1
|
Gao Y, Huang Y, An R, Yang Y, Chen X, Wan Q. Risk factors for sarcopenia in community setting across the life course: A systematic review and a meta-analysis of longitudinal studies. Arch Gerontol Geriatr 2025; 133:105807. [PMID: 40049056 DOI: 10.1016/j.archger.2025.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Sarcopenia is generally an age-related condition in older people that impacts adverse health consequences in terms of quality of life, morbidity and mortality. With the increasing interest of clinical and research interest in sarcopenia internationally, the epidemiological evidence reveals sarcopenia risk begins in early adulthood, influenced by gene, lifestyle and a range of chronic conditions across life course. OBJECTIVES The purpose of this study was to systematically summarize the risk factors for sarcopenia across the life course, and to identity the high-risk population. METHODS Searches were performed in PubMed, Web of Science, Scopus, Embase, MEDLINE, and SPORTDiscus databases from inception to July 2024. Longitudinal studies assessing the risk factors for sarcopenia in community setting were included in the analysis. Fixed- and random-effect models were used to pool effect size. Based on the results of meta-analysis, we developed a risk predictive model for sarcopenia. RESULTS Fifty-three studies were included in our systematic review. Risk factors associating with sarcopenia were grouped into eight domains: sociodemographic, anthropometric, health behaviors, health condition, biomarkers, early life factors, psychosocial and living environment factors. Fifteen risk factors derived from the twenty-three included studies were eligible for meta-analysis, and ten variables were identified as statistically significant. A risk predictive model was developed for secondary sarcopenia in community setting. CONCLUSIONS This study provides a fully understanding of sarcopenia across the life-course. Our risk predictive model could facilitate the early identification and prevention of secondary sarcopenia in community setting. REGISTRATION The systematic review and meta-analysis have been registered in PROSPERO(CRD42024536346).
Collapse
Affiliation(s)
- Yajing Gao
- School of Nursing, Peking University, Beijing, China
| | - Yuli Huang
- School of Nursing, Peking University, Beijing, China
| | - Ran An
- School of Nursing, Peking University, Beijing, China
| | - Yi Yang
- School of Nursing, Peking University, Beijing, China
| | - Xinyao Chen
- School of Nursing, Peking University, Beijing, China
| | - Qiaoqin Wan
- School of Nursing, Peking University, Beijing, China.
| |
Collapse
|
2
|
Bogaert L, Dirinck E, Calders P, Helleputte S, Lapauw B, Marlier J, Verbestel V, De Craemer M. Explanatory variables of objectively measured physical activity, sedentary behaviour and sleep in adults with type 1 diabetes: A systematic review. Diabet Med 2025; 42:e15473. [PMID: 39570861 DOI: 10.1111/dme.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 02/14/2025]
Abstract
AIMS This systematic review aimed to summarize knowledge on explanatory variables of PA, SB and sleep in adults with T1D to support the development of healthy lifestyle interventions. METHODS A systematic search of four databases (PubMed, Web of Science, Scopus and Embase) was performed. Only objective measurements of PA, SB and sleep were included and all explanatory variables were classified according to the socio-ecological model (i.e. intrapersonal, interpersonal, environmental and policy level). Risk of bias (ROB) (Joanna Briggs Institute appraisal checklists) and level of evidence (Evidence-Based Guideline Development) were assessed. RESULTS Twenty-one studies were included (66.7% low ROB). Most explanatory variables were situated at the intrapersonal level. A favourable body composition was associated with more time spent in total PA and moderate-to-vigorous PA (MVPA). Men with T1D spent more time in MVPA than women and a younger age was associated with increased MVPA. Barriers to PA were indeterminately associated with MVPA and HbA1c showed an indeterminate association with sleep. Explanatory variables of SB and light PA were not studied in at least two independent studies. CONCLUSION This review underscores the focus on the individual level to identify explanatory variables of movement behaviours in adults with T1D, despite the necessity for a socio-ecological approach to develop effective interventions. More evidence on psychological, interpersonal and environmental variables is needed as these are modifiable.
Collapse
Affiliation(s)
- Lotte Bogaert
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Fonds wetenschappelijk onderzoek (FWO), Brussels, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Antwerp University hospital, Antwerp, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Fonds wetenschappelijk onderzoek (FWO), Brussels, Belgium
| | - Simon Helleputte
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Joke Marlier
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Vera Verbestel
- Maastricht University Faculty of Health, Medicine and Life Sciences, Department of Health Promotion, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences, Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
3
|
Xing D, Liu F, Gao Y, Fei Z, Zha Y. Texture analysis of T1- and T2-weighted images identifies myofiber atrophy and grip strength decline in streptozotocin-induced type 1 diabetic sarcopenia rats. J Orthop Surg Res 2025; 20:155. [PMID: 39934885 PMCID: PMC11817564 DOI: 10.1186/s13018-025-05556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Type 1 diabetes mellitus is associated with accelerated skeletal muscle aging and sarcopenia, a condition characterized by muscle mass and function loss. Early and noninvasive evaluation of muscle microstructural damage is critical for managing sarcopenia in diabetes. This study evaluated the potential of MRI texture analysis as a noninvasive imaging tool to assess myofiber size and grip strength alterations in a rat model of diabetic sarcopenia. MATERIALS AND METHODS Twenty SD rats were randomly and evenly allocated to the control (CON) and diabetic sarcopenia (DS) groups. Blood glucose, body weight, and forelimb grip strength were measured weekly. In the eighth week, axial T1WI and T2WI scans were performed to extract 16 texture features of the gastrocnemius muscle. The size of the fibers, including the cross-sectional area, perimeter, and minFeretDiam, was calculated from the HE-stained images. Differences between the two groups were analyzed via t tests or Mann‒Whitney U tests. Receiver operating characteristic (ROC) analysis was conducted to evaluate the diagnostic performance of MRI texture features. Associations between MRI texture features, grip strength, and myofiber size were assessed via Spearman correlation analysis. RESULTS The DS group presented significant reductions in body weight, grip strength, and myofiber size (p < 0.001). Seven texture features demonstrated high repeatability. Among them, T1WI_Entropy and T2WI_Entropy were significantly lower, whereas T1WI_Mean, T2WI_Mean, and T2WI_Variance were greater in the DS group than in the control group (p < 0.05 to p < 0.001). ROC analysis revealed that the MRI texture features performed well in differentiating the DS and CON groups (AUC 0.830 ~ 1.000). Strong correlations were found between MRI texture parameters and muscle strength and myofiber size. CONCLUSION Muscle texture analysis based on T1WI and T2WI effectively differentiated type 1 diabetic sarcopenic rats from normal controls and revealed strong associations with muscle strength and myofiber size. These findings indicate that MRI texture parameters serve as potential biomarkers for diagnosing muscle damage in type 1 diabetic sarcopenia patients, suggesting that MRI texture parameters are promising noninvasive tools for early detection and monitoring of myofiber atrophy in diabetic sarcopenia.
Collapse
MESH Headings
- Animals
- Sarcopenia/diagnostic imaging
- Sarcopenia/physiopathology
- Sarcopenia/etiology
- Sarcopenia/pathology
- Hand Strength/physiology
- Magnetic Resonance Imaging/methods
- Rats, Sprague-Dawley
- Rats
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/diagnostic imaging
- Diabetes Mellitus, Experimental/physiopathology
- Male
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/diagnostic imaging
- Muscle Fibers, Skeletal/pathology
- Streptozocin
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
Collapse
Affiliation(s)
- Dong Xing
- Department of Radiology, Renmin Hospital of Wuhan University, 99, Zhangzhidong Rd, Wuhan, 430060, People's Republic of China
| | - Fang Liu
- Department of Radiology, Renmin Hospital of Wuhan University, 99, Zhangzhidong Rd, Wuhan, 430060, People's Republic of China
| | - Yufan Gao
- Department of Radiology, Renmin Hospital of Wuhan University, 99, Zhangzhidong Rd, Wuhan, 430060, People's Republic of China
| | - Ziyan Fei
- Department of Radiology, Renmin Hospital of Wuhan University, 99, Zhangzhidong Rd, Wuhan, 430060, People's Republic of China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, 99, Zhangzhidong Rd, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
4
|
Lecce E, Bellini A, Greco G, Martire F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Physiological mechanisms of neuromuscular impairment in diabetes-related complications: Can physical exercise help prevent it? J Physiol 2025. [PMID: 39898972 DOI: 10.1113/jp287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Diabetes mellitus is a chronic disorder that progressively induces complications, compromising daily independence. Among these, diabetic neuropathy is particularly prevalent and contributes to substantial neuromuscular impairments in both types 1 and 2 diabetes. This condition leads to structural damage affecting both the central and peripheral nervous systems, resulting in a significant decline in sensorimotor functions. Alongside neuropathy, diabetic myopathy also contributes to muscle impairment and reduced motor performance, intensifying the neuromuscular decline. Diabetic neuropathy typically implicates neurogenic muscle atrophy, motoneuron loss and clustering of muscle fibres as a result of aberrant denervation-reinervation processes. These complications are associated with compromised neuromuscular junctions, where alterations occur in pre-synaptic vesicles, mitochondrial content and post-synaptic signalling. Neural damage is intensified by chronic hyperglycaemia and oxidative stress, exacerbating vascular dysfunction and reducing oxygen delivery. These complications imply a severe decline in neuromuscular performance, evidenced by reductions in maximal force and power output, rate of force development and muscle endurance. Furthermore, diabetes-related complications are compounded by age-related degenerative changes in long-term patients. Aerobic and resistance training offer promising approaches for managing blood glucose levels and neuromuscular function. Aerobic exercise promotes mitochondrial biogenesis and angiogenesis, supporting metabolic and cardiovascular health. Resistance training primarily enhances neural plasticity, muscle strength and hypertrophy, which are crucial factors for mitigating sarcopenia and preserving functional independence. This topical review examines current evidence on the physiological mechanisms underlying diabetic neuropathy and the potential impact of physical activity in counteracting this decline.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessio Bellini
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Giuseppe Greco
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Fiorella Martire
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| |
Collapse
|
5
|
Chen Z, Zhou Z, Deng Q, Zou Y, Wang B, Huang S, Tian J, Zheng L, Peng X, Tang C. Type 2 Diabetes Induces Mitochondrial Dysfunction in Zebrafish Skeletal Muscle Leading to Diabetic Myopathy via the miR-139-5p/NAMPT Pathway. Int J Mol Sci 2025; 26:752. [PMID: 39859466 PMCID: PMC11765840 DOI: 10.3390/ijms26020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that is frequently accompanied by multiple complications, including diabetic myopathy, a muscle disorder that is mainly manifested as decreased muscle function and reduced muscle mass. Diabetic myopathy is a relatively common complication among patients with diabetes that is mainly attributed to mitochondrial dysfunction. Therefore, we investigated the mechanisms underlying diabetic myopathy development, focusing on the role of microRNAs (miRs). Zebrafish were fed a high-sugar diet for 8 weeks and immersed in a glucose solution to establish a model of T2DM. Notably, the fish exhibited impaired blood glucose homeostasis, increased lipid accumulation in the skeletal muscles, and decreased insulin levels in the skeletal muscle. Additionally, we observed various symptoms of diabetic myopathy, including a decreased cross-sectional area of skeletal muscle fibers, increased skeletal muscle fibrosis, a significant decline in exercise capacity, and a significant decrease in mitochondrial respiratory function. Mechanistically, bioinformatic analysis combined with various molecular analyses showed that the miR-139-5p/NAMPT pathway was involved in long-term high-glucose-induced mitochondrial dysfunction in the skeletal muscle, leading to diabetic myopathy. Conclusively, this study provides a basis for the development of novel strategies for the prevention and treatment of diabetic myopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (Z.C.); (Z.Z.); (Q.D.); (Y.Z.); (B.W.); (S.H.); (J.T.); (L.Z.)
