1
|
Samidurai A, Xi L, Das A, Kukreja RC. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu Rev Pharmacol Toxicol 2023; 63:585-615. [PMID: 36206989 DOI: 10.1146/annurev-pharmtox-040122-034745] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| |
Collapse
|
2
|
Mahdi H, Jovanović A. SUR2A as a base for cardioprotective therapeutic strategies. Mol Biol Rep 2022; 49:6717-6723. [PMID: 35301655 DOI: 10.1007/s11033-022-07281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels link the metabolic state of the cell with membrane excitability and SUR2A serves as a regulatory subunit of sarcolemmal KATP channels. The aim of the present study was to review SUR2A-mediated cardioprotection. METHODS AND RESULTS A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science direct was performed. Levels of SUR2A regulate number of fully assembled KATP channels in the sarcolemma. Increased numbers of sarcolemmal KATP channels protect cardiomyocytes against different types of stress by improving the timing of KATP channels opening, but, also, by catalyzing ATP production in subsarcolemmal space. Fully-assembled sarcolemmal KATP channels protein complex contain ATP-producing enzymes in addition to channel subunits, SUR2A and Kir6.2. An increase in the number of fully-assembled channels results in increased levels of ATP-producing enzymes and subsarcolemmal ATP, which is beneficial in ischemia. Expression of SUR2A is regulated by diverse mechanisms, including AMPK, PI3K/Akt, and ERK1/2 as well as intracellular levels of NAD+/NADH and ATP. There are many compounds and treatments that can be used to regulate SUR2A and some of them seem to be clinically viable options. The most suitable medication to use to increase SUR2A and confer cardioprotection in the clinical setting seems to be nicotinamide. It is one of the safest compounds used in clinical practice and all pre-clinical studies demonstrated that it is an efficient cardioprotective agent. CONCLUSIONS Taken all together, SUR2A-based cardioprotection is a likely efficient and safe cardioprotective strategy that can be quickly introduced into clinical practice.
Collapse
Affiliation(s)
- Habib Mahdi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou Engomi, P.O. Box 24005, 2414, CY-1700, Nicosia, Cyprus
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou Engomi, P.O. Box 24005, 2414, CY-1700, Nicosia, Cyprus. .,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
3
|
Imam SS, Al-Abbasi FA, Hosawi S, Afzal M, Nadeem MS, Ghoneim MM, Alshehri S, Alzarea SI, Alquraini A, Gupta G, Kazmi I. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury. Regen Ther 2022; 19:144-153. [PMID: 35229012 PMCID: PMC8856949 DOI: 10.1016/j.reth.2022.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich plasma (PRP) is a widely accepted treatment approach and has heightened the quality of care among physicians. PRP has been used over the last decade to boost clinical results of plastic therapies, periodontal surgery and intra-bony defects. According to certain research, elevated levels of PRP growth factors that could promote tissue repair and have the potential for PRP to be beneficial in regenerating processes that Maxillofacial and Oral Surgeons, Veterinary Officers, Athletic medicine specialists and Dermatologists have long admired. PRP is an autologous whole blood fraction that has a heavy amount of a variety of growth factors such as epidermal growth factor (EGF), Vascular Endothelial Growth Factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factors (FGFs), transforming growth factor beta-1 (TGF-b), insulin-like growth factor-I (IGF-I) and platelet-derived growth factor (PDGF) which can facilitate repair and regeneration. Moreover, a clinical trial of PRP in severe angina patients has shown its excellent safety profile. However, PRP is a very complex biological substance with an array of active biomolecules, its functions are yet to be fully clarified. In-addition, there was insufficient work assessing possible cardiovascular tissue benefits from PRP. Thus, it still remains necessary to identify the most clinically important cardiovascular applications and further research in clinical scenario need to be validated.
Collapse
Key Words
- ADMSC, adipose-derived mesenchymal stem cells
- BMSCs, bone marrow-derived mesenchymal stem cells
- Cardiac injury
- Cell repair and regeneration
- EGF, epidermal growth factor
- FDPs, fibrin degradation products
- FGFs, fibroblast growth factors
- HGF, hepatocyte growth factor
- IGF-I, insulin-like growth factor-I
- IRI, ischemic reperfusion injury
- ISO, Isoproterenol
- LP-PRP, leukocyte-poor PRP
- LR-PRP, leukocyte-rich PRP
- MH, Manuka honey
- MI, myocardial infarction
- MRI, magnetic resonance imaging
- P-PRF, pure platelet-rich fibrin
- PDGF, platelet-derived growth factor
- PRP, platelet-rich plasma
- Platelet-rich plasma
- ROS, reactive oxygen species
- TGF-b, transforming growth factor beta
- VEGF, vascular endothelial growth factor
- nsPEF, nanosecond pulsed electric fields
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
4
|
Lenz MR, Tsai SY, Roessler AE, Wang Y, Sethupathi P, Jones WK, Kartje GL, Simmons WH. A Potent Inhibitor of Aminopeptidase P2 Reduces Reperfusion Injury in Models of Myocardial Infarction and Stroke. J Pharmacol Exp Ther 2022; 380:220-229. [PMID: 34980660 PMCID: PMC11046727 DOI: 10.1124/jpet.121.000875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
During a myocardial infarction or ischemic stroke, blood flow to the heart or brain is partially blocked. This results in reduced delivery of oxygen and nutrients and, ultimately, tissue damage. Initial treatment involves removing the clot and restoring blood flow (reperfusion). However, this treatment is not as effective as one would hope because the reperfusion process itself can cause a different type of damage (reperfusion injury) that contributes up to 50% of the total damage. Bradykinin is an autocoid that is released from blood vessel endothelial cells during ischemia and reperfusion and has the potential to prevent reperfusion injury. However, bradykinin is rapidly inactivated by enzymes on endothelial cells, limiting its beneficial effects. One of these enzymes is aminopeptidase P2. We designed a potent and specific inhibitor of aminopeptidase P2 called ST-115, [(S)-2-mercapto-4-methylpentanoyl]-4(S)-fluoro-Pro-Pro-3(R)-beta-Pro. When ST-115 is administered intravenously at the start of reperfusion, it reduces bradykinin degradation. This increases bradykinin's concentration in the capillaries and enhances its protective effects. We tested ST-115 in a mouse model of myocardial infarction and found that the damaged area of the heart was reduced by 58% compared with mice given saline. In a rat model of ischemic stroke, ST-115 reduced functional deficits in a skilled walking test by 60% and reduced brain edema by 51%. It reduced brain infarct size by 48% in a major subset of rats with small strokes. The results indicate that ST-115 can ameliorate reperfusion injury and can ultimately serve as a therapeutic for acute myocardial infarction and ischemic stroke. SIGNIFICANCE STATEMENT: We have shown that our aminopeptidase P2 inhibitor, ST-115, can reduce tissue injury caused by episodes of ischemia followed by reperfusion. It was successful in rodent models of myocardial infarction and stroke. The clinical use would involve the intravenous administration of ST-115 at the induction of reperfusion. In the case of stroke, the successful technique of thrombectomy could be combined with ST-115 administration to simultaneously reduce both ischemic and reperfusion injury.
