical current administered was automatically adjusted. Balance abilities were assessed pre- and post- training using clinical balance scales (i.e., Berg Balance Scale, Mini-Balance Evaluation Systems Test, and Activities-specific Balance Confidence Scale) and biomechanical assessments (i.e., postural sway measures and limits of stability test during standing). User acceptability was explored through semi-structured interviews. Improvements were seen for four of the five participants on at least one of the clinical scales following completion of the training intervention. All participants showed greater maximal COP excursion area during the limits of stability test after the training intervention, whereas only one participant demonstrated a reduction in postural sway. Specific components of FES+VFBT, including the ability to safely practice challenging balance exercises, were deemed important by the participants. These results suggest that FES+VFBT has potential as an intervention for standing balance after iSCI.
Collapse
Affiliation(s)
- David J Houston
- KITE Toronto Rehab-University Health Network, Toronto, ON, Canada.,Faulty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Jae W Lee
- KITE Toronto Rehab-University Health Network, Toronto, ON, Canada.,Faculty of Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Janelle Unger
- KITE Toronto Rehab-University Health Network, Toronto, ON, Canada.,Faulty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE Toronto Rehab-University Health Network, Toronto, ON, Canada.,Faculty of Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kristin E Musselman
- KITE Toronto Rehab-University Health Network, Toronto, ON, Canada.,Faulty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Associating Gait Phase and Physical Fitness with Global Cognitive Function in the Aged. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134786. [PMID: 32635202 PMCID: PMC7369886 DOI: 10.3390/ijerph17134786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
This study aimed to identify classifier variables by considering both gait and physical fitness for identifying adults aged over 75 years and global cognitive function declines in older adults. The participants included 735 adults aged 65–89 years who were asked to walk at three different speeds (slower, preferred, and faster) while wearing inertial measurement units embedded in shoe-type data loggers and to perform nine physical fitness tests. The variability in the stance phase as well as the strength, balance, and functional endurance showed a strong dependence on the age being over 75 years. The cognitive function was evaluated by the Mini-Mental State Examination; a longer stance phase at a slower walking speed and decreased grip strength and five times sit-to-stand were associated with cognitive function. These findings may be useful for determining the decline in physical performance of older adults. A longer stance phase and decreased grip strength and five times sit-to-stand may be factors that help distinguish declines in cognitive function from normal age-related declines.
Collapse
|
32
|
Walker S, Monto S, Piirainen JM, Avela J, Tarkka IM, Parviainen TM, Piitulainen H. Older Age Increases the Amplitude of Muscle Stretch-Induced Cortical Beta-Band Suppression But Does not Affect Rebound Strength. Front Aging Neurosci 2020; 12:117. [PMID: 32508626 PMCID: PMC7248310 DOI: 10.3389/fnagi.2020.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Healthy aging is associated with deterioration of the sensorimotor system, which impairs balance and somatosensation. However, the exact age-related changes in the cortical processing of sensorimotor integration are unclear. This study investigated primary sensorimotor cortex (SM1) oscillations in the 15-30 Hz beta band at rest and following (involuntary) rapid stretches to the triceps surae muscles (i.e., proprioceptive stimulation) of young and older adults. A custom-built, magnetoencephalography (MEG)-compatible device was used to deliver rapid (190°·s-1) ankle rotations as subjects sat passively in a magnetically-shielded room while MEG recorded their cortical signals. Eleven young (age 25 ± 3 years) and 12 older (age 70 ± 3 years) adults matched for physical activity level demonstrated clear 15-30 Hz beta band suppression and rebound in response to the stretches. A sub-sample (10 young and nine older) were tested for dynamic balance control on a sliding platform. Older adults had greater cortical beta power pre-stretch (e.g., right leg: 4.0 ± 1.6 fT vs. 5.6 ± 1.7 fT, P = 0.044) and, subsequently, greater normalized movement-related cortical beta suppression post-proprioceptive stimulation (e.g., right leg: -5.8 ± 1.3 vs. -7.6 ± 1.7, P = 0.01) than young adults. Furthermore, poorer balance was associated with stronger cortical beta suppression following proprioceptive stimulation (r = -0.478, P = 0.038, n = 19). These results provide further support that cortical processing of proprioception is hindered in older adults, potentially (adversely) influencing sensorimotor integration. This was demonstrated by the impairment of prompt motor action control, i.e., regaining perturbed balance. Finally, SM1 cortex beta suppression to a proprioceptive stimulus seems to indicate poorer sensorimotor functioning in older adults.