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (Z.C.); (Z.Z.); (Q.D.); (Y.Z.); (B.W.); (S.H.); (J.T.); (L.Z.)
| |
Collapse
|
6
|
Valli G, Wu R, Minnock D, Sirago G, Annibalini G, Casolo A, Del Vecchio A, Toniolo L, Barbieri E, De Vito G. Can non-invasive motor unit analysis reveal distinct neural strategies of force production in young with uncomplicated type 1 diabetes? Eur J Appl Physiol 2025; 125:247-259. [PMID: 39212731 DOI: 10.1007/s00421-024-05595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE to investigate the early consequences of type 1 diabetes (T1D) on the neural strategies of muscle force production. METHODS motor unit (MU) activity was recorded from the vastus lateralis muscle with High-Density surface Electromyography during isometric knee extension at 20 and 40% of maximum voluntary contraction (MVC) in 8 T1D (4 males, 4 females, 30.5 ± 3.6 years) and 8 matched control (4 males, 4 females, 27.3 ± 5.9 years) participants. Muscle biopsies were also collected from vastus lateralis for fiber type analysis, including myosin heavy chain (MyHC) isoform content via protein and mRNA expression. RESULTS MVC was comparable between groups as well as MU conduction velocity, action potentials' amplitude and proportions of MyHC protein isoforms. Nonetheless, MU discharge rate, relative derecruitment thresholds and mRNA expression of MyHC isoform I were lower in T1D. CONCLUSIONS young people with uncomplicated T1D present a different neural control of muscle force production. Furthermore, differences are detectable non-invasively in absence of any functional manifestation (i.e., force production and fiber type distribution). These novel findings suggest that T1D has early consequences on the neuromuscular system and highlights the necessity of a better characterization of neural control in this population.
Collapse
Affiliation(s)
- Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rui Wu
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dean Minnock
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
7
|
Pala D, Xie Y, Xu J, Shen L. Modeling the impact of socioeconomic disparity, biological markers and environmental exposures on phenotypic age using mediation analysis and structural equation models. Int J Med Inform 2025; 193:105661. [PMID: 39481175 PMCID: PMC11973974 DOI: 10.1016/j.ijmedinf.2024.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Average age is increasing worldwide, raising the public health burden of age-related diseases, as more resources will be required to manage treatments. Phenotypic Age is a score that can be useful to provide an estimate of the probability of developing aging-related conditions, and prevention of such conditions could be performed efficiently studying the mechanisms leading to an increased phenotypic age. The objective of this study is to characterize the mechanisms that lead to aging acceleration from the interactions among socio-demographic factors, health predispositions and biological phenotypes. METHODS We present an approach based on the combination of mediation analysis and structural equation models (SEM) to better characterize these mechanisms, quantifying the interactions between biological and external factors and the effects of preexisting health conditions and socioeconomic disparities. We use two independent cohorts of the NHANES dataset: we use the largest (n = 13,186) to select the variables that enlarge the gap between phenotypic and chronological ages, we then create a SEM based on nested linear regressions to quantify the influence of all sociodemographic variables expressed in three latent variables indicating ethnicity, socioeconomic status and preexisting health status. We then replicate the model and apply it to the second cohort (n = 4,425) to compare the results. RESULTS Results show that phenotypic age increases with poor glucose control or obesity-related biomarkers, especially if combined with a low socioeconomic status or the presence of chronic or vascular diseases, and provide a framework to quantify these relationships. Black ethnicity, low income/education and a history of chronic diseases are also associated with a higher phenotypic age. Although these findings are already known in literature, the proposed SEM-based framework provides an useful tool to assess the combinations of these heterogeneous factors from a quantitative point of view. CONCLUSION In an aging society, phenotypic age is an important metric that can be used to estimate the individual health risk, however its value is influenced by a myriad of external factors, both biological and sociodemographic. The framework proposed in this paper can help quantifying the combined effects of these factors and be a starting point to the creation of personalized prevention and intervention strategies.
Collapse
Affiliation(s)
- Daniele Pala
- Department of Computer, Electrical and Biomedical Engineering, University of Pavia, Pavia, Italy; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yuezhi Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Xu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Soler Climent E, Lledó Rico L, García Poblet M, Sospedra I, Junquera-Godoy I, Martinez-De-Juan JL, Gomis-Tena J, Saiz J, Prats-Boluda G, Santoyo Pérez R. Identification of phase angle and Triglyceride-Glucose index as biomarkers for prediction and management of diabetic foot disease. Metabol Open 2024; 23:100315. [PMID: 39286297 PMCID: PMC11403051 DOI: 10.1016/j.metop.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Approximately 25 % of diabetic patients develop diabetic foot ulcers (DFUs), significantly increasing morbidity, mortality, and healthcare costs. Effective control and prevention are crucial. Objective This study aims to identify easily measurable parameters for predicting DFU risk by assessing the correlation between Phase Angle (PA) and the Triglyceride-Glucose (TyG) index with DFU risk. Materials and methods A comparative case-control study was conducted at the General Hospital of Elche from March to June 2023 with 70 participants (33 with diabetes, 37 without). Cases had diabetes for over five years and a diabetic foot risk grade of 0, 1, or 2 (IWGDF 2019). Exclusion criteria included inability to walk, prior use of orthoses, and severe complications like edema or wounds. Predictive variables were PA, TyG index, body composition, and biochemical markers. Statistical analyses included Pearson/Spearman tests for correlations, Student's t-test/Mann-Whitney test for group comparisons, and ANOVA/Kruskal-Wallis tests for normally and non-normally distributed variables. Results PAand TyG index were strongly linked to diabetic foot risk, supporting their potential as biomarkers. Significant relationships with other relevant biomarkers were also confirmed. Conclusion PA and TyG index are valuable, easily measurable biomarkers for assessing diabetic foot risk, and can be monitored in primary care settings. Implementing these biomarkers in routine practice could enhance the management of diabetic complications, particularly in resource-limited settings, by enabling early detection and intervention, thus improving patient outcomes and reducing the burden of advanced complications.
Collapse
Affiliation(s)
- E Soler Climent
- Research and Innovation Area. Health Department Elche General Hospital, Elche, Alicante, Spain
- FISABIO, Valencia, Spain
| | - L Lledó Rico
- Research and Innovation Area. Health Department Elche General Hospital, Elche, Alicante, Spain
- FISABIO, Valencia, Spain
| | - M García Poblet
- Applied Dietetics, Nutrition and Body Composition Research Group (DANuC), Faculty of Health Sciences, University of Alicante, Spain
| | - I Sospedra
- Applied Dietetics, Nutrition and Body Composition Research Group (DANuC), Faculty of Health Sciences, University of Alicante, Spain
| | - I Junquera-Godoy
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Poltècnica de València, Valencia, Spain
| | - J L Martinez-De-Juan
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Poltècnica de València, Valencia, Spain
| | - J Gomis-Tena
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Poltècnica de València, Valencia, Spain
| | - J Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Poltècnica de València, Valencia, Spain
| | - G Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Poltècnica de València, Valencia, Spain
| | - R Santoyo Pérez
- FISABIO, Valencia, Spain
- Domiciliary Hospitalisation Unit, Health Department Elche General Hospital, Elche, Alicante, Spain
| |
Collapse
|
9
|
Cavallo M, De Fano M, Barana L, Dozzani I, Bianchini E, Pellegrino M, Cisternino L, Migliarelli S, Giulietti C, Pippi R, Fanelli CG. Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients 2024; 16:907. [PMID: 38542818 PMCID: PMC10975101 DOI: 10.3390/nu16060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) represents a complex clinical challenge for health systems. The autoimmune destruction of pancreatic beta cells leads to a complete lack of insulin production, exposing people to a lifelong risk of acute (DKA, coma) and chronic complications (macro and microvascular). Physical activity (PA) has widely demonstrated its efficacy in helping diabetes treatment. Nutritional management of people living with T1DM is particularly difficult. Balancing macronutrients, their effects on glycemic control, and insulin treatment represents a complex clinical challenge for the diabetologist. The effects of PA on glycemic control are largely unpredictable depending on many individual factors, such as intensity, nutrient co-ingestion, and many others. Due to this clinical complexity, we have reviewed the actual scientific literature in depth to help diabetologists, sport medicine doctors, nutritionists, and all the health figures involved in diabetes care to ameliorate both glycemic control and the nutritional status of T1DM people engaging in PA. Two electronic databases (PubMed and Scopus) were searched from their inception to January 2024. The main recommendations for carbohydrate and protein ingestion before, during, and immediately after PA are explained. Glycemic management during such activity is widely reviewed. Micronutrient needs and nutritional supplement effects are also highlighted in this paper.