Collapse
Affiliation(s)
- Morgan R Lenz
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - Shih-Yen Tsai
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - Anne E Roessler
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - Yang Wang
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - Periannan Sethupathi
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - W Keith Jones
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - Gwendolyn L Kartje
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| | - William H Simmons
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, Maywood, Illinois (M.R.L., A.E.R., Y.W., P.S., W.K.J., G.L.K., W.H.S.) and Research Service, Edwards Hines Jr. VA Hospital, Hines, Illinois (S.-Y.T., G.L.K.)
| |
Collapse
|
5
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. Am J Physiol Cell Physiol 2022; 322:C296-C310. [PMID: 35044856 PMCID: PMC8836732 DOI: 10.1152/ajpcell.00279.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
- McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
6
|
Sheida A, Taghavi T, Shafabakhsh R, Ostadian A, Razaghi Bahabadi Z, Khaksary Mahabady M, Hamblin MR, Mirzaei H. Potential of natural products in the treatment of myocardial infarction: focus on molecular mechanisms. Crit Rev Food Sci Nutr 2022; 63:5488-5505. [PMID: 34978223 DOI: 10.1080/10408398.2021.2020720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although conventional drugs are widely used in the prevention and treatment of cardiovascular disease (CVD), they are being used less frequently due to concerns about possible side effects over the long term. There has been a renewed research interest in medicinal plant products, and their role in protecting the cardiovascular system and treating CVD, which are now being considered as potential alternatives to modern drugs. The most important mechanism causing damage to the myocardium after heart attack and reperfusion, is increased levels of free radicals and oxidative stress. Therefore, treatment approaches often focus on reducing free radicals or enhancing antioxidant defense mechanism. It has been previously reported that bioactive natural products can protect the heart muscle in myocardial infarction (MI). Since these compounds are readily available in fruits and vegetables, they could prevent the risk of MI if they are consumed daily. Although the benefits of a healthy diet are well known, many scientific studies have focused on whether pure natural compounds can prevent and treat MI. In this review we summarize the effects of curcumin, resveratrol, quercitin, berberine, and tanshinone on MI and CVD, and focus on their proposed molecular mechanisms of action.
Collapse
Affiliation(s)
- Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Graham C, Sethu P. Myocardial Fibrosis: Cell Signaling and In Vitro Modeling. CARDIOVASCULAR SIGNALING IN HEALTH AND DISEASE 2022:287-321. [DOI: 10.1007/978-3-031-08309-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY) 2021; 13:7828-7845. [PMID: 33746115 PMCID: PMC8034968 DOI: 10.18632/aging.202858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
Collapse
|
10
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
11
|
Gu J, Zhang T, Guo J, Chen K, Wang G, Li H, Wang J. Ursodeoxycholyl lysophosphatidylethanolamide protects against hepatic ischemia/reperfusion injury via phospholipid metabolism-mediated mitochondrial quality control. FASEB J 2020; 34:6198-6214. [PMID: 32162746 DOI: 10.1096/fj.201902013rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial dysfunction is the leading cause of reactive oxygen species (ROS) burst and apoptosis in hepatic ischemia/reperfusion (I/R) injury. Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a hepatotargeted agent that exerts hepatoprotective roles by regulating lipid metabolism. Our previous studies have shown that UDCA-LPE improves hepatic I/R injury by inhibiting apoptosis and inflammation. However, the role of UDCA-LPE in lipid metabolism and mitochondrial function in hepatic I/R remains unknown. In the present study, we investigated the role of UDCA-LPE in hepatic I/R by focusing on the interface of phospholipid metabolism and mitochondrial homeostasis. Livers from 28-week-old mice, primary hepatocytes and HepG2 cells were subjected to in vivo and in vitro I/R, respectively. Analyses of oxidative stress, imaging, ATP generation, genetics, and lipidomics showed that I/R was associated with mitochondrial dysfunction and a reduction in phospholipids. UDCA-LPE alleviated mitochondria-dependent oxidative stress and apoptosis and prevented the decrease of phospholipid levels. Our study found that cytosolic phospholipase A2 (cPLA2 ), a phospholipase that is activated during I/R, hydrolyzed mitochondrial membrane phospholipids and led to mitochondria-mediated oxidative stress and apoptosis. UDCA-LPE inhibited the interaction between cPLA2 and mitochondria and reduced phospholipid hydrolysis-mediated injury. UDCA-LPE might regulate the crosstalk between the phospholipid metabolism and the mitochondria, restore mitochondrial function and ameliorate I/R injury.
Collapse
Affiliation(s)
- Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019; 11:7307-7327. [PMID: 31498116 PMCID: PMC6756899 DOI: 10.18632/aging.102247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 04/11/2023]
Abstract
The prevalence rates of heart failure (HF) are greater than 10% in individuals aged >75 years, indicating an intrinsic link between aging and HF. It has been recognized that mitochondrial dysfunction contributes to the pathology of HF. Mitokines are a type of cytokines, peptides, or signaling pathways produced or activated by the nucleus or the mitochondria through cell non-autonomous responses during cellular stress. In addition to promoting the communication between the mitochondria and the nucleus, mitokines also exert a systemic regulatory effect by circulating to distant tissues. It is noteworthy that increasing evidence has demonstrated that mitokines are capable of reducing the metabolic-related HF risk factors and are associated with HF severity. Consequently, mitokines might represent a potential therapy target for HF.