Collapse
Affiliation(s)
- Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simo Monto
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo M Piirainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina M Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Harri Piitulainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
33
|
Walker S, Piitulainen H, Manlangit T, Avela J, Baker SN. Older adults show elevated intermuscular coherence in eyes‐open standing but only young adults increase coherence in response to closing the eyes. Exp Physiol 2020; 105:1000-1011. [DOI: 10.1113/ep088468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- S. Walker
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - H. Piitulainen
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
- Department of Neuroscience and Biomedical Engineering School of Science Aalto University Espoo Finland
| | - T. Manlangit
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - J. Avela
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - S. N. Baker
- Institute of Neuroscience, Medical School Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
34
|
Corticomuscular control of walking in older people and people with Parkinson's disease. Sci Rep 2020; 10:2980. [PMID: 32076045 PMCID: PMC7031238 DOI: 10.1038/s41598-020-59810-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
Changes in human gait resulting from ageing or neurodegenerative diseases are multifactorial. Here we assess the effects of age and Parkinson’s disease (PD) on corticospinal activity recorded during treadmill and overground walking. Electroencephalography (EEG) from 10 electrodes and electromyography (EMG) from bilateral tibialis anterior muscles were acquired from 22 healthy young, 24 healthy older and 20 adults with PD. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence were assessed for EEG from bilateral sensorimotor cortices and EMG during the double-support phase of the gait cycle. CMC and EMG power at low beta frequencies (13–21 Hz) was significantly decreased in older and PD participants compared to young people, but there was no difference between older and PD groups. Older and PD participants spent shorter time in the swing phase than young individuals. These findings indicate age-related changes in the temporal coordination of gait. The decrease in low-beta CMC suggests reduced cortical input to spinal motor neurons in older people during the double-support phase. We also observed multiple changes in electrophysiological measures at low-gamma frequencies during treadmill compared to overground walking, indicating task-dependent differences in corticospinal locomotor control. These findings may be affected by artefacts and should be interpreted with caution.
Collapse
|
35
|
Baudry S, Duchateau J. Aftereffects of prolonged Achilles tendon vibration on postural control are reduced in older adults. Exp Gerontol 2020; 131:110822. [PMID: 31899339 DOI: 10.1016/j.exger.2019.110822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022]
Abstract
AIM To assess the change in the contribution of proprioceptive signal from leg muscles in postural control with ageing. METHODS Fifteen young (~23 yr) and fifteen older adults (~68 yr) participated in Experiment 1, which consisted of recording the mean position of the centre of pressure (CoP), CoP path length, CoP velocity, and the amplitude of the Hoffmann (H) reflex and maximal M wave (MMAX) in the soleus muscle during upright standing, before and after 1 h of bilateral Achilles tendon vibration applied in seated posture. Eight young (~24 yr) and eight older adults (~67 yr) participated in Experiment 2 consisting of recording H-reflex and MMAX in seated posture before and after the 1-h vibration procedure used in Experiment 1. RESULTS Immediately after the 1-h vibration, the mean CoP position shifted forward in both groups (p < 0.05), with a greater magnitude of change (% pre-vibration) in young [mean(SD); 74(41)%] than older adults [44(40)%; p < 0.05]. The CoP path length and velocity only increased in young adults after vibration (p < 0.05). The H-reflex amplitude decreased only in young adults after vibration [before: 35(12); after: 16(13)% Mmax, p < 0.05] during upright standing (Experiment 1), whereas it decreased similarly (p > 0.05) in young [before: 47(12)% Mmax; after: 28(17)% Mmax] and older adults [before: 34(13)% Mmax; after: 21(14)% Mmax] in seated posture (Experiment 2). CONCLUSION Prolonged Achilles tendon vibrations lead to lesser postural perturbation in older than in young adults, supporting the assumption of a decreased reliance on leg muscle proprioception in postural control with ageing.
Collapse
Affiliation(s)
- Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium.
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
36
|
Henry M, Baudry S. Age-related changes in leg proprioception: implications for postural control. J Neurophysiol 2019; 122:525-538. [PMID: 31166819 DOI: 10.1152/jn.00067.2019] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.