Collapse
Affiliation(s)
- Massimiliano Cavallo
- Department of Medicine and Surgery, University of Perugia, Unit of Internal Medicine, Terni University Hospital, Piazzale Tristano Di Joannuccio, 1, 05100 Terni, Italy
| | - Michelantonio De Fano
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Luisa Barana
- Diabetology and Endocrinology, Degli Infermi New Hospital of Biella, 13875 Biella, Italy;
| | - Ivan Dozzani
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Eleonora Bianchini
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Marialucia Pellegrino
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Linda Cisternino
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Sara Migliarelli
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Cecilia Giulietti
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Roberto Pippi
- Healthy Lifestyle Institute, C.U.R.I.A.Mo. (Centro Universitario Ricerca Interdipartimentale Attività Motoria), Department of Medicine and Surgery, University of Perugia, Via G. Bambagioni, 19, 06126 Perugia, Italy
| | - Carmine Giuseppe Fanelli
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
- Healthy Lifestyle Institute, C.U.R.I.A.Mo. (Centro Universitario Ricerca Interdipartimentale Attività Motoria), Department of Medicine and Surgery, University of Perugia, Via G. Bambagioni, 19, 06126 Perugia, Italy
| |
Collapse
|
10
|
Kasture SV, Mondkar SA, Khadilkar AV, Gondhalekar K, Sethi A, Khadilkar VV. Dynamic Muscle Function Parameters in Indian Children and Adolescents with Type 1 Diabetes Mellitus: A Case-Control Study. Indian J Endocrinol Metab 2024; 28:201-207. [PMID: 38911118 PMCID: PMC11189292 DOI: 10.4103/ijem.ijem_140_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 06/25/2024] Open
Abstract
Introduction Recent evidence reveals that type 1 diabetes mellitus (T1DM) impairs muscle function (MF) in adolescents. However, despite its importance in physical well-being, data on dynamic MF in Indian children and adolescents (C and Y) with T1DM are scarce. We assessed MF using Jumping Mechanography (JM, a measurement method for motion analysis and assessment of muscle power and force). (1) To assess dynamic MF by JM in C and Y with T1DM as compared to healthy controls (2) To determine predictors of MF in children with T1DM. Methods A cross-sectional observational study on 266 children (133 - T1DM duration >1 year with no known comorbidities + 133 age and gender-matched healthy controls) aged 6-19 years. Anthropometry, body composition, and MF (maximum relative power Pmax/mass, maximum relative force Fmax/BW by JM) were recorded. The lean mass index (LMI) was calculated as lean mass (kg)/height (m2). HbA1c was assessed in T1DM. Independent sample t-test and linear regression were performed. Results MF parameters (Pmax/mass 33.5 ± 7.2 vs 38.0 ± 8.6 W/kg and Fmax/BW 10.5 ± 2.9 vs 11.4 ± 4.1 N/kg, P < 0.05) were significantly lower in T1DM group vs controls. Positive association of body mass index and LMI with both MF parameters and negative association of insulin requirement and HbA1c with Fmax was observed in T1DM. Predictors of MF identified were MMI (Pmax/mass:b = 1.6,95%CI = 0.6-2.6; Fmax/BW:b =2.0,95%CI = 1.6-2.4) and HbA1c (Pmax/mass:b = -2.1,95%CI = -4.5--0.5; Fmax/BW:b = -1.1,95%CI = -2.0--0.2) (P < 0.05). Conclusion C and Y with T1DM exhibits compromised muscle function. Poor glycaemic control increases the risk of having decreased MF, irrespective of diabetes duration and may contribute to sarcopenia in adulthood.
Collapse
Affiliation(s)
- Sonal V. Kasture
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shruti A. Mondkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Anuradha V. Khadilkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ketan Gondhalekar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Anshu Sethi
- Department of Paediatrics, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Vaman V. Khadilkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
11
|
Kosik B, Larsen S, Bergdahl A. Actovegin improves skeletal muscle mitochondrial respiration and functional aerobic capacity in a type 1 diabetic male murine model. Appl Physiol Nutr Metab 2024; 49:265-272. [PMID: 37913525 DOI: 10.1139/apnm-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Insulin deficiency in type 1 diabetes (T1D) leads to an impairment of glucose metabolism and mitochondrial function. Actovegin is a hemodialysate of calf blood, which has been shown to enhance glucose uptake and cell metabolism in healthy human skeletal muscle. The objectives of this study were to determine the effects of Actovegin on skeletal muscle mitochondrial respiration and functional aerobic capacity in a T1D mouse model. Effects on the expression of mitochondrial proteins, body mass, and food and water consumption were also investigated. Streptozotocin-induced T1D male C57B1/6 mice (aged 3-4 months) were randomized to an Actovegin group and a control group. Every third day, the Actovegin and control groups were injected intraperitoneally with (0.1 mL) Actovegin and (0.1 mL) physiological salt solution, respectively. Oxidative phosphorylation (OXPHOS) capacity of the vastus lateralis muscle was measured by high resolution respirometry in addition to the expression levels of the mitochondrial complexes as well as voltage-dependent anion channel. Functional aerobic capacity was measured using a rodent treadmill protocol. Body mass and food and water consumption were also measured. After 13 days, in comparison to the control group, the Actovegin group demonstrated a significantly higher skeletal muscle mitochondrial respiratory capacity in an ADP-restricted and ADP-stimulated environment. The Actovegin group displayed a significantly lesser decline in functional aerobic capacity and baseline body mass after 13 days. There were no significant differences in food or water consumption between groups. Actovegin could act as an effective agent for facilitating glucose metabolism and improving OXPHOS capacity and functional aerobic capacity in T1D. Further investigation is warranted to establish Actovegin's potential as an alternative therapeutic drug for T1D.
Collapse
Affiliation(s)
- Brandon Kosik
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| |
Collapse
|
12
|
Kopecky C, Haug M, Reischl B, Deshpande N, Manandhar B, King TW, Lee V, Wilkins MR, Morris M, Polly P, Friedrich O, Rye KA, Cochran BJ. Effect of insulin insufficiency on ultrastructure and function in skeletal muscle. J Cachexia Sarcopenia Muscle 2024; 15:112-123. [PMID: 38124345 PMCID: PMC10834341 DOI: 10.1002/jcsm.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Decreased insulin availability and high blood glucose levels, the hallmark features of poorly controlled diabetes, drive disease progression and are associated with decreased skeletal muscle mass. We have shown that mice with β-cell dysfunction and normal insulin sensitivity have decreased skeletal muscle mass. This project asks how insulin deficiency impacts on the structure and function of the remaining skeletal muscle in these animals. METHODS Skeletal muscle function was determined by measuring exercise capacity and specific muscle strength prior to and after insulin supplementation for 28 days in 12-week-old mice with conditional β-cell deletion of the ATP binding cassette transporters ABCA1 and ABCG1 (β-DKO mice). Abca1 and Abcg1 floxed (fl/fl) mice were used as controls. RNAseq was used to quantify changes in transcripts in soleus and extensor digitorum longus muscles. Skeletal muscle and mitochondrial morphology were assessed by transmission electron microscopy. Myofibrillar Ca2+ sensitivity and maximum isometric single muscle fibre force were assessed using MyoRobot biomechatronics technology. RESULTS RNA transcripts were significantly altered in β-DKO mice compared with fl/fl controls (32 in extensor digitorum longus and 412 in soleus). Exercise capacity and muscle strength were significantly decreased in β-DKO mice compared with fl/fl controls (P = 0.012), and a loss of structural integrity was also observed in skeletal muscle from the β-DKO mice. Supplementation of β-DKO mice with insulin restored muscle integrity, strength and expression of 13 and 16 of the dysregulated transcripts in and extensor digitorum longus and soleus muscles, respectively. CONCLUSIONS Insulin insufficiency due to β-cell dysfunction perturbs the structure and function of skeletal muscle. These adverse effects are rectified by insulin supplementation.
Collapse
Affiliation(s)
- Chantal Kopecky
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Michael Haug
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bikash Manandhar
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Thomas W King
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Victoria Lee
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Margaret Morris
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Patsie Polly
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Oliver Friedrich
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerry-Anne Rye
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
13
|
Andreo-López MC, Zarco-Martín MT, Contreras-Bolívar V, Fernández-Soto ML. Prevalence of Sarcopenia and Dynapenia and Related Clinical Outcomes in Patients with Type 1 Diabetes Mellitus. Nutrients 2023; 15:4914. [PMID: 38068772 PMCID: PMC10708144 DOI: 10.3390/nu15234914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sarcopenia has recently been recognized as a complication of diabetes. However, there are few results about the prevalence of sarcopenia and dynapenia and the related clinical outcomes in type 1 diabetes mellitus (T1DM). Our objectives were to evaluate the prevalence of sarcopenia and dynapenia and to determine whether there are any associations with disease-related factors in people with T1DM. METHODS A cross-sectional study was conducted in people with T1DM. We assessed appendicular skeletal mass index (ASMI) using bioimpedance 50 Hz (Nutrilab Akern). Muscle function was assessed through handgrip strength (HGS) using a Jamar dynamometer. Sarcopenia was defined as a low HGS with low ASMI, whereas dynapenia was defined as low HGS with a normal ASMI. We used HGS data from the Spanish population percentile table and a cut-off point at p5 as dynapenia. The association of clinical, metabolic, and lifestyle variables with sarcopenia and dynapenia was studied. RESULTS This study included 62 T1DM patients (66% females, mean age of 38 ± 14 years, body mass index (BMI) of 24.9 ± 4.7 kg/m2). The prevalence of sarcopenia and dynapenia was 8% and 23%, respectively. In our sample, there were more men in the sarcopenic and dynapenic groups. The sarcopenic group showed a significantly higher mean HbA1c value. Lower diabetes duration, PREDIMED score, BMI, and muscle mass measures (fat-free mass index (FFMI), ASMI, and body cell mass index (BCMI)) were significantly associated with sarcopenia. Decreased diabetes duration, PREDIMED score, phase angle (PhA), and HGS values showed a significant association with dynapenia. CONCLUSIONS The prevalence of sarcopenia and dynapenia was high in people with T1DM in our study. Specifically, the proportion of dynapenia was quite high. HGS and ASMI are practical tools for the assessment of muscle health status in T1DM, and low values are associated with poor glycemic control, underweight, and low adherence to the Mediterranean diet. Thus, dynapenia may predict accelerated muscle aging in T1DM.
Collapse
Affiliation(s)
- María Carmen Andreo-López
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; (M.C.A.-L.); (V.C.-B.); (M.L.F.-S.)
| | - María Teresa Zarco-Martín
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; (M.C.A.-L.); (V.C.-B.); (M.L.F.-S.)
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18012 Granada, Spain
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; (M.C.A.-L.); (V.C.-B.); (M.L.F.-S.)
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18012 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| | - María Luisa Fernández-Soto
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; (M.C.A.-L.); (V.C.-B.); (M.L.F.-S.)