Collapse
Affiliation(s)
- Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Ischia J, Bolton DM, Patel O. Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application. Metallomics 2019; 11:1330-1343. [PMID: 31204765 DOI: 10.1039/c9mt00079h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemia (interruption in the blood/oxygen supply) and subsequent damage induced by reperfusion (restoration of blood/oxygen supply) ultimately leads to cell death, tissue injury and permanent organ dysfunction. The impact of ischaemia reperfusion injury (IRI) is not limited to heart attack and stroke but can be extended to patients undergoing surgeries such as partial nephrectomy for renal cancer, liver resection for colorectal cancer liver metastasis, cardiopulmonary bypass, and organ transplantation. Unfortunately, there are no drugs that can protect organs against the inevitable peril of IRI. Recent data show that a protocol incorporating specific Zn formulation, dosage, number of dosages, time of injection, and mode of Zn delivery (intravenous) and testing of efficacy in a large preclinical sheep model of IRI strongly supports human trials of Zn preconditioning. No doubt, scepticism still exists among funding bodies and research fraternity on whether Zn, a naturally occurring metal, will work where everything else has failed. Therefore, in this article, we review the conflicting evidence on the promoter and protector role of Zn in the case of IRI and highlight factors that may help explain the contradictory evidence. Finally, we review the literature related to the knowledge of Zn's mechanism of action on ROS generation, apoptosis, HIF activation, inflammation, and signal transduction pathways, which highlight Zn's likelihood of success compared to various other interventions targeting IRI.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Damien M Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
14
|
Kittur FS, Lin Y, Arthur E, Hung CY, Li PA, Sane DC, Xie J. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem Biophys Rep 2019; 17:157-168. [PMID: 30671548 PMCID: PMC6327940 DOI: 10.1016/j.bbrep.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Recombinant human erythropoietin (rhuEPO) and asialoerythropoietin (asialo-rhuEPO) are cardioprotective. However, the protective effects of rhuEPO could not be translated into clinical practice because of its hematopoiesis-associated side effects while non-erythropoietic asialo-rhuEPO is unavailable in large quantities for clinical studies. This study was designed to investigate the cardiomyocyte protective potential of plant-produced asialo-rhuEPO (asialo-rhuEPOP) against staurosporine (STS)-induced injury in HL-1 murine cardiomyocytes and identify cellular pathway(s) responsible for its cardioprotection. Methods HL-1 cardiomyocytes were simultaneously treated with STS and asialo-rhuEPOP. Cellular injury, apoptosis, and cell viabilities were measured by LDH assay, Hoechst staining and trypan blue exclusion method, respectively while western blotting was used to study its effects on apoptosis and autophagy hallmarks. Results Our results showed that 20 IU/ml asialo-rhuEPOP provided 39% protection to cardiomyocytes compared to STS-treated cells, which is 2-fold better than that of mammalian cell-produce rhuEPO (rhuEPOM). Asialo-rhuEPOP was found to suppress activation of proapoptotic kinase Mst1 (mammalian Sterile-20-like kinase 1) and FOXO3, leading to inhibition of apoptotic pathway and restoration of autophagy as indicated by the reduction of fragmented/condensed nuclei, altered ratios of Bax/Bcl2, p-Bad/Bad, cytosol/mitochondrial cyt c and caspase-3 activation, and the restored levels of autophagy markers Beclin1, p62 and LC3B-II. Additionally, Akt was found to be activated and FOXO3 was phosphorylated on Ser253, suggesting inhibition of FOXO3 transcriptional function. Conclusions Asialo-rhuEPOP-mediated cardioprotection occurs through activation of PI3K/Akt pathway leading to suppression of Mst1 activation and promoting cardiomyocyte survival. General significance Asialo-rhuEPOP could be used to modulate Mst1 activity elevated under numerous pathological states. Recombinant asialo-rhuEPO protect HL-1 cardiomyocytes against STS-induced injury. Protective effect of recombinant asialo-rhuEPO is superior to sialylated EPO. Asialo-rhuEPO suppresses activation of proapoptotic kinase MSt1 by activating Akt. Asialo-rhuEPO restores autophagy and inhibits apoptosis to promote cell survival.
Collapse
Affiliation(s)
- Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Yuan Lin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Elena Arthur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David C Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
15
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
16
|
O'Kane D, Gibson L, May CN, du Plessis J, Shulkes A, Baldwin GS, Bolton D, Ischia J, Patel O. Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals 2018; 31:821-834. [PMID: 29974287 DOI: 10.1007/s10534-018-0125-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023]
Abstract
Ischaemia-reperfusion injury (IRI) during various surgical procedures, including partial nephrectomy for kidney cancer or renal transplantation, is a major cause of acute kidney injury and chronic kidney disease. Currently there are no drugs or methods for protecting human organs, including the kidneys, against the peril of IRI. The aim of this study was therefore to investigate the reno-protective effect of Zn2+ preconditioning in a clinically relevant large animal sheep model of IRI. Further the reno-protective effectiveness of Zn2+ preconditioning was tested on normal human kidney cell lines HK-2 and HEK293. Anaesthetised sheep were subjected to uninephrectomy and 60 min of renal ischaemia followed by reperfusion. Sheep were preconditioned with intravenous injection of zinc chloride prior to occlusion. Serum creatinine and urea were measured before ischaemia and for 7 days after reperfusion. HK-2 and HEK293 cells were subjected to in vitro IRI using the oxygen- and glucose-deprivation model. Zn2+ preconditioning reduced ischaemic burden determined by creatinine and urea rise over time by ~ 70% in sheep. Zn2+ preconditioning also increased the survival of normal human kidney cells subjected to cellular stress such as hypoxia, hydrogen peroxide injury, and serum starvation. Overall, our protocol incorporating specific Zn2+ dosage, number of dosages (two), time of injection (24 and 4 h prior), mode of Zn2+ delivery (IV) and testing of efficacy in a rat model, a large preclinical sheep model of IRI and cells of human origin has laid the foundation for assessment of the benefit of Zn2+ preconditioning for human applications.
Collapse
Affiliation(s)
- Dermot O'Kane
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
- Department of Urology, Austin Health, Heidelberg, VIC, Australia
| | - Luke Gibson
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
- Department of Urology, Austin Health, Heidelberg, VIC, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Justin du Plessis
- Australian Clinical Laboratories, Austin Health, Heidelberg, VIC, Australia
| | - Arthur Shulkes
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
| | - Graham S Baldwin
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
| | - Damien Bolton
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
- Department of Urology, Austin Health, Heidelberg, VIC, Australia
| | - Joseph Ischia
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia
- Department of Urology, Austin Health, Heidelberg, VIC, Australia
| | - Oneel Patel
- The University of Melbourne Department of Surgery, Austin Health, Studley Rd., Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
17
|
Protective effects of echinacoside against anoxia/reperfusion injury in H9c2 cells via up-regulating p-AKT and SLC8A3. Biomed Pharmacother 2018; 104:52-59. [PMID: 29763795 DOI: 10.1016/j.biopha.2018.04.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022] Open
Abstract
Echinacoside is a natural ingredient with various pharmacological activities. In this study, we investigated the protective effects of echinacoside on cardiomyocytes (rat H9c2 cells) in an anoxia/reperfusion (A/R) model. Further, the regulatory function of sodium-calcium exchanger protein 3 (SLC8A3/NCX3) as well as the protein kinase B (AKT) signaling were studied. The present results indicated that echinacoside protected against A/R-induced apoptosis in a dose manner, which was characterized by a decrease in the apoptosis and caspase 3 protein levels in H9c2 cells. Further, Ca2+ uptake were dose-dependently reduced in H9c2 cells by echinacoside under A/R conditions. Whereas, relative mRNA expression of SLC8A3 and protein levels of SLC8A3 and p-AKT showed opposite tendency. On the one hand, the A/R-induced abnormalities in H9c2 cells were remarkably ameliorated by activated p-AKT and over-expression of SLC8A3 but aggravated by inhibited p-AKT, and the aggravated effection were ameliorated by echinacoside. Moreover, protein levels of SLC8A3 were positively regulated by p-AKT signaling. On the other hand, apoptosis and Ca2+ uptake as well as protein levels of caspase 3 were significantly increased by SLC8A3 silencing in H9c2 cells under normoxic conditions, and this symptom was remarkably reversed by echinacoside or Nimodipine (an antagonis of Ca2+) treatment. Collectively, echinacoside has showed a cardioprotective effect against A/R treatment in a dose dependent manner in vitro, and this cardioprotective effect was potentially achieved via up-regulating p-AKT and SLC8A3.