Collapse
Affiliation(s)
- Mélanie Henry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
37
|
Piasecki M, Ireland A, Piasecki J, Degens H, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS. Long-Term Endurance and Power Training May Facilitate Motor Unit Size Expansion to Compensate for Declining Motor Unit Numbers in Older Age. Front Physiol 2019; 10:449. [PMID: 31080415 PMCID: PMC6497749 DOI: 10.3389/fphys.2019.00449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 11/15/2022] Open
Abstract
The evidence concerning the effects of exercise in older age on motor unit (MU) numbers, muscle fiber denervation and reinnervation cycles is inconclusive and it remains unknown whether any effects are dependent on the type of exercise undertaken or are localized to highly used muscles. MU characteristics of the vastus lateralis (VL) were assessed using surface and intramuscular electromyography in eighty-five participants, divided into sub groups based on age (young, old) and athletic discipline (control, endurance, power). In a separate study of the biceps brachii (BB), the same characteristics were compared in the favored and non-favored arms in eleven masters tennis players. Muscle size was assessed using MRI and ultrasound. In the VL, the CSA was greater in young compared to old, and power athletes had the largest CSA within their age groups. Motor unit potential (MUP) size was larger in all old compared to young (p < 0.001), with interaction contrasts showing this age-related difference was greater for endurance and power athletes than controls, and MUP size was greater in old athletes compared to old controls. In the BB, thickness did not differ between favored and non-favored arms (p = 0.575), but MUP size was larger in the favored arm (p < 0.001). Long-term athletic training does not prevent age-related loss of muscle size in the VL or BB, regardless of athletic discipline, but may facilitate more successful axonal sprouting and reinnervation of denervated fibers. These effects may be localized to muscles most involved in the exercise.
Collapse
Affiliation(s)
- M. Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - J. Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - H. Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - D. W. Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - A. Swiecicka
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - M. K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - D. A. Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - J. S. McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Physiology, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Johannsson J, Duchateau J, Baudry S. Modulation of the Hoffmann reflex in soleus and medial gastrocnemius during stair ascent and descent in young and older adults. Gait Posture 2019; 68:115-121. [PMID: 30472523 DOI: 10.1016/j.gaitpost.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/09/2018] [Accepted: 11/15/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Hoffmann (H) reflex can provide relevant information on spinal control of leg muscles during locomotor tasks in young and older adults. RESEARCH QUESTION Is the H reflex in the leg muscles differently modulated during stair gait in young and older adults? METHOD The H reflex in soleus (SOL) and medial gastrocnemius (MG) (normalized to the maximal M-wave amplitude obtained during upright standing; Mmax) was recorded in 19 young and 18 older adults during upright standing, and stair ascent and descent of a 3-step staircase. RESULTS H-reflex amplitude during upright standing was greater in young than older adults for SOL (48% vs. 26% Mmax; p = 0.001) and MG (23% vs. 14% Mmax; p = 0.02). When data were averaged across groups during stair ascent, H-reflex amplitude in SOL increased from 15% Mmax at the beginning of the stance phase to 29% Mmax at mid-stance, then decreased to be 4% Mmax in the swing phase. During stair descent, H-reflex amplitude was maximal (20% Mmax) at the beginning of the stance phase, decreased to 5% Mmax at the end of stance, and increased to 11% Mmax in the swing phase. Similar adjustments were observed for the H reflex in MG for both ascent and descent. H-reflex modulation during gait cycle (relative to upright standing) is less pronounced in older adults (p < 0.05). However, no difference was observed between subgroups of young and older adults matched for H-reflex amplitude in upright standing. In both groups, H-reflex modulation was not associated with changes in background electromyographic activity. SIGNIFICANCE This study indicates that the H reflex is modulated within the stair gait cycle during ascent and descent. Although its magnitude was slightly reduced, the overall modulation of the H reflex is not affected in healthy older adults.