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
14
|
Kumar A, Prajapati P, Raj V, Kim SC, Mishra V, Raorane CJ, Raj R, Kumar D, Kushwaha S. Salbutamol ameliorates skeletal muscle wasting and inflammatory markers in streptozotocin (STZ)-induced diabetic rats. Int Immunopharmacol 2023; 124:110883. [PMID: 37666067 DOI: 10.1016/j.intimp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes accelerates muscle atrophy, leading to the deterioration of skeletal muscles. This study aimed to assess the potential of the β2-adrenoceptor agonist, salbutamol (SLB), to alleviate muscle atrophy in streptozotocin (STZ)-induced diabetic rats. Male Sprague Dawley rats were randomized into four groups (n=6): control, SLB, STZ (55 mg/kg, single i.p.), and STZ + SLB (6 mg/kg, orally for 4 weeks). After the final SLB dose, animals underwent tests to evaluate muscle strength and coordination, including forelimb grip strength, wire-hanging, actophotometer, rotarod, and footprint assessments. Rats were then sacrificed, and serum and gastrocnemius (GN) muscles were collected for further analysis. Serum evaluations included proinflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6), muscle markers (creatine kinase, myostatin), testosterone, and lipidemic markers. Muscle oxidative stress (malonaldehyde, protein carbonyl), antioxidants (glutathione, catalase, superoxide dismutase), and histology were also performed. Additionally, 1H nuclear magnetic resonance serum profiling was conducted. SLB notably enhanced muscle grip strength, coordination, and antioxidant levels, while reduced proinflammatory markers and oxidative stress in STZ-induced diabetic rats. Reduced serum muscle biomarkers, increased testosterone, restored lipidemic levels, and improved muscle cellular architecture indicated SLB's positive effect on muscle condition in diabetic rats. Metabolomics profiling revealed that the STZ group significantly increased the phenylalanine-to-tyrosine ratio (PTR), lactate-to-pyruvate ratio (LPR), acetate, succinate, isobutyrate, and histidine. SLB administration restored these perturbed serum metabolites in the STZ-induced diabetic group. In conclusion, salbutamol significantly protected against skeletal muscle wasting in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| | | | - Ritu Raj
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Sapana Kushwaha
- National Institutes of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
15
|
Hendrix G, Lokhnygina Y, Ramaker M, Ilkayeva O, Muehlbauer M, Evans W, Rasbach L, Benjamin R, Freemark M, Gumus Balikcioglu P. Catabolism of fats and branched-chain amino acids in children with Type 1 diabetes: Association with glycaemic control and total daily insulin dose. Endocrinol Diabetes Metab 2023; 6:e448. [PMID: 37715520 PMCID: PMC10638627 DOI: 10.1002/edm2.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Hyperglycaemia in Type 1 diabetes (T1D) results from an absolute insulin deficiency. However, insulin resistance (IR) may exacerbate glycaemic instability in T1D and contribute to long-term cardiovascular complications. We previously showed that IR in teenagers with obesity is associated with sex-dependent derangements in the catabolism of branched-chain amino acids (BCAA) and fatty acids. Here we hypothesized that byproducts of BCAA and fatty acid metabolism may serve as biomarkers or determinants of glycaemic control and IR in prepubertal or early pubertal children with T1D. METHODS Metabolites, hormones and cytokines from fasting blood samples were analysed in 28 children (15 females, 13 males; age 6-11 years) with T1D. Principal components analysis (PCA) and multiple linear regression models were used to correlate metabolites of interest with glycaemic control, total daily insulin dose (TDD, units/kg/d), adiponectin and the triglyceride (TG) to high-density lipoprotein (HDL) ratio. RESULTS Males and females were comparable in age, BMI-z, insulin sensitivity, glycaemic control, inflammatory markers, BCAAs and C2/C3/C5-acylcarnitines. The majority of components retained in PCA were related to fatty acid oxidation (FAO) and BCAA catabolism. HbA1c correlated positively with Factor 2 (acylcarnitines, incomplete FAO) and Factor 9 (fasting glucose). TDD correlated negatively with C3 and C5 and Factor 10 (BCAA catabolism) and positively with the ratio of C2 to C3 + C5 and Factor 9 (fasting glucose). CONCLUSIONS These findings suggest that glucose intolerance in prepubertal or early pubertal children with T1D is accompanied by incomplete FAO while TDD is associated with preferential catabolism of fats relative to amino acids.
Collapse
Affiliation(s)
- Grace Hendrix
- Division of Pediatric Endocrinology and DiabetesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Yuliya Lokhnygina
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Megan Ramaker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Medicine, Division of Endocrinology, Metabolism, and NutritionDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - William Evans
- University of California‐BerkeleyBerkeleyCaliforniaUSA
- Duke UniversityDurhamNorth CarolinaUSA
| | - Lisa Rasbach
- Division of Pediatric Endocrinology and DiabetesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Robert Benjamin
- Division of Pediatric Endocrinology and DiabetesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Michael Freemark
- Division of Pediatric Endocrinology and DiabetesDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and DiabetesDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
16
|
Yoshimura Y, Hashimoto Y, Okada H, Takegami M, Nakajima H, Miyoshi T, Yoshimura T, Yamazaki M, Hamaguchi M, Fukui M. Changes in glycemic control and skeletal muscle mass indices after dapagliflozin treatment in individuals with type 1 diabetes mellitus. J Diabetes Investig 2023; 14:1175-1182. [PMID: 37424302 PMCID: PMC10512910 DOI: 10.1111/jdi.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
AIMS/INTRODUCTION Dapagliflozin is used for individuals with type 1 diabetes, although the effect of this medication on skeletal muscle mass is not well established. In addition, there are few studies examining the effects of good glycemic control on skeletal muscle mass in type 1 diabetes patients. We investigated changes in glycemic control and skeletal muscle mass with dapagliflozin in individuals with type 1 diabetes, and the association between these changes. MATERIALS AND METHODS This was a post-hoc analysis of a multicenter, open-label, non-randomized, prospective, interventional study in individuals with type 1 diabetes. The participants received dapagliflozin at 5 mg/day for 4 weeks, and were reviewed before and after treatment. Weight- and height-corrected appendicular skeletal muscle mass (ASM) were calculated as indices of skeletal muscle mass using bioelectrical impedance analysis. RESULTS A total of 36 individuals were included in the analysis. After the 4 weeks of dapagliflozin treatment, ASM/height2 decreased in the body mass index <23 group (P = 0.004). ASM / weight decreased in all men aged >60 years. The change in ASM / weight (%) was negatively correlated with the change in glycated hemoglobin (%;P = 0.023). The change in ASM / height2 (kg/m2 ) was also positively correlated with the change in time within the glucose range of 70-180 mg/dL (P = 0.036). CONCLUSION Dapagliflozin treatment of individuals with type 1 diabetes, particularly non-obese individuals and older men, might result in loss of skeletal muscle mass. However, good glycemic control during treatment might prevent the onset and progression of sarcopenia.
Collapse
Affiliation(s)
- Yuta Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologySaiseikai Suita HospitalSuitaJapan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Hiroshi Okada
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Maya Takegami
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Hanako Nakajima
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Tomoki Miyoshi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Takashi Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Masahiro Yamazaki
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologyJapanese Red Cross Kyoto Daini HospitalKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| |
Collapse
|
17
|
Miller RG, Mychaleckyj JC, Onengut-Gumuscu S, Feingold E, Orchard TJ, Costacou T. DNA methylation and 28-year cardiovascular disease risk in type 1 diabetes: the Epidemiology of Diabetes Complications (EDC) cohort study. Clin Epigenetics 2023; 15:122. [PMID: 37533055 PMCID: PMC10394855 DOI: 10.1186/s13148-023-01539-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The potential for DNA methylation (DNAm) as an early marker for cardiovascular disease (CVD) and how such an association might differ by glycemic exposure has not been examined in type 1 diabetes, a population at increased CVD risk. We thus performed a prospective epigenome-wide association study of blood leukocyte DNAm (EPIC array) and time to CVD incidence over 28 years in a childhood-onset (< 17 years) type 1 diabetes cohort, the Pittsburgh Epidemiology of Diabetes Complications (EDC) study (n = 368 with DNA and no CVD at baseline), both overall and separately by glycemic exposure, as measured by HbA1c at baseline (split at the median: < 8.9% and ≥ 8.9%). We also assessed whether DNAm-CVD associations were independent of established cardiometabolic risk factors, including body mass index, estimated glucose disposal rate, cholesterol, triglycerides, blood pressure, pulse rate, albumin excretion rate, and estimated glomerular filtration rate. RESULTS CVD (first instance of CVD death, myocardial infarction, coronary revascularization, ischemic ECG, angina, or stroke) developed in 172 participants (46.7%) over 28 years. Overall, in Cox regression models for time to CVD, none of the 683,597 CpGs examined reached significance at a false discovery rate (FDR) ≤ 0.05. In participants with HbA1c < 8.9% (n = 180), again none reached FDR ≤ 0.05, but three were associated at the a priori nominal significance level FDR ≤ 0.10: cg07147033 in MIB2, cg12324048 (intergenic, chromosome 3), and cg15883830 (intergenic, chromosome 1). In participants with HbA1c ≥ 8.9% (n = 188), two CpGs in loci involved in calcium channel activity were significantly associated with CVD (FDR ≤ 0.05): cg21823999 in GPM6A and cg23621817 in CHRNA9; four additional CpGs were nominally associated (FDR ≤ 0.10). In participants with HbA1c ≥ 8.9%, DNAm-CVD associations were only modestly attenuated after cardiometabolic risk factor adjustment, while attenuation was greater in those with HbA1c < 8.9%. No pathways were enriched in those with HbA1c < 8.9%, while pathways for calcium channel activity and integral component of synaptic membrane were significantly enriched in those with HbA1c ≥ 8.9%. CONCLUSIONS These results provide novel evidence that DNAm at loci involved in calcium channel activity and development may contribute to long-term CVD risk beyond known risk factors in type 1 diabetes, particularly in individuals with greater glycemic exposure, warranting further study.
Collapse
Affiliation(s)
- Rachel G Miller
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA.
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Trevor J Orchard
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 339, Pittsburgh, PA, 15213, USA
| |
Collapse
|
18
|
Martin-Rivera F, Maroto-Izquierdo S, García-López D, Alarcón-Gómez J. Exercise interventions for patients with type 1 diabetes mellitus: A narrative review with practical recommendations. World J Diabetes 2023; 14:539-548. [PMID: 37273254 PMCID: PMC10236987 DOI: 10.4239/wjd.v14.i5.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic endocrine disease that results from autoimmune destruction of pancreatic insulin-producing β cells, which can lead to microvascular (e.g., retinopathy, neuropathy, and nephropathy) and macro-vascular complications (e.g., coronary arterial disease, peripheral artery disease, stroke, and heart failure) as a consequence of chronic hyperglycemia. Despite the widely available and compelling evidence that regular exercise is an efficient strategy to prevent cardiovascular disease and to improve functional capacity and psychological well-being in people with T1DM, over 60% of individuals with T1DM do not exercise regularly. It is, therefore, crucial to devise approaches to motivate patients with T1DM to exercise, to adhere to a training program, and to inform them of its specific characteristics (e.g., exercise mode, intensity, volume, and frequency). Moreover, given the metabolic alterations that occur during acute bouts of exercise in T1DM patients, exercise prescription in this population should be carefully analyzed to maximize its benefits and to reduce its potential risks.