Collapse
|
18
|
Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6313625. [PMID: 29430282 PMCID: PMC5753014 DOI: 10.1155/2017/6313625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/01/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
Abstract
Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1), the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB) when compared with control group (P < 0.01). Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P < 0.05). Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.
Collapse
|
19
|
ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1595-1605. [DOI: 10.1016/j.bbalip.2017.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022]
|
20
|
Asanuma H, Sanada S, Yoshitomi T, Sasaki H, Takahama H, Ihara M, Takahama H, Shinozaki Y, Mori H, Asakura M, Nakano A, Sugimachi M, Asano Y, Minamino T, Takashima S, Nagasaki Y, Kitakaze M. Novel Synthesized Radical-Containing Nanoparticles Limit Infarct Size Following Ischemia and Reperfusion in Canine Hearts. Cardiovasc Drugs Ther 2017; 31:501-510. [DOI: 10.1007/s10557-017-6758-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Gu Y, Gao L, Chen Y, Xu Z, Yu K, Zhang D, Zhang G, Zhang X. Sanggenon C protects against cardiomyocyte hypoxia injury by increasing autophagy. Mol Med Rep 2017; 16:8130-8136. [PMID: 28983604 PMCID: PMC5779897 DOI: 10.3892/mmr.2017.7646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023] Open
Abstract
Sanggenon C is isolated from Morus alba, a plant that has been used for anti-inflammatory purposes in Oriental medicine. Little is known about the effect of Sanggenon C on cardiomyocyte hypoxia injury. This study, using H9c2 rat cardiomyoblasts, was designed to determine the effects of Sanggenon C on cardiomyocyte hypoxia injury. Inflammatory cytokine levels were measured by reverse transcription-polymerase chain reaction, reactive oxygen species were measured by 2′,7′-dichlorofluorescin diacetate fluorescent probe, autophagy was detected using the LC3II/I ratio and cell apoptosis was detected by TUNEL staining. The molecular mechanisms underlying Sanggenon C-induced cyto-protection were also determined by western blotting, especially the possible involvement of autophagy and AMP-activated protein kinase (AMPK). Results indicated that samples pretreated with different concentrations of Sanggenon C (1, 10 and 100 µM) reduced the expression levels of pro-inflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-1 and IL-6, under hypoxia. The beneficial effects of Sanggenon C were also associated with reduced levels of reactive oxygen species generation and increased levels of antioxidant nitric oxide and superoxide dismutase. Sanggenon C enhanced hypoxia-induced autophagy as evidenced by the increased expression levels of autophagy-associated proteins Beclin and autophagy related 5 as well as the decreased the accumulation of p62, and increased the LC3II/I ratio. Sanggenon C also reduced hypoxia-induced apoptosis as detected by TUNEL staining and the expression of Bcl-2 proteins. The beneficial effects of Sanggenon C were associated with enhanced activation level of AMPKα and suppressed hypoxia-induced mechanistic target of rapamycin (mTOR) and forkhead box O3a (FOXO3a) phosphorylation. The AMPK inhibitor Compound C (CpC) was used, and the anti-apoptotic and pro-autophagy effects of Sanggenon C in response to hypoxia were abolished by CpC. In conclusion, the current study demonstrated that Sanggenon C possessed direct cytoprotective effects against hypoxia injury in cardiac cells via signaling mechanisms involving the activation of AMPK and concomitant inhibition of mTOR and FOXO3a.
Collapse
Affiliation(s)
- Yang Gu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yu Chen
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhuo Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kun Yu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Dongying Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Gang Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiwen Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
22
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
23
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
24
|
Niederberger P, Farine E, Arnold M, Wyss RK, Sanz MN, Méndez-Carmona N, Gahl B, Fiedler GM, Carrel TP, Tevaearai Stahel HT, Longnus SL. High pre-ischemic fatty acid levels decrease cardiac recovery in an isolated rat heart model of donation after circulatory death. Metabolism 2017; 71:107-117. [PMID: 28521863 DOI: 10.1016/j.metabol.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
RATIONALE Donation after circulatory death (DCD) could improve cardiac graft availability. However, strategies to optimize cardiac graft recovery remain to be established in DCD; these hearts would be expected to be exposed to high levels of circulatory fat immediately prior to the inevitable period of ischemia prior to procurement. OBJECTIVE We investigated whether acute exposure to high fat prior to warm, global ischemia affects subsequent hemodynamic and metabolic recovery in an isolated rat heart model of DCD. METHODS AND RESULTS Hearts of male Wistar rats underwent 20min baseline perfusion with glucose (11mM) and either high fat (1.2mM palmitate; HF) or no fat (NF), 27min global ischemia (37°C), and 60min reperfusion with glucose only (n=7-8 per group). Hemodynamic recovery was 50% lower in HF vs. NF hearts (34±30% vs. 78±8% (60min reperfusion value of peak systolic pressure*heart rate as percentage of mean baseline); p<0.01). During early reperfusion, glycolysis (0.3±0.3 vs. 0.7±0.3μmol*min-1*g dry-1, p<0.05), glucose oxidation (0.1±0.03 vs. 0.4±0.2μmol*min-1*g dry-1, p<0.01) and pyruvate dehydrogenase activity (1.8±0.6 vs. 3.6±0.5U*g protein-1, p<0.01) were significantly reduced in HF vs. NF groups, respectively, while lactate release was significantly greater (1.8±0.9 vs. 0.6±0.2μmol*g wet-1*min-1; p<0.05). CONCLUSIONS Acute, pre-ischemic exposure to high fat significantly lowers post-ischemic cardiac recovery vs. no fat despite identical reperfusion conditions. These findings support the concept that oxidation of residual fatty acids is rapidly restored upon reperfusion and exacerbates ischemia-reperfusion (IR) injury. Strategies to optimize post-ischemic cardiac recovery should take pre-ischemic fat levels into consideration.