Collapse
Affiliation(s)
- Johanna Johannsson
- Laboratory of Applied Neurophysiology and Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Neurophysiology and Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Neurophysiology and Biology, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
39
|
Edwards AE, Guven O, Furman MD, Arshad Q, Bronstein AM. Electroencephalographic Correlates of Continuous Postural Tasks of Increasing Difficulty. Neuroscience 2018; 395:35-48. [DOI: 10.1016/j.neuroscience.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
|
40
|
Mani D, Feeney DF, Enoka RM. The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults. Eur J Appl Physiol 2018; 119:301-310. [DOI: 10.1007/s00421-018-4025-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
|
41
|
Valkanova V, Esser P, Demnitz N, Sexton CE, Zsoldos E, Mahmood A, Griffanti L, Kivimäki M, Singh-Manoux A, Dawes H, Ebmeier KP. Association between gait and cognition in an elderly population based sample. Gait Posture 2018; 65:240-245. [PMID: 30558938 PMCID: PMC6109203 DOI: 10.1016/j.gaitpost.2018.07.178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 06/20/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait is thought to have a cognitive component, but the current evidence in healthy elderly is mixed. We studied the association between multiple gait and cognitive measures in a cohort of older people. METHODS One hundred and seventy-eight cognitively healthy participants from the Whitehall II Imaging Sub-study had a detailed clinical and neuropsychological assessment, as well as an MRI scan. Spatiotemporal and variability gait measures were derived from two 10 m walks at self-selected speed. We did a linear regression analysis, entering potential confounders with backwards elimination of variables with p ≥ 0.1. The remaining variables were then entered into a second regression before doing a stepwise analysis of cognitive measures, entering variables with p < 0.05 and removing those with p ≥ 0.1. RESULTS Amongst absolute gait measures, only greater stride length was associated with better performance on the Trail Making Test A (p = 0.023) and the Boston Naming Test (p = 0.042). The stride time variability was associated with performance on the Trail Making Test A (p = 0.031). Age was associated with poorer walking speed (p = 0.014) and stride time (p = 0.011), female sex with shorter stride time (p = 0.000) and shorter double stance (p = 0.005). Length of full-time education was associated with faster walking speed (p = 0.012) and shorter stride time (p = 0.045), and a history of muscular-skeletal disease with slower walking speed (p = 0.01) and shorter stride length (p = 0.015). Interestingly, volume of white matter hyperintensities (WMH) on FLAIR MRI images did not contribute independently to any of the gait measures (p > 0.05). CONCLUSIONS No strong relationship between gait and non-motor cognition was observed in a cognitively healthy, high functioning sample of elderly. Nevertheless, we found some relationships with spatial, but not temporal gait which warrant further investigation. WMH made no independent contributionto gait.
Collapse
Affiliation(s)
- Vyara Valkanova
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom.
| | - Patrick Esser
- Movement Science Group, Oxford Brookes University, OX3 0BP, United Kingdom; FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Naiara Demnitz
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom; FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Claire E Sexton
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Abda Mahmood
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Ludovica Griffanti
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, United Kingdom
| | - Archana Singh-Manoux
- Centre for Research in Epidemiology and Population Health, INSERM, U1018, Villejuif, France; Department of Epidemiology and Public Health, University College London, United Kingdom
| | - Helen Dawes
- Movement Science Group, Oxford Brookes University, OX3 0BP, United Kingdom; FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
42
|
Stelzel C, Bohle H, Schauenburg G, Walter H, Granacher U, Rapp MA, Heinzel S. Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking. Front Psychol 2018; 9:1075. [PMID: 30034351 PMCID: PMC6043684 DOI: 10.3389/fpsyg.2018.01075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a one-back working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitive-motor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments.
