1
|
DeVallance E, Bowdridge E, Garner K, Griffith J, Seman M, Batchelor T, Velayutham M, Goldsmith WT, Hussain S, Kelley EE, Nurkiewicz TR. The alarmin, interleukin-33, increases vascular tone via extracellular signal regulated kinase-mediated Ca 2+ sensitization and endothelial nitric oxide synthase inhibition. J Physiol 2024; 602:6087-6107. [PMID: 39540837 DOI: 10.1113/jp286990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Alarmins are classified by their release from damaged or ruptured cells. Many alarmins have been found to increase vascular tone and oppose endothelium-dependent dilatation (EDD). Interleukin (IL)-33 plays a prominent role in lung injury and can be released during vascular injury and in chronic studies found to be cardioprotective. Our recent work has implicated IL-33 in acute vascular dysfunction following inhalation of engineered nanomaterials (ENM). However, the mechanisms linking IL-33 to vascular tone have not been interrogated. We therefore aimed to determine whether IL-33 directly influenced microvascular tone and endothelial function. Isolated feed arteries and in vivo arterioles from male and female Sprague-Dawley rats were used to determine direct vascular actions of IL-33. Mesenteric feed arteries and arterioles demonstrated reduced intraluminal diameters when treated with increasing concentrations of recombinant IL-33. IL-33 activated extracellular signal regulated kinase (ERK)1/2 of rat aortic smooth muscle cells but not phosphorylation of myosin light chain kinase. This suggested IL-33 may sensitize arterioles to Ca2+-mediated responses. Indeed, IL-33 augmented the myogenic- and phenylephrine-induced vasoconstriction. Additionally, incubation of arterioles with 1 ng IL-33 attenuated ACh-mediated EDD. Mechanistically, in human aortic endothelial cells, we demonstrate that IL-33-mediated ERK1/2 activation leads to inhibitory phosphorylation of serine 602 on endothelial nitric oxide synthase. Finally, we demonstrate that IL-33-ERK1/2 contributes to vascular tone following two known inducers of IL-33; ENM inhalation and the rupture endothelial cells. The present study provides novel evidence that IL-33 increases vascular tone via canonical ERK1/2 activation in microvascular smooth muscle and endothelium. Altogether, it is suggested IL-33 plays a critical role in microvascular homeostasis following barrier cell injury. KEY POINTS: Interleukin (IL)-33 causes a concentration-dependent reduction in feed artery diameter. IL-33 acts on vascular smooth muscle cells to augment Ca2+-mediated processes. IL-33 causes inhibitory phosphorylation of endothelial nitric oxide synthase and opposes endothelium-dependent dilatation. Engineered nanomaterial-induced lung injury and endothelial cell rupture in part act through IL-33 to mediate increased vascular tone.
Collapse
MESH Headings
- Animals
- Interleukin-33/metabolism
- Interleukin-33/pharmacology
- Rats, Sprague-Dawley
- Male
- Nitric Oxide Synthase Type III/metabolism
- Female
- Rats
- Vasodilation/drug effects
- Calcium/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Alarmins/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Arterioles/physiology
- Arterioles/drug effects
- Arterioles/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth Bowdridge
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista Garner
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie Griffith
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Madison Seman
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Thomas Batchelor
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Murugesan Velayutham
- Department of Biochemistry and Molecular Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - W Travis Goldsmith
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
2
|
Potokiri A, Omeiza NA, Ajayi AM, Adeleke PA, Alagbonsi AI, Iwalewa EO. Yeast supplementation potentiates fluoxetine's anti-depressant effect in mice via modulation of oxido-inflammatory, CREB, and MAPK signaling pathways. Curr Res Physiol 2024; 7:100132. [PMID: 39483857 PMCID: PMC11526068 DOI: 10.1016/j.crphys.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction The therapeutic potential of yeast in the management of depression is unknown. Thus, we evaluated the modulatory effect of nutritional yeast supplementation on antidepressant activity of fluoxetine in mice models of depressive-like behaviors (DLB). Methods A total of 112 mice were divided into 16 groups (n = 7 each) for a 3-stage study. Stage I (non-DLB study) had groups Ia (10 mL/kg vehicle), Ib (20 mg/kg fluoxetine), Ic - If (2% yeast diet for all, but Id - If additionally received 5 mg/kg, 10 mg/kg, and 20 mg/kg fluoxetine respectively). Stage II (lipopolysaccharide [LPS] model of DLB) had groups IIa - IIb (10 mL/kg vehicle), IIc (20 mg/kg fluoxetine), IId (yeast) and IIe (yeast + 20 mg/kg fluoxetine). After these treatments for 24 days, animals in IIb - IIe received 0.83 mg/kg of LPS on the 25th day. Except for group IIIa (10 mL/kg vehicle), animals in other groups of stage III (unpredictable chronic mild stress [UCMS] model) were exposed to UCMS for 24 days along with 10 mL/kg vehicle (IIIb), 20 mg/kg fluoxetine (IIIc), yeast (IIId), or yeast + fluoxetine (IIIe). Results Yeast and fluoxetine attenuated LPS- and UCMS-induced immobility, derangement of oxido-inflammatory (TNF-α, IL-6, NO, MDA, SOD, GSH, CAT, and AChE) and CREB/MAPK pathways. While fluoxetine had more potent effect than yeast when used separately, pre-treatment of mice with their combination had more pronounced effect than either of them. Conclusion Yeast supplementation improves the antidepressant activity of fluoxetine in mice by modulating oxido-inflammatory, CREB, and MAPK pathways.