Collapse
Affiliation(s)
- Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Brigitta Gahl
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital, Inselspital, Bern, Switzerland.
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
25
|
Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway. PLoS One 2017; 12:e0170984. [PMID: 28182689 PMCID: PMC5300190 DOI: 10.1371/journal.pone.0170984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague–Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.
Collapse
|
26
|
Cheng B, Chen HC, Chou IW, Tang TWH, Hsieh PCH. Harnessing the early post-injury inflammatory responses for cardiac regeneration. J Biomed Sci 2017; 24:7. [PMID: 28086885 PMCID: PMC5237143 DOI: 10.1186/s12929-017-0315-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cardiac inflammation is considered by many as the main driving force in prolonging the pathological condition in the heart after myocardial infarction. Immediately after cardiac ischemic injury, neutrophils are the first innate immune cells recruited to the ischemic myocardium within the first 24 h. Once they have infiltrated the injured myocardium, neutrophils would then secret proteases that promote cardiac remodeling and chemokines that enhance the recruitment of monocytes from the spleen, in which the recruitment peaks at 72 h after myocardial infarction. Monocytes would transdifferentiate into macrophages after transmigrating into the infarct area. Both neutrophils and monocytes-derived macrophages are known to release proteases and cytokines that are detrimental to the surviving cardiomyocytes. Paradoxically, these inflammatory cells also play critical roles in repairing the injured myocardium. Depletion of either neutrophils or monocytes do not improve overall cardiac function after myocardial infarction. Instead, the left ventricular function is further impaired and cardiac fibrosis persists. Moreover, the inflammatory microenvironment created by the infiltrated neutrophils and monocytes-derived macrophages is essential for the recruitment of cardiac progenitor cells. Recent studies also suggest that treatment with anti-inflammatory drugs may cause cardiac dysfunction after injury. Indeed, clinical studies have shown that traditional ant-inflammatory strategies are ineffective to improve cardiac function after infarction. Thus, the focus should be on how to harness these inflammatory events to either improve the efficacy of the delivered drugs or to favor the recruitment of cardiac progenitor cells.
Collapse
Affiliation(s)
- Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - H C Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - I W Chou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.,Graduate Institute of Life Sciences, National Defence Medical Center, Taipei, 114, Taiwan
| | - Tony W H Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.,Program in Molecular Medicine, National Yang Ming University, Taipei, 112, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan. .,Graduate Institute of Life Sciences, National Defence Medical Center, Taipei, 114, Taiwan. .,Program in Molecular Medicine, National Yang Ming University, Taipei, 112, Taiwan. .,Graduate Institute of Medical Genomics and Proteomics, and Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Department of Surgery, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
27
|
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2016; 14:238-250. [PMID: 28004807 PMCID: PMC5350035 DOI: 10.1038/nrcardio.2016.203] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.
Collapse
Affiliation(s)
- David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 1035 Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, 12700 East 19th Avenue, B139, Aurora, Colorado 80045, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - John G F Cleland
- National Heart &Lung Institute, National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton &Harefield Hospitals, Imperial College, London, UK
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Boston University School of Medicine and Boston Medical Center, 88 East Newton Street, C-8, Boston, Massachusetts 02118, USA
| | - Javed Butler
- Division of Cardiology, Health Sciences Center, T-16 Room 080, SUNY at Stony Brook, New York 11794, USA
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen 9713 GZ, Netherlands
| | - Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen (UMG), Robert-Koch-Straße, D-37075, Göttingen, Germany
| | - Bertram Pitt
- University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, and German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gerasimos Filippatos
- National and Kopodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Rimini 1, Athens 12462, Greece
| | - Stephen J Greene
- Division of Cardiology, Duke University Medical Center, 2301 Erwin Road Suite 7400, Durham, North Carolina 27705, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, 201 East Huron, Galter 3-150, Chicago, Illinois 60611, USA
| |
Collapse
|
28
|
Farine E, Niederberger P, Wyss RK, Méndez-Carmona N, Gahl B, Fiedler GM, Carrel TP, Tevaearai Stahel HT, Longnus SL. Controlled Reperfusion Strategies Improve Cardiac Hemodynamic Recovery after Warm Global Ischemia in an Isolated, Working Rat Heart Model of Donation after Circulatory Death (DCD). Front Physiol 2016; 7:543. [PMID: 27920725 PMCID: PMC5118653 DOI: 10.3389/fphys.2016.00543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
Aims: Donation after circulatory death (DCD) could improve cardiac graft availability, which is currently insufficient to meet transplant demand. However, DCD organs undergo an inevitable period of warm ischemia and most cardioprotective approaches can only be applied at reperfusion (procurement) for ethical reasons. We investigated whether modifying physical conditions at reperfusion, using four different strategies, effectively improves hemodynamic recovery after warm ischemia. Methods and Results: Isolated hearts of male Wistar rats were perfused in working-mode for 20 min, subjected to 27 min global ischemia (37°C), and 60 min reperfusion (n = 43). Mild hypothermia (30°C, 10 min), mechanical postconditioning (MPC; 2x 30 s reperfusion/30 s ischemia), hypoxia (no O2, 2 min), or low pH (pH 6.8–7.4, 3 min) was applied at reperfusion and compared with controls (i.e., no strategy). After 60 min reperfusion, recovery of left ventricular work (developed pressure*heart rate; expressed as percent of pre-ischemic value) was significantly greater for mild hypothermia (62 ± 7%), MPC (65 ± 8%) and hypoxia (61 ± 11%; p < 0.05 for all), but not for low pH (45 ± 13%), vs. controls (44 ± 7%). Increased hemodynamic recovery was associated with greater oxygen consumption (mild hypothermia, MPC) and coronary perfusion (mild hypothermia, MPC, hypoxia), and with reduced markers of necrosis (mild hypothermia, MPC, hypoxia) and mitochondrial damage (mild hypothermia, hypoxia). Conclusions: Brief modifications in physical conditions at reperfusion, such as hypothermia, mechanical postconditioning, and hypoxia, improve post-ischemic hemodynamic function in our model of DCD. Cardioprotective reperfusion strategies applied at graft procurement could improve DCD graft recovery and limit further injury; however, optimal clinical approaches remain to be characterized.