Collapse
Affiliation(s)
- Fernando Martin-Rivera
- Department of Physical Education and Sports, University of Valencia, Valencia 46010, Spain
| | - Sergio Maroto-Izquierdo
- Department of Health Sciences, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - David García-López
- Department of Health Sciences, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Jesús Alarcón-Gómez
- Department of Physical Education and Sports, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
19
|
Aranda LC, Ribeiro IC, Freitas TO, Degani-Costa LH, Dias DS, DE Angelis K, Paixão AO, Brum PC, Oliveira ASB, Vianna LC, Nery LE, Silva BM. Enhanced Respiratory Frequency Response to Lower Limb Mechanoreceptors Activation in Patients with Chronic Obstructive Pulmonary Disease. Med Sci Sports Exerc 2023; 55:418-429. [PMID: 36730960 DOI: 10.1249/mss.0000000000003065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the mechanoreflex control of respiration and circulation in patients with chronic obstructive pulmonary disease (COPD). METHODS Twenty-eight patients with moderate-to-severe COPD (mean ± SD: 67.0 ± 7.9 yr, 10 women) and 14 age- and sex-matched controls (67.9 ± 2.6 yr, 7 women) participated in the study. Their dominant knee was passively moved to stimulate mechanoreceptors, whereas vastus lateralis surface electrical activity checked active contractions. A differential pressure flowmeter, an electrocardiogram, and a servo-controlled finger photoplethysmograph acquired cardiorespiratory data. To gain insight into the mechanoreflex arc, we further analyzed reduced/oxidized glutathione ratio and mechanoreceptor-related gene expression in a vastus lateralis biopsy of additional nine patients (63.9 ± 8.1 yr, 33% women) and eight controls (62.9 ± 9.1 yr, 38% women). RESULTS Patients with COPD had a greater peak respiratory frequency response (COPD: Δ = 3.2 ± 2.3 vs Controls: 1.8 ± 1.2 cycles per minute, P = 0.036) and a smaller peak tidal volume response to passive knee movement than controls. Ventilation, heart rate, stroke volume, and cardiac output peak responses, and total peripheral resistance nadir response, were unaltered by COPD. In addition, patients had a diminished glutathione ratio (COPD: 13.3 ± 3.8 vs controls: 20.0 ± 5.5 a.u., P = 0.015) and an augmented brain-derived neurotrophic factor expression (COPD: 2.0 ± 0.7 vs controls: 1.1 ± 0.4 a.u., P = 0.002) than controls. Prostaglandin E receptor 4, cyclooxygenase 2, and Piezo1 expression were similar between groups. CONCLUSIONS Respiratory frequency response to mechanoreceptors activation is increased in patients with COPD. This abnormality is possibly linked to glutathione redox imbalance and augmented brain-derived neurotrophic factor expression within locomotor muscles, which could increase mechanically sensitive afferents' stimulation and sensitivity.
Collapse
Affiliation(s)
| | | | | | - Luiza H Degani-Costa
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, BRAZIL
| | | | | | - Ailma O Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, BRAZIL
| | - Patricia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, BRAZIL
| | - Acary S B Oliveira
- Department of Neurology and Neurosurgery, UNIFESP, São Paulo, SP, BRAZIL
| | - Lauro C Vianna
- NeuroV̇ASQ˙-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Federal District, BRAZIL
| | - Luiz E Nery
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, BRAZIL
| | | |
Collapse
|
20
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
21
|
Abstract
Regular physical activity improves cardiometabolic and musculoskeletal health, helps with weight management, improves cognitive and psychosocial functioning, and is associated with reduced mortality related to cancer and diabetes mellitus. However, turnover rates of glucose in the blood increase dramatically during exercise, which often results in either hypoglycaemia or hyperglycaemia as well as increased glycaemic variability in individuals with type 1 diabetes mellitus (T1DM). A complex neuroendocrine response to an acute exercise session helps to maintain circulating levels of glucose in a fairly tight range in healthy individuals, while several abnormal physiological processes and limitations of insulin therapy limit the capacity of people with T1DM to exercise in a normoglycaemic state. Knowledge of the acute and chronic effects of exercise and regular physical activity is critical for the formulation of clinical strategies for the management of insulin and nutrition for active patients with T1DM. Emerging diabetes-related technologies, such as continuous glucose monitors, automated insulin delivery systems and the administration of solubilized glucagon, are demonstrating efficacy for preserving glucose homeostasis during and after exercise in this population of patients. This Review highlights the beneficial effects of regular exercise and details the complex endocrine and metabolic responses to different types of exercise for adults with T1DM. An overview of basic clinical strategies for the preservation of glucose homeostasis using emerging technologies is also provided.
Collapse
Affiliation(s)
- Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
- LMC Diabetes and Endocrinology, Toronto, Ontario, Canada.
| | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. OBESITY AND METABOLISM 2022; 19:332-339. [DOI: 10.14341/omet12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Irisin is a polypeptide hormone of muscle tissue (myokine), the synthesis and secretion of which increase against the background of physical exertion, which plays a significant role in the metabolism of fat, muscle and bone tissues. It is known that irisin promotes the transformation of white adipose tissue into brown adipose tissue. It has also been experimentally proven that the introduction of irisin contributed to an increase in bone mass and the prevention of osteoporosis and muscular atrophy. There are works indicating a positive effect of irisin in the functioning of bone, fat and muscle tissues in humans. Diabetes mellitus (DM) is an independent risk factor for osteoporotic fractures and the development of specific diabetic myopathy, at the cellular level similar to the aging of muscle tissue, and type 2 diabetes is also associated with the presence of obesity. Thus, it is of particular interest to study the effect of irisin on the state of bone, muscle and adipose tissues and glucose homeostasis in patients with diabetes. This literature review highlights the biological functions of irisin in healthy people and patients with DM.
Collapse
|
23
|
Carlen AE, Hafen MJ, Evans RW, Olsen CD. Using exercise training to improve glycemic control and uncover mechanisms of impaired skeletal muscle in type 1 diabetics. J Physiol 2022; 600:2553-2555. [PMID: 35420167 DOI: 10.1113/jp282964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Austin E Carlen
- Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT
| | - Michael J Hafen
- Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT
| | - R William Evans
- Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT
| | - Christian D Olsen
- Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT
| |
Collapse
|
24
|
Minnock D, Annibalini G, Valli G, Saltarelli R, Krause M, Barbieri E, De Vito G. Altered muscle mitochondrial, inflammatory and trophic markers and reduced exercise training adaptations in type 1 diabetes. J Physiol 2022; 600:1405-1418. [PMID: 34995365 PMCID: PMC9306774 DOI: 10.1113/jp282433] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Type 1 diabetes negatively affects skeletal muscle health; however, the effect of structured exercise training on markers of mitochondrial function, inflammation and regeneration is not known. Even though participants with type 1 diabetes and healthy control were comparable for cardiorespiratory fitness (VO2 max) and muscle strength at baseline, molecular markers related to muscle health were decreased in type 1 diabetes. After training, both groups increased the VO2 max and muscle strength, however, a larger improvement was achieved by the control group. The training intervention decreased glucose fluctuations and occurrence of hypoglycaemic events in type 1 diabetes, while signs of mild myopathy found in the muscle of participants with type 1 diabetes only partially improved after training Improving muscle health by specific exercise protocols is of considerable clinical interest in therapeutic strategies for improving type 1 diabetes management and prevent or delay long-term complications. ABSTRACT Growing evidence of impaired skeletal muscle health in people with type 1 diabetes points toward the presence of a mild myopathy in this population. However, this myopathic condition is not jet well characterised and often overlooked, even though it might affect the whole-body glucose homeostasis and the development of comorbidities. This study aims to compare skeletal muscle adaptations and changes in glycaemic control after 12 weeks of combined resistance and aerobic (COMB) training between people with type 1 diabetes and healthy controls, and whether the impaired muscle health in type 1 diabetes can affect the exercise-induced adaptations. The COMB training intervention increased aerobic capacity and muscle strength in both healthy and type 1 diabetes sedentary participants, although these improvements were higher in the control group. Better glucose control, reduced glycaemic fluctuations and fewer hypoglycaemic events were recorded at Post- compared to Pre-intervention in type 1 diabetes. Analysis of muscle biopsies showed an alteration of muscle markers of mitochondrial functions, inflammation, aging and growth/atrophy compared to the control group. These muscular molecular differences were only partially modified by the COMB training and might explain the reduced exercise adaptation observed in type 1 diabetes. In brief, type 1 diabetes impairs many aspects of skeletal muscle health and might affect the exercise-induced adaptations. Defining the magnitude of diabetic myopathy and the effect of exercise, including longer duration of the intervention, will drive the development of strategies to maximize muscle health in the type 1 diabetes population. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dean Minnock
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauricio Krause
- Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Omura T, Araki A. Skeletal muscle as a treatment target for older adults with diabetes mellitus: The importance of a multimodal intervention based on functional category. Geriatr Gerontol Int 2022; 22:110-120. [PMID: 34986525 DOI: 10.1111/ggi.14339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
Abstract
Although the lifespan of people with diabetes has increased in many countries, the age-related increase in comorbidities (sarcopenia, frailty and disabilities) and diabetic complications has become a major issue. Diabetes accelerates the aging of skeletal muscles and blood vessels through mechanisms, such as increased oxidative stress, chronic inflammation, insulin resistance, mitochondrial dysfunction, genetic polymorphism (fat mass and obesity-associated genes) and accumulation of advanced glycation end-products. Diabetes is associated with early onset, and progression of muscle weakness and sarcopenia, thus resulting in diminished daily life function. The type and duration of diabetes, insulin section/resistance, hyperglycemia, diabetic neuropathy, malnutrition and low physical activity might affect muscular loss and weakness. To prevent the decline in daily activities in older adults with diabetes, resistance training or multicomponent exercise should be recommended. To maintain muscle function, optimal energy and sufficient protein intake are necessary. Although no specific drug enhances muscle mass and function, antidiabetic drugs that increase insulin sensitivity or secretion could be candidates for improvement of sarcopenia. The goals of glycemic control for older patients are determined based on three functional categories through an assessment of cognitive function and activities of daily living, and the presence or absence of medications that pose a hypoglycemic risk. As these functional categories are associated with muscle weakness, frailty and mortality risk, providing multimodal interventions (exercise, nutrition, social network or support and optimal medical treatment) is important, starting at the category II stage for maintenance or improvement in daily life functions. Geriatr Gerontol Int 2022; ••: ••-••.