Collapse
Affiliation(s)
- Augustina Potokiri
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Noah A. Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abayomi M. Ajayi
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul A. Adeleke
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abdullateef I. Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Ezekiel O. Iwalewa
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Wang J, Sun L, You J, Peng H, Yan H, Wang J, Sun F, Cui M, Wang S, Zhang Z, Fan X, Liu D, Liu C, Qiu C, Chen C, Xu Z, Chen J, Li W, Liu B. Role and mechanism of PVN-sympathetic-adipose circuit in depression and insulin resistance induced by chronic stress. EMBO Rep 2023; 24:e57176. [PMID: 37870400 DOI: 10.15252/embr.202357176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. β-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Linshan Sun
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Honghai Peng
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Minghu Cui
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China
| | - Sanwang Wang
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou, China
| | - Zheng Zhang
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Dunjiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Changyun Qiu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Chao Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhicheng Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
4
|
Burrage EN, Coblentz T, Prabhu SS, Childers R, Bryner RW, Lewis SE, DeVallance E, Kelley EE, Chantler PD. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. J Cereb Blood Flow Metab 2023; 43:905-920. [PMID: 36655326 PMCID: PMC10196752 DOI: 10.1177/0271678x231152551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Xanthine oxidase (XO) mediates vascular function. Chronic stress impairs cerebrovascular function and increases the risk of stroke and cognitive decline. Our study determined the role of XO on stress-induced cerebrovascular dysfunction and cognitive decline. We measured middle cerebral artery (MCA) function, free radical formation, and working memory in 6-month-old C57BL/6 mice who underwent 8 weeks of control conditions or unpredictable chronic mild stress (UCMS) with or without febuxostat (50 mg/L), a XO inhibitor. UCMS mice had an impaired MCA dilation to acetylcholine vs. controls (p < 0.0001), and increased total free radical formation, XOR protein levels, and hydrogen peroxide production in the liver compared to controls. UCMS increased hydrogen peroxide production in the brain and cerebrovasculature compared to controls. Working memory, using the y-maze test, was impaired (p < 0.05) in UCMS mice compared to control mice. However, blocking XO using febuxostat prevented the UCMS-induced impaired MCA response, while free radical production and hydrogen peroxide levels were similar to controls in the liver and brain of UCMS mice treated with febuxostat. Further, UCMS + Feb mice did not have a significant reduction in working memory. These data suggest that the cerebrovascular dysfunction associated with chronic stress may be driven by XO, which leads to a reduction in working memory.
Collapse
Affiliation(s)
- Emily N Burrage
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
| | - Tyler Coblentz
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saina S Prabhu
- Department of Pharmaceutical
Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Childers
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sarah E Lewis
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Evan DeVallance
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Eric E Kelley
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Paul D Chantler
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
5
|
Stress-induced cardiometabolic perturbations, increased oxidative stress and ACE/ACE2 imbalance are improved by endurance training in rats. Life Sci 2022; 305:120758. [DOI: 10.1016/j.lfs.2022.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
6
|
Boateng SY, Olfert IM, Chantler PD. Role of Perivascular Adipose Tissue and Exercise on Arterial Function with Obesity. Exerc Sport Sci Rev 2021; 49:188-196. [PMID: 33831902 PMCID: PMC8195847 DOI: 10.1249/jes.0000000000000251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue and arterial dysfunction are common in the obese state. Perivascular adipose tissue (PVAT) plays an important role in mediating arterial health, and with obesity, the PVAT dysfunction negatively affects arterial health. Exercise training exerts direct and beneficial effects on PVAT, providing an additional and novel pathway by which exercise can improve arterial health in diseased populations.
Collapse
Affiliation(s)
- Samuel Y Boateng
- Biological Sciences, School of Biological Sciences, University of Reading, UK
| | - I. Mark Olfert
- Department of Human Performance, Division of Exercise Physiology, School of Medicine, West Virginia University, USA
- West Virginia Clinical and Translational Science Institute (WVCTSI), Morgantown, WV
| | - Paul D Chantler
- Department of Human Performance, Division of Exercise Physiology, School of Medicine, West Virginia University, USA
- West Virginia Clinical and Translational Science Institute (WVCTSI), Morgantown, WV
| |
Collapse
|
7
|
DeVallance ER, Branyan KW, Olfert IM, Pistilli EE, Bryner RW, Kelley EE, Frisbee JC, Chantler PD. Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Exp Physiol 2021; 106:1343-1358. [PMID: 33913209 DOI: 10.1113/ep089449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.