Collapse
Affiliation(s)
- Christine Stelzel
- Division of Social and Preventive Medicine, University of Potsdam, Potsdam, Germany.,Experimental Psychology, International Psychoanalytic University Berlin, Berlin, Germany
| | - Hannah Bohle
- Division of Social and Preventive Medicine, University of Potsdam, Potsdam, Germany.,Experimental Psychology, International Psychoanalytic University Berlin, Berlin, Germany
| | - Gesche Schauenburg
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Berlin Universitätsmedizin, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Center for Advanced Neuroimaging, Charité - Berlin Universitätsmedizin, Berlin, Germany
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Michael A Rapp
- Division of Social and Preventive Medicine, University of Potsdam, Potsdam, Germany
| | - Stephan Heinzel
- Division of Social and Preventive Medicine, University of Potsdam, Potsdam, Germany.,Clinical Psychology and Psychotherapy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
43
|
Watanabe T, Saito K, Ishida K, Tanabe S, Nojima I. Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults. Exp Brain Res 2018; 236:1229-1239. [DOI: 10.1007/s00221-018-5217-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/22/2018] [Indexed: 11/30/2022]
|
44
|
Ruffieux J, Mouthon A, Keller M, Mouthon M, Annoni JM, Taube W. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study. Front Behav Neurosci 2018; 12:10. [PMID: 29472847 PMCID: PMC5810285 DOI: 10.3389/fnbeh.2018.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 12/05/2022] Open
Abstract
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Collapse
Affiliation(s)
- Jan Ruffieux
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Audrey Mouthon
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Martin Keller
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michaël Mouthon
- Neurology Laboratory, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Neurology Laboratory, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Wolfgang Taube
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
45
|
Ozdemir RA, Contreras-Vidal JL, Paloski WH. Cortical control of upright stance in elderly. Mech Ageing Dev 2018; 169:19-31. [DOI: 10.1016/j.mad.2017.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
46
|
Ruffieux J, Mouthon A, Keller M, Wälchli M, Taube W. Behavioral and neural adaptations in response to five weeks of balance training in older adults: a randomized controlled trial. J Negat Results Biomed 2017; 16:11. [PMID: 28610582 PMCID: PMC5470269 DOI: 10.1186/s12952-017-0076-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/08/2017] [Indexed: 11/11/2022] Open
Abstract
Background While the positive effect of balance training on age-related impairments in postural stability is well-documented, the neural correlates of such training adaptations in older adults remain poorly understood. This study therefore aimed to shed more light on neural adaptations in response to balance training in older adults. Methods Postural stability as well as spinal reflex and cortical excitability was measured in older adults (65–80 years) before and after 5 weeks of balance training (n = 15) or habitual activity (n = 13). Postural stability was assessed during one- and two-legged quiet standing on a force plate (static task) and a free-swinging platform (dynamic task). The total sway path was calculated for all tasks. Additionally, the number of errors was counted for the one-legged tasks. To investigate changes in spinal reflex excitability, the H-reflex was assessed in the soleus muscle during quiet upright stance. Cortical excitability was assessed during an antero-posterior perturbation by conditioning the H-reflex with single-pulse transcranial magnetic stimulation. Results A significant training effect in favor of the training group was found for the number of errors conducted during one-legged standing (p = .050 for the static and p = .042 for the dynamic task) but not for the sway parameters in any task. In contrast, no significant effect was found for cortical excitability (p = 0.703). For spinal excitability, an effect of session (p < .001) as well as an interaction of session and group (p = .009) was found; however, these effects were mainly due to a reduced excitability in the control group. Conclusions In line with previous results, older adults’ postural stability was improved after balance training. However, these improvements were not accompanied by significant neural adaptations. Since almost identical studies in young adults found significant behavioral and neural adaptations after four weeks of training, we assume that age has an influence on the time course of such adaptations to balance training and/or the ability to transfer them from a trained to an untrained task. Electronic supplementary material The online version of this article (doi:10.1186/s12952-017-0076-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Ruffieux
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700, Fribourg, Switzerland.
| | - Audrey Mouthon
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700, Fribourg, Switzerland
| | - Martin Keller
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700, Fribourg, Switzerland
| | - Michael Wälchli
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700, Fribourg, Switzerland
| | - Wolfgang Taube
- Movement and Sport Sciences, Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700, Fribourg, Switzerland
| |
Collapse
|
47
|
Stelzel C, Schauenburg G, Rapp MA, Heinzel S, Granacher U. Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control-a Pilot Study. Front Psychol 2017; 8:613. [PMID: 28484411 PMCID: PMC5399084 DOI: 10.3389/fpsyg.2017.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/03/2017] [Indexed: 11/13/2022] Open
Abstract
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.