Collapse
Affiliation(s)
- Takuya Omura
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Travis C, Srivastava PS, Hawke TJ, Kalaitzoglou E. Diabetic Bone Disease and Diabetic Myopathy: Manifestations of the Impaired Muscle-Bone Unit in Type 1 Diabetes. J Diabetes Res 2022; 2022:2650342. [PMID: 35601019 PMCID: PMC9119786 DOI: 10.1155/2022/2650342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes is associated with complications affecting muscle and bone, with diabetic bone disease and diabetic myopathy becoming increasingly reported in the past few decades. This review is aimed at succinctly reviewing the literature on the current knowledge regarding these increasingly identified and possibly interconnected complications on the musculoskeletal system. Furthermore, this review summarizes several nonmechanical factors that could be mediating the development and progression of premature musculoskeletal decline in this population and discusses preventative measures to reduce the burden of diabetes on the musculoskeletal system.
Collapse
Affiliation(s)
- Callie Travis
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Priya S. Srivastava
- Department of Pediatrics, Division of Pediatric Endocrinology, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Evangelia Kalaitzoglou
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
27
|
Orlando G, Balducci S, Boulton AJM, Degens H, Reeves ND. Neuromuscular dysfunction and exercise training in people with diabetic peripheral neuropathy: A narrative review. Diabetes Res Clin Pract 2022; 183:109183. [PMID: 34929255 DOI: 10.1016/j.diabres.2021.109183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common condition that is associated with neuromuscular dysfunction and peripheral sensory impairment. These deficits predispose patients to sensory and motor system limitations, foot ulcers and a high risk of falls. Exercise training has been proposed as an effective tool to alleviate neural deficits and improve whole-body function. Here we review the effects of DPN on neuromuscular function, the mechanisms underlying this impairment, and the neural and muscular adaptations to exercise training. Muscle dysfunction is an early hallmark of DPN. Deficits in muscle strength, power, mass and a greater fatigability are particularly severe in the lower extremity muscles. Non-enzymatic glycation of motor proteins, impaired excitation-contraction coupling and loss of motor units have been indicated as the main factors underlying muscular dysfunction. Among the exercise-based solutions, aerobic training improves neural structure and function and ameliorates neuropathic signs and symptoms. Resistance training induces marked improvement of muscle performance and may alleviate neuropathic pain. A combination of aerobic and resistance training (i.e., combined training) restores small sensory nerve damage, reduces symptoms, and improves muscle function. The evidence so far suggests that exercise training is highly beneficial and should be included in the standard care for DPN patients.
Collapse
Affiliation(s)
- Giorgio Orlando
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| | | | - Andrew J M Boulton
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK; Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lithuanian Sport University, Kaunas, Lithuania
| | - Neil D Reeves
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
28
|
Stocker R, Shaw J, Taylor GS, Witham MD, West DJ. EXercise to Prevent frailty and Loss Of independence in insulin treated older people with DiabetEs (EXPLODE): protocol for a feasibility randomised controlled trial (RCT). BMJ Open 2021; 11:e048932. [PMID: 34880011 PMCID: PMC8655574 DOI: 10.1136/bmjopen-2021-048932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION There are 3.9 million people in the UK with diabetes. Sarcopenia, increased frailty and loss of independence are often unappreciated complications of diabetes. Resistance exercise shows promise in reducing these complications in older adult diabetes patients. The aim of this feasibility randomised controlled trial is to (1) characterise the physical function, cardiovascular health and the health and well-being of older adults with mild frailty with/without diabetes treated with insulin, (2) to understand the feasibility and acceptability of a 4-week resistance exercise training programme in improving these parameters for those with diabetes and (3) to test the feasibility of recruiting and randomising the diabetic participant group to a trial of resistance training. METHODS AND ANALYSIS Thirty adults aged ≥60 years with insulin-treated diabetes mellitus (type 1 or 2), and 30 without, all with mild frailty (3-4 on the Rockwood Frailty Scale) will be recruited. All will complete blood, cardiovascular and physical function testing. Only the diabetic group will then proceed into the trial itself. They will be randomised 1:1 to a 4-week semisupervised resistance training programme, designed to increase muscle mass and strength, or to usual care, defined as their regular physical activity, for 4 weeks. This group will then repeat testing. Primary outcomes include recruitment rate, attrition rate, intervention fidelity and acceptability, and adherence to the training programme. A subset of participants will be interviewed before and after the training programme to understand experiences of resistance training, impact on health and living with diabetes (where relevant) as they have aged. Analyses will include descriptive statistics and qualitative thematic analysis. ETHICS AND DISSEMINATION The North East-Newcastle and North Tyneside 2 Research Ethics Committee (20/NE/0178) approved the study. Outputs will include feasibility data to support funding applications for a future definitive trial, conference and patient and public involvement presentations, and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN13193281.
Collapse
Affiliation(s)
- Rachel Stocker
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Shaw
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Guy S Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Miles D Witham
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced Glycation End-Products in Skeletal Muscle Aging. Bioengineering (Basel) 2021; 8:bioengineering8110168. [PMID: 34821734 PMCID: PMC8614898 DOI: 10.3390/bioengineering8110168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Advanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve’s role in this aging process. Specific directions for future research are also discussed, with the understudied role of AGEs in skeletal muscle aging highlighted. Despite more than a half century of research, the role that intramuscular collagen aggregation and cross-linking plays in sarcopenia is well accepted yet not well integrated with current knowledge of AGE’s effects on muscle physiology. Furthermore, the possible impact that motor nerve aging has on intramuscular cross-linking and muscular AGE levels is posited.
Collapse
Affiliation(s)
- Lucas C. Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Gerontology, College of Health Professions, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Correspondence:
| |
Collapse
|
30
|
Monaco CMF, Tarnopolsky MA, Dial AG, Nederveen JP, Rebalka IA, Nguyen M, Turner LV, Perry CGR, Ljubicic V, Hawke TJ. Normal to enhanced intrinsic mitochondrial respiration in skeletal muscle of middle- to older-aged women and men with uncomplicated type 1 diabetes. Diabetologia 2021; 64:2517-2533. [PMID: 34392397 DOI: 10.1007/s00125-021-05540-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS This study interrogated mitochondrial respiratory function and content in skeletal muscle biopsies of healthy adults between 30 and 72 years old with and without uncomplicated type 1 diabetes. METHODS Participants (12 women/nine men) with type 1 diabetes (48 ± 11 years of age), without overt complications, were matched for age, sex, BMI and level of physical activity to participants without diabetes (control participants) (49 ± 12 years of age). Participants underwent a Bergström biopsy of the vastus lateralis to assess mitochondrial respiratory function using high-resolution respirometry and citrate synthase activity. Electron microscopy was used to quantify mitochondrial content and cristae (pixel) density. RESULTS Mean mitochondrial area density was 27% lower (p = 0.006) in participants with type 1 diabetes compared with control participants. This was largely due to smaller mitochondrial fragments in women with type 1 diabetes (-18%, p = 0.057), as opposed to a decrease in the total number of mitochondrial fragments in men with diabetes (-28%, p = 0.130). Mitochondrial respiratory measures, whether estimated per milligram of tissue (i.e. mass-specific) or normalised to area density (i.e. intrinsic mitochondrial function), differed between cohorts, and demonstrated sexual dimorphism. Mass-specific mitochondrial oxidative phosphorylation (OXPHOS) capacity with the substrates for complex I and complex II (CI + II) was significantly lower (-24%, p = 0.033) in women with type 1 diabetes compared with control participants, whereas mass-specific OXPHOS capacities with substrates for complex I only (pyruvate [CI pyr] or glutamate [CI glu]) or complex II only (succinate [CII succ]) were not different (p > 0.404). No statistical differences (p > 0.397) were found in mass-specific OXPHOS capacity in men with type 1 diabetes compared with control participants despite a 42% non-significant increase in CI glu OXPHOS capacity (p = 0.218). In contrast, intrinsic CI + II OXPHOS capacity was not different in women with type 1 diabetes (+5%, p = 0.378), whereas in men with type 1 diabetes it was 25% higher (p = 0.163) compared with control participants. Men with type 1 diabetes also demonstrated higher intrinsic OXPHOS capacity for CI pyr (+50%, p = 0.159), CI glu (+88%, p = 0.033) and CII succ (+28%, p = 0.123), as well as higher intrinsic respiratory rates with low (more physiological) concentrations of either ADP, pyruvate, glutamate or succinate (p < 0.012). Women with type 1 diabetes had higher (p < 0.003) intrinsic respiratory rates with low concentrations of succinate only. Calculated aerobic fitness (Physical Working Capacity Test [PWC130]) showed a strong relationship with mitochondrial respiratory function and content in the type 1 diabetes cohort. CONCLUSIONS/INTERPRETATION In middle- to older-aged adults with uncomplicated type 1 diabetes, we conclude that skeletal muscle mitochondria differentially adapt to type 1 diabetes and demonstrate sexual dimorphism. Importantly, these cellular alterations were significantly associated with our metric of aerobic fitness (PWC130) and preceded notable impairments in skeletal mass and strength.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Athan G Dial
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Maria Nguyen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Lauren V Turner
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
31
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
32
|
Dial AG, Monaco CMF, Grafham GK, Patel TP, Tarnopolsky MA, Hawke TJ. Impaired Function and Altered Morphology in the Skeletal Muscles of Adult Men and Women With Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:2405-2422. [PMID: 33890059 DOI: 10.1210/clinem/dgab261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Previous investigations on skeletal muscle health in type 1 diabetes (T1D) have generally focused on later stages of disease progression where comorbidities are present and are posited as a primary mechanism of muscle dysfunction. OBJECTIVE To investigate skeletal muscle function and morphology across the adult lifespan in those with and without T1D. DESIGN Participants underwent maximal contraction (MVC) testing, resting muscle biopsy, and venous blood sampling. SETTING Procedures in this study were undertaken at the McMaster University Medical Centre. PARTICIPANTS Sixty-five healthy adult (18-78 years old) men/males and women/females (T1D = 34; control = 31) matched for age/biological sex/body mass index; self-reported physical activity levels were included. MAIN OUTCOME MEASURES Our primary measure in this study was MVC, with supporting histological/immunofluorescent measures. RESULTS After 35 years of age ("older adults"), MVC declined quicker in T1D subjects compared to controls. Loss of strength in T1D was accompanied by morphological changes associated with accelerated aging. Type 1 myofiber grouping was higher in T1D, and the groups were larger and more numerous than in controls. Older T1D females exhibited more myofibers expressing multiple myosin heavy chain isoforms (hybrid fibers) than controls, another feature of accelerated aging. Conversely, T1D males exhibited a shift toward type 2 fibers, with less evidence of myofiber grouping or hybrid fibers. CONCLUSIONS These data suggest impairments to skeletal muscle function and morphology exist in T1D. The decline in strength with T1D is accelerated after 35 years of age and may be responsible for the earlier onset of frailty, which characterizes those with diabetes.