Collapse
Affiliation(s)
- Evan R DeVallance
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randall W Bryner
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
8
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
9
|
Chico-Barba G, Jiménez-Limas K, Sánchez-Jiménez B, Sámano R, Rodríguez-Ventura AL, Castillo-Pérez R, Tolentino M. Burnout and Metabolic Syndrome in Female Nurses: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1993. [PMID: 31195593 PMCID: PMC6603913 DOI: 10.3390/ijerph16111993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Nurses are at risk of having burnout due to workload and job stress-studies have reported that chronic stress is associated with metabolic syndrome. This study aimed to assess the association between burnout and metabolic syndrome in a sample of female nurses. Data were collected from a cross-sectional study from 2016 to 2018 in a tertiary hospital in Mexico City. All nurses that work in the hospital were invited to participate. Information pertaining to sociodemographic (age, education level), work (labor seniority, service area, shift work), anthropometric (weight, waist circumference, blood pressure) and biochemical (glucose, serum lipids) variables were collected. Burnout was assessed using the Maslach Burnout Inventory test, and metabolic syndrome was defined according to the International Diabetes Federation criteria. A total of 168 nurses participated with a median age of 44 years. The prevalence of burnout and metabolic syndrome was 19.6% and 38.7%, respectively. There was no association between burnout and metabolic syndrome (p = 0.373). However, associations of emotional exhaustion (aOR: 14.95; 95% CI: 1.5-148.7), personal accomplishment (aOR: 0.13; 95% CI: 0.01-0.99), and night shift (aOR: 12.39; 95% CI: 1.02-150.5) with increased waist circumference were found. Strategies are needed to prevent burnout and metabolic syndrome in nurses, especially in those who work at night shift.
Collapse
Affiliation(s)
- Gabriela Chico-Barba
- Departmento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México 03920, Mexico.
| | - Karime Jiménez-Limas
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México 03920, Mexico.
| | - Bernarda Sánchez-Jiménez
- Subdirección de Investigación en Intervenciones Comunitarias, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
| | - Reyna Sámano
- Departmento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
| | - Ana Lilia Rodríguez-Ventura
- Departmento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
| | - Rafael Castillo-Pérez
- Departmento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
| | - Maricruz Tolentino
- Departmento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico.
| |
Collapse
|
10
|
Parra-Montes de Oca MA, Gutiérrez-Mariscal M, Salmerón-Jiménez MF, Jaimes-Hoy L, Charli JL, Joseph-Bravo P. Voluntary Exercise-Induced Activation of Thyroid Axis and Reduction of White Fat Depots Is Attenuated by Chronic Stress in a Sex Dimorphic Pattern in Adult Rats. Front Endocrinol (Lausanne) 2019; 10:418. [PMID: 31297093 PMCID: PMC6607407 DOI: 10.3389/fendo.2019.00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is inhibited by energy deficit, by acute or chronic stress, but activated by cold exposure or exercise. Because stress curtails acute cold induced activation of HPT, we evaluated the effect of chronic stress on HPT axis response to voluntary exercise, a persistent energy-demanding situation. Adult male and female Wistar rats were exposed to restraint stress, 30 min/day for 2 weeks, or to isolation (Iso) [post-natal day [PND] 30-63]. Exercise was performed (7 p.m.-7 a.m.) in a running wheel, sedentary controls stayed in individual cages (Sed); at 7 a.m. they were housed with their cage mate or individually (Iso); food intake by the exercised group was measured day and night to pair-fed Sed. At sacrifice, hormones, mRNA levels and tissue weights were quantified. Control or restrained adult rats had access to running wheel daily for 2 weeks. Compared to C, exercise decreased white adipose tissue (WAT) mass in females and males, increased hypothalamic paraventricular nucleus (PVN)-Trh expression in males proportionally to exercise performed, and increased TSH and T4 serum concentration in females. These changes were not detected in restrained groups. Starting at PND 63 control (2/cage) and isolated (1/cage) rats either exercised on 10 alternated nights or were sedentary. In control male animals, compared to Sed rats, exercise did not decrease WAT mass, nor changed HPT axis activity, but increased Pomc and deiodinase 2 (Dio2) expression in mediobasal hypothalamus (MBH), adrenergic receptor β3 and uncoupling protein-1 in brown adipose tissue. In control female animals, exercise decreased WAT mass, increased Pomc, Dio2, and Trhde expression in MBH, and TSH serum concentration. Iso females had lower TSH and T4 serum concentration, Dio2 and Trhde expression in MBH than controls. The stress response was higher in isolated males than females, but in males it did not alter the effects of exercise, in contrast to isolated females that had a blunted response to exercise compared to controls. In conclusion, chronic stress interferes with metabolic effects produced by exercise, such as loss of WAT mass, coincident with dampening of HPT activity.
Collapse
|