Collapse
Affiliation(s)
- Emilie Farine
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Petra Niederberger
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Rahel K Wyss
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Natalia Méndez-Carmona
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Brigitta Gahl
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital Inselspital, Bern, Switzerland
| | - Thierry P Carrel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| | - Sarah L Longnus
- Clinic for Cardiovascular Surgery, Inselspital, Bern University HospitalBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
29
|
Utepbergenov D, Hennig PM, Derewenda U, Artamonov MV, Somlyo AV, Derewenda ZS. Bacterial Expression, Purification and In Vitro Phosphorylation of Full-Length Ribosomal S6 Kinase 2 (RSK2). PLoS One 2016; 11:e0164343. [PMID: 27732676 PMCID: PMC5061434 DOI: 10.1371/journal.pone.0164343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/24/2016] [Indexed: 02/06/2023] Open
Abstract
Ribosomal S6 kinases (RSK) play important roles in cell signaling through the mitogen-activated protein kinase (MAPK) pathway. Each of the four RSK isoforms (RSK1-4) is a single polypeptide chain containing two kinase domains connected by a linker sequence with regulatory phosphorylation sites. Here, we demonstrate that full-length RSK2-which is implicated in several types of cancer, and which is linked to the genetic Coffin-Lowry syndrome-can be overexpressed with high yields in Escherichia coli as a fusion with maltose binding protein (MBP), and can be purified to homogeneity after proteolytic removal of MBP by affinity and size-exclusion chromatography. The purified protein can be fully activated in vitro by phosphorylation with protein kinases ERK2 and PDK1. Compared to full-length RSK2 purified from insect host cells, the bacterially expressed and phosphorylated murine RSK2 shows the same levels of catalytic activity after phosphorylation, and sensitivity to inhibition by RSK-specific inhibitor SL0101. Interestingly, we detect low levels of phosphorylation in the nascent RSK2 on Ser386, owing to autocatalysis by the C-terminal domain, independent of ERK. This observation has implications for in vivo signaling, as it suggests that full activation of RSK2 by PDK1 alone is possible, circumventing at least in some cases the requirement for ERK.
Collapse
Affiliation(s)
- Darkhan Utepbergenov
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Paulina M Hennig
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America.,Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Avril V Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
30
|
Abstract
Cardiac dysfunction is a key factor in the high morbidity and mortality rates seen in hemodialysis (HD) patients. Much of the dysfunction is manifest as adverse changes in cardiac and vascular structure prior to commencing dialysis. This adverse vascular remodeling arises as a dysregulation between pro- and antiproliferative signaling pathways in response to hemodynamic and nonhemodynamic factors. The HD procedure itself further promotes cardiomyopathy by inducing hypotension and episodic regional cardiac ischemia that precedes global dysfunction, fibrosis, worsening symptoms, and increased mortality. Drug-based therapies have been largely ineffective in reversing HD-associated cardiomyopathy, in part due to targeting single pathways of low yield. Few studies have sought to establish natural history and there is no framework of priorities for future clinical trials. Targeting intradialytic cardiac dysfunction by altering dialysate temperature, composition, or ultrafiltration rate might prevent the development of global cardiomyopathy, heart failure, and mortality through multiple pathways. Novel imaging techniques show promise in characterizing the physiological response to HD that is a unique model of repetitive ischemia-reperfusion injury. Reducing HD-associated cardiomyopathy may need a paradigm shift from empirical delivery of solute clearance to a personalized therapy balancing solute and fluid removal with microvascular protection. This review describes the evidence for intradialytic cardiac dysfunction outlining cardioprotective strategies that extend to multiple organs with potential impacts on exercise tolerance, sleep, cognitive function, and quality of life.
Collapse
Affiliation(s)
- Aghogho Odudu
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom. .,Salford Royal Hospital, Salford, United Kingdom.
| | - Christopher W McIntyre
- Division of Nephrology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
31
|
Miao L, Shen X, Whiteman M, Xin H, Shen Y, Xin X, Moore PK, Zhu YZ. Hydrogen Sulfide Mitigates Myocardial Infarction via Promotion of Mitochondrial Biogenesis-Dependent M2 Polarization of Macrophages. Antioxid Redox Signal 2016; 25:268-81. [PMID: 27296720 DOI: 10.1089/ars.2015.6577] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Macrophages are of key importance for tissue repair after myocardial infarction (MI). Hydrogen sulfide (H2S) has been shown to exert cardioprotective effects in MI. However, the mechanisms by which H2S modulates cardiac remodeling and repair post-MI remain to be clarified. RESULTS In our current study, we showed that H2S supplementation ameliorated pathological remodeling and dysfunction post-MI in wild-type (WT) and CSE KO mice, resulting in decreased infarct size and mortality, accompanied by an increase in the number of M2-polarized macrophages at the early stage of MI. Strikingly, adoptive transfer of NaHS-treated bone marrow-derived macrophages into WT and CSE KO mice with depleted macrophages also ameliorated MI-induced cardiac functional deterioration. Further mechanistic studies demonstrated that NaHS-induced M2 polarization was achieved by enhanced mitochondrial biogenesis and fatty acid oxidation. INNOVATION AND CONCLUSION Our study shows (for the first time) that H2S may have the potential as a therapeutic agent for MI via promotion of M2 macrophage polarization. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16:293-296, 2012) with the following serving as open reviewers: Hideo Kimura, Chaoshu Tang, Xiaoli Tian, and Kenneth Olson. Antioxid. Redox Signal. 25, 268-281.
Collapse
Affiliation(s)
- Lei Miao
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Xiaoyan Shen
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | | | - Hong Xin
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Yaqi Shen
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Xiaoming Xin
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China
| | - Philip K Moore
- 3 Department of Pharmacology, Yoo Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yi-Zhun Zhu
- 1 Department of Pharmacology, School of Pharmacy and Institutes of Biomedical Sciences, Fudan University , Shanghai, China .,3 Department of Pharmacology, Yoo Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 School of Pharmacy, Macau University of Science and Technology, Macau
| |
Collapse
|
32
|
Abstract
Mitochondrial reactive oxygen species production has emerged as an important pathological mechanism in myocardial ischemia/reperfusion injury. Attempts at targeting reactive oxygen species by scavenging using antioxidants have, however, been clinically disappointing. This review will provide an overview of the current understanding of mitochondrial reactive oxygen species in ischemia/reperfusion injury. We will outline novel therapeutic approaches designed to directly target the mitochondrial respiratory chain and prevent excessive reactive oxygen species production and its associated pathology. This approach could lead to more effective interventions in an area where there is an urgent need for new treatments.
Collapse
Affiliation(s)
- Victoria R Pell
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Edward T Chouchani
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Michael P Murphy
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Paul S Brookes
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Thomas Krieg
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.).
| |
Collapse
|
33
|
Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction. Sci Rep 2016; 6:22363. [PMID: 26932297 PMCID: PMC4773762 DOI: 10.1038/srep22363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023] Open
Abstract
Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.