Collapse
Affiliation(s)
- Athan G Dial
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Cynthia M F Monaco
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Grace K Grafham
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tirth P Patel
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Thomas J Hawke
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Abstract
The natural aging process is carried out by a progressive loss of homeostasis leading to a functional decline in cells and tissues. The accumulation of these changes stem from a multifactorial process on which both external (environmental and social) and internal (genetic and biological) risk factors contribute to the development of adult chronic diseases, including type 2 diabetes mellitus (T2D). Strategies that can slow cellular aging include changes in diet, lifestyle and drugs that modulate intracellular signaling. Exercise is a promising lifestyle intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the nine hallmarks of aging and age-associated inflammation. Herein, we review the effects of exercise to attenuate aging from a clinical to a cellular level, listing its effects upon various tissues and systems as well as its capacity to reverse many of the hallmarks of aging. Additionally, we suggest AMPK as a central regulator of the cellular effects of exercise due to its integrative effects in different tissues. These concepts are especially relevant in the setting of T2D, where cellular aging is accelerated and exercise can counteract these effects through the reviewed antiaging mechanisms.
Collapse
|
34
|
Alarcón-Gómez J, Martin Rivera F, Madera J, Chulvi-Medrano I. Effect of a HIIT protocol on the lower limb muscle power, ankle dorsiflexion and dynamic balance in a sedentary type 1 diabetes mellitus population: a pilot study. PeerJ 2021; 8:e10510. [PMID: 33391875 PMCID: PMC7759140 DOI: 10.7717/peerj.10510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is commonly associated with premature loss of muscle function, ankle dorsiflexion and dynamic balance. Those impairments, usually, lead to physical functionality deterioration. High-intensity interval training is an efficient and safety methodology since it prevents hypoglycemia and not requires much time, which are the main barriers for this population to practice exercise and increase physical conditioning. We hypothesized that a 6-week HIIT program performed on a cycle ergometer would increase lower limb muscle power, ankle dorsiflexion range of motion and dynamic balance without hypoglycemic situations. Methods A total of 19 diagnosed T1DM subjects were randomly assigned to HIIT group (n = 11; 6-week HIIT protocol) or Control group (n = 8; no treatment). Lower limb strength was evaluated through velocity execution in squat with three different overloads. Weight bearing lunge test (WBLT) was performed to test ankle dorsiflexion range of motion and Y-Balance test (YBT) was the test conducted to analyze dynamic balance performance. Results Velocity in squat improved a 11.3%, 9.4% and 10.1% (p < 0.05) with the 50%, 60% and 70% of their own body mass overload respectively, WBLT performance increased a 10.43% in the right limb and 15.45% in the left limb. YBT showed improvements in all directions (right limb-left limb): Anterior (4.3–6.1%), Posteromedial (1.8–5.2%) and Posterolateral (3.4–4.5%) in HIIT group (p < 0.05), unlike control group that did not experience any significant change in any of the variables (p > 0.05). Conclusion A 6-week HIIT program is safe and effective to improve execution velocity in squat movement, a fundamental skill in daily living activities, as well as ankle dorsiflexion range of motion and dynamic balance to reduce foot ulcers, risk falls and functional impairments. HIIT seems an efficient and safety training methodology not only for overcome T1DM barriers for exercising but also for improving functional capacities in T1DM people.
Collapse
Affiliation(s)
- Jesús Alarcón-Gómez
- Faculty of Physical Activity and Sports, University of Valencia, Valencia, Spain
| | - Fernando Martin Rivera
- Faculty of Physical Activity and Sports, University of Valencia, Valencia, Spain.,Research Group in Prevention and Health in Exercise and Sport, University of Valencia, Valencia, Spain
| | - Joaquin Madera
- Faculty of Physical Activity and Sports, University of Valencia, Valencia, Spain
| | - Iván Chulvi-Medrano
- Faculty of Physical Activity and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
35
|
Sorci G, Gabellini D. Report and Abstracts of the 17th Meeting of IIM, the Interuniversity Institute of Myology:Virtual meeting, October 16-18, 2020. Eur J Transl Myol 2020; 30:9485. [PMID: 33520148 PMCID: PMC7844406 DOI: 10.4081/ejtm.2020.9485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
In 2020, due to the COVID-19 pandemic, the annual meeting of the Interuniversity Institute of Myology (IIM), took place on a virtual platform. Attendees were scientists and clinicians, as well as pharmaceutical companies and patient organization representatives from Italy, several European countries, Canada and USA. Four internationally renowned Keynote speakers presented recent advances on muscle stem cells regulation, skeletal muscle regeneration, quantitative biology approaches, and metabolic regulation of muscle homeostasis. Novel, unpublished data by young trainees were presented as oral communications or posters, in five scientific sessions and two poster sessions. On October 15, 2020, selected young trainees participated to the High Training Course on "Advanced Myology", organized together with the University of Perugia, Italy. The course, on a virtual platform, showcased lectures on muscle development and regulation of muscle gene expression by international speakers, and roundtables discussions on "Single cell analysis of skeletal muscle" and "Skeletal muscle stem cell in healthy muscle and disease". The Young IIM Committee, composed by young trainee winners of awards in the past IIM Meeting editions, was directly involved in the selection of keynote speakers, the organization of scientific sessions and roundtables discussions tailored to the interests of their peers. A broad audience of Italian, European and North American participants contributed to the different initiatives. The meeting was characterized by a friendly and inclusive atmosphere, facilitating lively and stimulating discussions on emerging areas of muscle research. The meeting stimulated scientific cross-fertilization fostering novel ideas and scientific collaborations aimed at better understanding muscle normal physiology and the mechanisms underlaying muscle diseases, with the ultimate goal of developing better therapeutic strategies. The meeting was a success, and the number of meeting attendees was the highest of all IIM Meeting editions. Despite the current difficulties imposed by the COVID-19 pandemic, we are confident that the IIM community will continue to grow and deliver significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, abstracts of the meeting illustrate the new results on basic, translational, and clinical research, confirming that our field is strong and healthy.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Section of Human Anatomy, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Group, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
36
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
37
|
Yang L, Zhang J, Ruan D, Zhao K, Chen X, Shen W. Clinical and Structural Outcomes After Rotator Cuff Repair in Patients With Diabetes: A Meta-analysis. Orthop J Sports Med 2020; 8:2325967120948499. [PMID: 32995347 PMCID: PMC7502797 DOI: 10.1177/2325967120948499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The impact of diabetes on clinical and structural outcomes after rotator cuff repair remains controversial. Purpose/Hypothesis: The purpose of this study was to compare clinical outcomes and retear rates after rotator cuff repair in patients with and without diabetes. Our hypotheses were that adequate control of diabetes would decrease the retear rate after rotator cuff repair and that patients with diabetes would have worse clinical outcomes. Study Design: Systematic review; Level of evidence, 3. Methods: The PubMed, Embase, and Cochrane Library databases were searched for studies comparing outcomes in patients with and without diabetes after full-thickness rotator cuff repair. Clinical outcome analysis included the Constant score, the American Shoulder and Elbow Surgeons (ASES) score, and the University of California–Los Angeles shoulder rating scale; we compared preoperative, postoperative, and change in functional scores from baseline to final follow-up among the included studies. The pooled relative risk was calculated using a random-effects model for retear rates. Clinical outcomes were also pooled using a random-effects model. Results: Overall, 10 studies were included. Compared with patients without diabetes, patients with diabetes had a worse preoperative ASES score (P = .009) as well as worse postoperative Constant score (final follow-up range, 9-103 months; P = .0003). However, there was no significant difference in the absolute mean change in clinical outcomes between patients with and without diabetes. Diabetes was associated with a higher retear rate (19.3% in patients without diabetes vs 28.2% in patients with diabetes; P < .0001). The retear rate according to the severity of sustained hyperglycemia in the subgroup analysis was 14.6% in patients without diabetes, versus 22.7% in patients with well-controlled diabetes (<7.0% of preoperative serum HbA1c level; P = .12) and 40.0% in patients with uncontrolled diabetes (HbA1c level ≥7.0%; P < .00001). Conclusion: This meta-analysis suggests that diabetes mellitus is associated with an increased risk of retears after rotator cuff repair, and improved blood glucose control may reduce the risk of retears in patients with diabetes mellitus. Although effective glycemic control was associated with a decreased risk of retears in patients with diabetes, we could not prove causation because of potential bias and confounding in the included studies.
Collapse
Affiliation(s)
- Lingdi Yang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Lishui People's Hospital, Lishui, China
| | - Jun Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Longquan People's Hospital, Longquan, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhao
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopaedic Regenerative Medicine Group, Hangzhou, China
| | - Xiao Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopaedic Regenerative Medicine Group, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopaedic Regenerative Medicine Group, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
An HJ, Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Nam SW, Kim JS, Yang JW, Lee JY, Smith L, Koyanagi A, Jacob L, Li H, Shin JI, Kronbichler A. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21165678. [PMID: 32784808 PMCID: PMC7461030 DOI: 10.3390/ijms21165678] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia refers to a decrease in skeletal muscle mass and function. Because sarcopenia affects mortality, and causes significant disability, the clinical importance of sarcopenia is emerging. At first, sarcopenia was recognized as an age-related disease but, recently, it has been reported to be prevalent also in younger patients with autoimmune diseases. Specifically, the association of sarcopenia and autoimmune diseases such as rheumatoid arthritis has been studied in detail. Although the pathogenesis of sarcopenia in autoimmune diseases has not been elucidated, chronic inflammation is believed to contribute to sarcopenia, and moreover the pathogenesis seems to be different depending on the respective underlying disease. The definition of sarcopenia differs among studies, which limits direct comparisons. Therefore, in this review, we cover various definitions of sarcopenia used in previous studies and highlight the prevalence of sarcopenia in diverse autoimmune diseases including rheumatoid arthritis, spondyloarthritis, systemic sclerosis, inflammatory bowel disease, and autoimmune diabetes. In addition, we cover the pathogenesis and treatment of sarcopenia in autoimmune and rheumatic diseases. This review provides a comprehensive understanding of sarcopenia in various autoimmune diseases and highlights the need for a consistent definition of sarcopenia.
Collapse
Affiliation(s)
- Hyo Jin An
- Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seoung Wan Nam
- Department of Rheumatology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Jun Young Lee
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain; (A.K.); (L.J.)
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain; (A.K.); (L.J.)