Collapse
Affiliation(s)
- Christine Stelzel
- Division of Social and Preventive Medicine, University of PotsdamPotsdam, Germany.,International Psychoanalytic UniversityBerlin, Germany
| | - Gesche Schauenburg
- Division of Training and Movement Sciences, University of PotsdamPotsdam, Germany
| | - Michael A Rapp
- Division of Social and Preventive Medicine, University of PotsdamPotsdam, Germany
| | - Stephan Heinzel
- Division of Social and Preventive Medicine, University of PotsdamPotsdam, Germany.,Clinical Psychology and Psychotherapy, Freie Universität BerlinBerlin, Germany
| | - Urs Granacher
- Division of Training and Movement Sciences, University of PotsdamPotsdam, Germany
| |
Collapse
|
48
|
Spinal and corticospinal pathways are differently modulated when standing at the bottom and the top of a three-step staircase in young and older adults. Eur J Appl Physiol 2017; 117:1165-1174. [PMID: 28409395 DOI: 10.1007/s00421-017-3603-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/29/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE This study investigated the modulation of spinal (group Ia afferents) and corticospinal pathways when young (22.7 ± 1.3 years) and older adults (72.2 ± 7.9 years) stood at the bottom and at the top of a three-step staircase equipped with force platforms. METHOD Changes in submaximal H-reflex amplitude (H 50) and slope of the H-reflex input-output relation (spinal pathway), and in amplitude of motor-evoked potentials (MEP) triggered by transcranial magnetic stimulation (corticospinal pathway) at two intensities (1.1× and 1.2× motor threshold) were recorded in soleus when subjects stood as steady as possible downstairs and upstairs. The centre of pressure (CoP) excursion was analyzed in the time and frequency domains in both conditions. RESULTS Regardless of age, the mean CoP velocity was greater when standing upstairs (11.1 ± 3.5 mm s-1) than downstairs (9.0 ± 2.3 mm s-1; p = 0.002). The CoP power spectral density (PSD) in the 0-0.5 Hz band was greater upstairs than downstairs (+18.4%; p = 0.03) whereas PSD in the 2-20Hz frequency band was lesser (-41%) upstairs than downstairs (p < 0.001), regardless of age. In both groups, the H 50 amplitude (-30.6%; p < 0.001) and slope of H-reflex input-output relation (-10.2%; p = 0.002) were lesser when standing upstairs than downstairs, whereas no significant difference was observed in MEP amplitude and silent period between balance conditions (p > 0.05). CONCLUSION These results indicate a lower dependence on spinal pathway to control soleus motor neurones when standing upstairs than downstairs accompanied by a change in postural control. This suggests that healthy older adults preserved their ability to adjust postural control to environmental demands.
Collapse
|
49
|
Gmiat A, Mieszkowski J, Prusik K, Prusik K, Kortas J, Kochanowicz A, Radulska A, Lipiński M, Tomczyk M, Jaworska J, Antosiewicz J, Ziemann E. Changes in pro-inflammatory markers and leucine concentrations in response to Nordic Walking training combined with vitamin D supplementation in elderly women. Biogerontology 2017; 18:535-548. [PMID: 28316011 PMCID: PMC5514208 DOI: 10.1007/s10522-017-9694-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022]
Abstract
Mechanisms underpinning age-related decreases in muscle strength and muscle mass relate to chronic inflammation. Physical activity induces an anti-inflammatory effect, but it is modulated by additional factors. We hypothesized that vitamin D, which has also anti-inflammatory activity will modify adaptation to exercise and reduce inflammation in elderly women. Twenty-seven women aged 67 ± 8 years were included and divided into groups with baseline vitamin D concentration more than 20 ng mL−1 (MVD) and less than 20 ng mL−1 (LVD). Both groups performed 1 h Nordic Walking (NW) training combined with vitamin D supplementation for 12 weeks. Serum concentrations of inflammation markers, branched amino acids, vitamin D, muscle strength and balance were assessed at the baseline and three days after intervention. The training caused the significant decrease in concentration of pro-inflammatory proteins HMGB1 (30 ± 156%; 90% CI) and IL-6 (−10 ± 66%; 90% CI) in MVD group. This effects in group MVD were moderate, indicating vitamin D as one of the modifiers of these exercise-induced changes. Rise of myokine irisin induced by exercise correlated inversely with HMGB1 and the correlation was more pronounced at the baseline as well as after training among MVD participants. Although the intervention caused the leucine level to rise, a comparison of the recorded response between groups and the adjusted effect indicated that the effect was 20% lower in the LVD group. Overall the applied training program was effective in reducing HMGB1 concentration. This drop was accompanied by the rise of myokine irisin and better uptake of leucine among women with higher baseline vitamin D.
Collapse
Affiliation(s)
- A Gmiat
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland
| | - J Mieszkowski
- Department of Anatomy and Biomechanics, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - K Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - K Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - J Kortas
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - A Kochanowicz
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - A Radulska
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - M Lipiński
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - M Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - J Jaworska
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland
| | - J Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University, Gdańsk, Poland
| | - E Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdańsk, Poland.
| |
Collapse
|