Collapse
|
34
|
Nanoparticle-Mediated Targeting of Cyclosporine A Enhances Cardioprotection Against Ischemia-Reperfusion Injury Through Inhibition of Mitochondrial Permeability Transition Pore Opening. Sci Rep 2016; 6:20467. [PMID: 26861678 PMCID: PMC4748220 DOI: 10.1038/srep20467] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effects of early reperfusion therapy for acute myocardial infarction (MI), in which mitochondrial permeability transition pore (mPTP) opening plays a critical role. Our aim was to determine whether poly-lactic/glycolic acid (PLGA) nanoparticle-mediated mitochondrial targeting of a molecule that inhibits mPTP opening, cyclosporine A (CsA), enhances CsA-induced cardioprotection. In an in vivo murine IR model, intravenously injected PLGA nanoparticles were located at the IR myocardium mitochondria. Treatment with nanoparticles incorporated with CsA (CsA-NP) at the onset of reperfusion enhanced cardioprotection against IR injury by CsA alone (as indicated by the reduced MI size at a lower CsA concentration) through the inhibition of mPTP opening. Left ventricular remodeling was ameliorated 28 days after IR, but the treatment did not affect inflammatory monocyte recruitment to the IR heart. In cultured rat cardiomyocytes in vitro, mitochondrial PLGA nanoparticle-targeting was observed after the addition of hydrogen peroxide, which represents oxidative stress during IR, and was prevented by CsA. CsA-NP can be developed as an effective mPTP opening inhibitor and may protect organs from IR injury.
Collapse
|
35
|
|
36
|
Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3863726. [PMID: 26788247 PMCID: PMC4691632 DOI: 10.1155/2016/3863726] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia.
Collapse
|
37
|
Meta-analysis on protective effect of electroacupuncture at “Nèiguān” ( PC 6) in rats with reperfusion injury induced myocardial ischemia. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2015. [DOI: 10.1016/s1003-5257(15)30063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Wolff G, Truse R, Decking U. Extracellular Adenosine Formation by Ecto-5'-Nucleotidase (CD73) Is No Essential Trigger for Early Phase Ischemic Preconditioning. PLoS One 2015; 10:e0135086. [PMID: 26261991 PMCID: PMC4532361 DOI: 10.1371/journal.pone.0135086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice. Methods and Results 3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical. Conclusion The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.
Collapse
Affiliation(s)
- Georg Wolff
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Richard Truse
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Decking
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS One 2015; 10:e0132451. [PMID: 26167913 PMCID: PMC4500569 DOI: 10.1371/journal.pone.0132451] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Aim There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI), for which the effectiveness of interventional reperfusion therapy is hampered by myocardial ischemia-reperfusion (IR) injury. Pretreatment with statins before ischemia is shown to reduce MI size in animals. However, no benefit was found in animals and patients with AMI when administered at the time of reperfusion, suggesting insufficient drug targeting into the IR myocardium. Here we tested the hypothesis that nanoparticle-mediated targeting of pitavastatin protects the heart from IR injury. Methods and Results In a rat IR model, poly(lactic acid/glycolic acid) (PLGA) nanoparticle incorporating FITC accumulated in the IR myocardium through enhanced vascular permeability, and in CD11b-positive leukocytes in the IR myocardium and peripheral blood after intravenous treatment. Intravenous treatment with PLGA nanoparticle containing pitavastatin (Pitavastatin-NP, 1 mg/kg) at reperfusion reduced MI size after 24 hours and ameliorated left ventricular dysfunction 4-week after reperfusion; by contrast, pitavastatin alone (as high as 10 mg/kg) showed no therapeutic effects. The therapeutic effects of Pitavastatin-NP were blunted by a PI3K inhibitor wortmannin, but not by a mitochondrial permeability transition pore inhibitor cyclosporine A. Pitavastatin-NP induced phosphorylation of Akt and GSK3β, and inhibited inflammation and cardiomyocyte apoptosis in the IR myocardium. Conclusions Nanoparticle-mediated targeting of pitavastatin induced cardioprotection from IR injury by activation of PI3K/Akt pathway and inhibition of inflammation and cardiomyocyte death in this model. This strategy can be developed as an innovative cardioprotective modality that may advance currently unsatisfactory reperfusion therapy for AMI.
Collapse
|
40
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
41
|
Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 2015; 172:1913-32. [PMID: 25205071 PMCID: PMC4386972 DOI: 10.1111/bph.12903] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/22/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Ischaemic pre- and postconditioning are potent cardioprotective interventions that spare ischaemic myocardium and decrease infarct size after periods of myocardial ischaemia/reperfusion. They are dependent on complex signalling pathways involving ligands released from ischaemic myocardium, G-protein-linked receptors, membrane growth factor receptors, phospholipids, signalling kinases, NO, PKC and PKG, mitochondrial ATP-sensitive potassium channels, reactive oxygen species, TNF-α and sphingosine-1-phosphate. The final effector is probably the mitochondrial permeability transition pore and the signalling produces protection by preventing pore formation. Many investigators have worked to produce a roadmap of this signalling with the hope that it would reveal where one could intervene to therapeutically protect patients with acute myocardial infarction whose hearts are being reperfused. However, attempts to date to show efficacy of such an intervention in large clinical trials have been unsuccessful. Reasons for this inability to translate successes in the experimental laboratory to the clinical arena are evaluated in this review. It is suggested that all patients with acute coronary syndromes currently presenting to the hospital and being treated with platelet P2Y12 receptor antagonists, the current standard of care, are indeed already benefiting from protection from the conditioning pathways outlined earlier. If that proves to be the case, then future attempts to further decrease infarction will have to rely on interventions which protect by a different mechanism.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
- Department of Medicine, University of South Alabama College of MedicineMobile, AL, USA
| | - James M Downey
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
| |
Collapse
|
42
|
Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal 2015; 22:224-40. [PMID: 25203395 PMCID: PMC4283074 DOI: 10.1089/ars.2014.5909] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Myocardial infarction (MI) is a leading cause of death globally. MicroRNAs (miRNAs) have been identified as a novel class of MI injury regulators. Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates cardiovascular function. The purpose of this study was to explore the role of the miR-30 family in protecting against MI injury by regulating H2S production. RESULTS The expression of miR-30 family was upregulated in the murine MI model as well as in the primary cardiomyocyte hypoxic model. However, the cystathionine-γ-lyase (CSE) expression was significantly decreased. The overexpression of miR-30 family decreased CSE expression, reduced H2S production, and then aggravated hypoxic cardiomyocyte injury. In contrast, silencing the whole miR-30 family can protect against hypoxic cell injury by elevating CSE and H2S level. Nonetheless, the protective effect was abolished by cotransfecting with CSE-siRNA. Systemic delivery of a locked nucleic acid (LNA)-miR-30 family inhibitor correspondingly increased CSE and H2S level, then reduced infarct size, decreased apoptotic cell number in the peri-infarct region, and improved cardiac function in response to MI. However, these cardioprotective effects were absent in CSE knockout mice. MiR-30b overexpression in vivo aggravated MI injury because of H2S reduction, and this could be rescued by S-propargyl-cysteine (SPRC), which is a novel modulator of CSE, or further exacerbated by propargylglycine (PAG), which is a selective inhibitor of CSE. INNOVATION AND CONCLUSION Our findings reveal a novel molecular mechanism for endogenous H2S production in the heart at the miRNA level and demonstrate the therapeutic potential of miR-30 family inhibition for ischemic heart diseases by increasing H2S production.