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-22282-050
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
39
|
Brook MS, Wilkinson DJ, Atherton PJ. An update on nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies. Curr Opin Clin Nutr Metab Care 2020; 23:174-180. [PMID: 32175954 DOI: 10.1097/mco.0000000000000652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Skeletal muscle has many essential roles in maintaining human health, not only being crucial for locomotion, but further as a metabolically important organ. Muscle wasting in disease (cachexia) is highly prevalent, associated with poor clinical outcomes and is not fully reversible with nutritional interventions. Understanding proteostasis in diseased states is of great importance to design novel, effective nutritional/nutraceutical strategies aimed at alleviating muscle wasting. In this review, we will provide an update on muscle kinetics in disease and the effects of nutritional interventions. RECENT FINDINGS Whole body and skeletal muscle kinetics are commonly shown to be imbalanced in disease, promoting overall catabolism that underlies the development of cachexia. However, recent advancements in defining the effectiveness of nutritional interventions on muscle anabolism are clouded by heterogenous patient populations and a lack of direct incorporation stable isotope techniques. Current recommendations are focused on combating malnutrition, with increased protein intake (high in EAA) demonstrating promise. SUMMARY Recent progress in understanding catabolic states in cachexia across disease is minimal. Further, studies investigating muscle-specific protein turnover along with nutritional interventions are scarce. As such, there is a significant requirement for strong RCT's investigating both acute and chronic nutritional interventions and their impact on skeletal muscle in individual disease states.
Collapse
Affiliation(s)
- Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby
- Queens Medical Centre, Nottingham, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby
| |
Collapse
|
40
|
Goulding RP, Roche DM, Scott SN, Koga S, Weston PJ, Marwood S. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. J Appl Physiol (1985) 2020; 128:1299-1309. [PMID: 32213117 DOI: 10.1152/japplphysiol.00892.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We compared the time constant (τV̇O2) of the fundamental phase of pulmonary oxygen uptake (V̇o2) kinetics between young adult men with type 1 diabetes and healthy control subjects. We also assessed the impact of priming exercise on τV̇O2, critical power, and muscle deoxygenation in a subset of participants with type 1 diabetes. Seventeen men with type 1 diabetes and 17 healthy male control subjects performed moderate-intensity exercise to determine τV̇O2. A subset of seven participants with type 1 diabetes performed an additional eight visits, in which critical power, τV̇O2, and muscle deoxyhemoglobin + myoglobin ([HHb+Mb], via near-infrared spectroscopy) kinetics (described by a time constant, τ[HHb+Mb]) were determined with (PRI) and without (CON) a prior 6-min bout of heavy exercise. τV̇O2 was greater in participants with type 1 diabetes compared with control subjects (type 1 diabetes 50 ± 13 vs. control 32 ± 12 s; P < 0.001). Critical power was greater in PRI compared with CON (PRI 161 ± 25 vs. CON 149 ± 22 W; P < 0.001), whereas τV̇O2 (PRI 36 ± 15 vs. CON 50 ± 21 s; P = 0.006) and τ[HHb+Mb] (PRI 10 ± 5 vs. CON 17 ± 11 s; P = 0.037) were reduced in PRI compared with CON. Type 1 diabetes patients showed slower pulmonary V̇o2 kinetics compared with control subjects; priming exercise speeded V̇o2 and [HHb + Mb] kinetics and increased critical power in a subgroup with type 1 diabetes. These data therefore represent the first characterization of the power-duration relationship in type 1 diabetes and the first experimental evidence that τV̇O2 is an independent determinant of critical power in this population.NEW & NOTEWORTHY Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.,Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Sam N Scott
- University Department of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, University Hospital and University of Bern, Bern, Switzerland.,Team Novo Nordisk Professional Cycling Team, Atlanta, Georgia
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Philip J Weston
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
41
|
Hewgley RA, Moore BT, Willingham TB, Jenkins NT, McCully KK. MUSCLE MITOCHONDRIAL CAPACITY AND ENDURANCE IN ADULTS WITH TYPE 1 DIABETES. MEDICAL RESEARCH ARCHIVES 2020; 8. [PMID: 34222650 DOI: 10.18103/mra.v8i2.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The impact of type 1 diabetes (T1D) on muscle endurance and oxidative capacity is currently unknown. Purpose Measure muscle endurance and oxidative capacity of adults with T1D compared to controls. Methods A cross-sectional study design with a control group was used. Subjects (19-37 years old) with T1D (n=17) and controls (n=17) were assessed with hemoglobin A1c (HbA1c) and casual glucose. Muscle endurance was measured with an accelerometer at stimulation frequencies of 2, 4, and 6 Hz for a total of nine minutes. Mitochondrial capacity was measured using near-infrared spectroscopy after exercise as the rate constant of the rate of recovery of oxygen consumption. Results T1D and control groups were similar in age, sex, height, and race. The T1D group had slightly higher BMI values and adipose tissue thickness over the forearm muscles. Casual glucose was 150±70 mg/dL for T1D and 98±16 mg/dL for controls (P=0.006). HbA1c of T1D subjects was 7.1±0.9% and 5.0±0.4% for controls (P<0.01). Endurance indexes at 2, 4, and 6 Hz were 94.5±5.2%, 81.8±8.4%, and 68.6±13.5% for T1D and 94.6±4.1%, 85.9±6.3%, and 68.7±15.4% for controls (p = 0.97, 0.12, 0.99, respectively). There were no differences between groups in mitochondrial capacity (T1D= 1.9±0.5 min-1 and control=1.8±0.4 min-1, P=0.29) or reperfusion rate (T1D= 8.8±2.8s and control=10.3±3.0s, P=0.88). There were no significant correlations between HbA1c and either muscle endurance, mitochondrial capacity or reperfusion rate. Conclusions Adults with T1D did not have reduced oxidative capacity, muscle endurance or muscle reperfusion rates compared to controls. HbA1c also did not correlate with muscle endurance, mitochondrial capacity or reperfusion rates. Future studies should extend these measurements to older people or people with poorly-controlled T1D.
Collapse
Affiliation(s)
- Riley A Hewgley
- Dept. of Kinesiology, University of Georgia, Athens, GA 30602
| | - Bethany T Moore
- Dept. of Kinesiology, University of Georgia, Athens, GA 30602
| | | | | | - Kevin K McCully
- Dept. of Kinesiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
42
|
Monaco CMF, Perry CGR, Hawke TJ. Alterations in mitochondrial functions and morphology in muscle and non-muscle tissues in type 1 diabetes: implications for metabolic health. Exp Physiol 2020; 105:565-570. [PMID: 31826331 DOI: 10.1113/ep088096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
NEW FINDING What is the topic of this review? Evidence of impaired mitochondrial functions and/or morphology in people with type 1 diabetes across various organ systems. What advances does it highlight? Impairments to mitochondrial functions and morphology may be a primary mechanism underlying the pathophysiology of various complications in people with type 1 diabetes. ABSTRACT We recently made the observation that there are significant alterations to the ultrastructure and functions of mitochondria in skeletal muscle of people with type 1 diabetes (T1D). These alterations are proposed to lead to decreased energy production in skeletal muscle during exercise and thus may contribute to the impaired aerobic exercise capacity reported in some people with T1D. This Symposium Review summarizes the evidence that similar alterations also occur in the mitochondria present in organ systems outside skeletal muscle in people with T1D, and that this may contribute to the development and progression of the known complications of T1D, which eventually lead to the reported premature mortality.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
43
|
Calella P, Gallè F, Fornelli G, Liguori G, Valerio G. Type 1 diabetes and body composition in youth: A systematic review. Diabetes Metab Res Rev 2020; 36:e3211. [PMID: 31352688 DOI: 10.1002/dmrr.3211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
An increasing prevalence of overweight and obesity was reported in youth with type 1 diabetes, likely due to the intensive insulin treatment and/or an unhealthy lifestyle. Analyses of body composition may help describe the real increase in fat mass, which contributes to the diabetes-related cardio-metabolic risk. This systematic review evaluated the current literature on body composition assessments in youth with type 1 diabetes and the potential association with cardio-metabolic, functional, or behavioural risk factors. A systematic search of literature studies reporting assessments of body composition in youth with type 1 diabetes published until April 2018 was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-three articles with different study designs reported assessments of body composition. The following methods were used to assess body composition: computerized dual energy X-ray absorptiometry (n = 10), bioelectrical impedance analysis (n = 8), skinfold thickness measurement (n = 4), and air displacement plethysmography (n = 1). Higher fat mass values were found in youth with type 1 diabetes in seven of the 13 studies that included a healthy control group. Most studies investigating the association between body composition and cardio-metabolic risk factors showed that youth with higher fat mass levels had poor glycaemic control, dyslipidaemia, or higher blood pressure. Assessments of body composition may represent a useful clinical procedure to support decision-making in type 1 diabetes management. Further research is needed to standardize the assessment of body composition and develop a consensus guideline.
Collapse
Affiliation(s)
- Patrizia Calella
- Department of Movement Sciences and Wellbeing, Parthenope University, Naples, Italy
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, Parthenope University, Naples, Italy
| | - Gianfranco Fornelli
- School of Medicine and Surgery, Vita-Salute, San Raffaele University, Milan, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, Parthenope University, Naples, Italy
| | - Giuliana Valerio
- Department of Movement Sciences and Wellbeing, Parthenope University, Naples, Italy
| |
Collapse
|
44
|
Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC. Carbohydrate Restriction in Type 1 Diabetes: A Realistic Therapy for Improved Glycaemic Control and Athletic Performance? Nutrients 2019; 11:E1022. [PMID: 31067747 PMCID: PMC6566372 DOI: 10.3390/nu11051022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Around 80% of individuals with Type 1 diabetes (T1D) in the United States do not achieve glycaemic targets and the prevalence of comorbidities suggests that novel therapeutic strategies, including lifestyle modification, are needed. Current nutrition guidelines suggest a flexible approach to carbohydrate intake matched with intensive insulin therapy. These guidelines are designed to facilitate greater freedom around nutritional choices but they may lead to higher caloric intakes and potentially unhealthy eating patterns that are contributing to the high prevalence of obesity and metabolic syndrome in people with T1D. Low carbohydrate diets (LCD; <130 g/day) may represent a means to improve glycaemic control and metabolic health in people with T1D. Regular recreational exercise or achieving a high level of athletic performance is important for many living with T1D. Research conducted on people without T1D suggests that training with reduced carbohydrate availability (often termed "train low") enhances metabolic adaptation compared to training with normal or high carbohydrate availability. However, these "train low" practices have not been tested in athletes with T1D. This review aims to investigate the known pros and cons of LCDs as a potentially effective, achievable, and safe therapy to improve glycaemic control and metabolic health in people with T1D. Secondly, we discuss the potential for low, restricted, or periodised carbohydrate diets in athletes with T1D.
Collapse
Affiliation(s)
- Sam N Scott
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
- LMC Diabetes & Endocrinology, 1929 Bayview Avenue, Toronto, ON M4G 3E8, Canada.
| |
Collapse
|
45
|
|