Collapse
Affiliation(s)
- Yaqi Shen
- 1 Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 11:303-10. [PMID: 25593579 PMCID: PMC4294147 DOI: 10.11909/j.issn.1671-5411.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Abstract
Background Electroacupuncture pretreatment plays a protective role in myocardial ischemia/reperfusion (I/R) injury and microRNAs (miRNAs) could act on various facets of cardiac function. However, the role of miRNAs in the cardioprotection by electroacupuncture pretreatment on myocardial I/R injury remains unknown. The purpose of the study was to examine whether miR-214 was involved in cardioprotection by electroacupuncture. Methods Using rat myocardial I/R model, we examined the role of electroacupuncture pretreatment in myocardial I/R injury and analyzed the changes in the expression of miR-214. In addition, I/R was simulated in vitro by performing oxygen-glucose deprivation (OGD) on H9c2 cell cultures, and the effect of electroacupuncture pretreatment on I/R injury as well as expressional level of miR-214 were examined in vitro. Furthermore, the miR-214 mimic was transfected into OGD-treated H9c2 cells, we analyzed the cell apoptosis, lactate dehydrogenase (LDH) and creatine kinase (CK) activities, intracellular free Ca2+ concentration ([Ca2+]i) as well as the relative protein levels of sodium/calcium exchanger 1(NCX1), BCL2-like 11 (BIM), calmodulin-dependent protein kinase IIδ (CaMKIIδ) and Cyclophilin D (CypD). Results The in vivo results revealed that compared with the I/R group, the electroacupuncture pretreatment group showed significant decreased myocardial infarct size, as well as the increased indices of the cardiac function, including heart rate, mean arterial pressure, left ventricular systolic pressure and maximal rate for left ventricular pressure rising and declining (±dp/dt max). In addition, electroacupuncture pretreatment could inhibit the elevation of LDH and CK activities induced by I/R injury. The quantitative PCR (qPCR) results demonstrated electroacupuncture pretreatment could provide cardioprotection against myocardial I/R injury in rats with miR-214 up-regulation. In the meanwhile, in vitro, electroacupuncture pretreatment protected H9c2 cells from OGD-induced injury. Transfection of miR-214 mimic showed protective effects on OGD-induced injury to H9c2 cells by reducing apoptosis, decreasing LDH and CK activities, rescuing the OGD-induced Ca2+ and down-regulating elevated protein levels of NCX1, BIM, CaMKIIδ and CypD. Conclusions Our findings firstly demonstrated that electroacupuncture pretreatment promotes the expression of miR-214 in myocardial I/R injury and miR-214 contributes to the protective effect of electroacupuncture on myocardial I/R injury.
Collapse
|
44
|
Bice JS, Baxter GF. Postconditioning signalling in the heart: mechanisms and translatability. Br J Pharmacol 2014; 172:1933-46. [PMID: 25303373 DOI: 10.1111/bph.12976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/15/2022] Open
Abstract
The protective effect of ischaemic postconditioning (short cycles of reperfusion and reocclusion of a previously occluded vessel) was identified over a decade ago commanding intense interest as an approach for modifying reperfusion injury which contributes to infarct size in acute myocardial infarction. Elucidation of the major mechanisms of postconditioning has identified potential pharmacological targets for limitation of reperfusion injury. These include ligands for membrane-associated receptors, activators of phosphokinase survival signalling pathways and inhibitors of the mitochondrial permeability transition pore. In experimental models, numerous agents that target these mechanisms have shown promise as postconditioning mimetics. Nevertheless, clinical studies of ischaemic postconditioning and pharmacological postconditioning mimetics are equivocal. The majority of experimental research is conducted in animal models which do not fully portray the complexity of risk factors and comorbidities with which patients present and which we now know modify the signalling pathways recruited in postconditioning. Cohort size and power, patient selection, and deficiencies in clinical infarct size estimation may all represent major obstacles to assessing the therapeutic efficacy of postconditioning. Furthermore, chronic treatment of these patients with drugs like ACE inhibitors, statins and nitrates may modify signalling, inhibiting the protective effect of postconditioning mimetics, or conversely induce a maximally protected state wherein no further benefit can be demonstrated. Arguably, successful translation of postconditioning cannot occur until all of these issues are addressed, that is, experimental investigation requires more complex models that better reflect the clinical setting, while clinical investigation requires bigger trials with appropriate patient selection and standardization of clinical infarct size measurements.
Collapse
Affiliation(s)
- Justin S Bice
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
45
|
Chen-Scarabelli C, Agrawal PR, Saravolatz L, Abuniat C, Scarabelli G, Stephanou A, Loomba L, Narula J, Scarabelli TM, Knight R. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury. J Geriatr Cardiol 2014; 11:338-48. [PMID: 25593583 PMCID: PMC4294150 DOI: 10.11909/j.issn.1671-5411.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/21/2022] Open
Abstract
A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cytoplasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated catabolic cellular 'housekeeping' process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protective mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the variability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic manipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.
Collapse
Affiliation(s)
- Carol Chen-Scarabelli
- VA Ann Arbor Health Care System, University of Michigan, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Pratik R. Agrawal
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Louis Saravolatz
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Cadigia Abuniat
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Gabriele Scarabelli
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Anastasis Stephanou
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| | - Leena Loomba
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Tiziano M. Scarabelli
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Richard Knight
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| |
Collapse
|
46
|
Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 2014; 147:12-21. [PMID: 25444755 DOI: 10.1016/j.pharmthera.2014.10.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - David Durrant
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
47
|
Senthamizhselvan O, Manivannan J, Silambarasan T, Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur J Pharmacol 2014; 736:131-7. [PMID: 24769512 DOI: 10.1016/j.ejphar.2014.04.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
Reperfusion of ischemic tissue leads to the generation of oxygen derived free radicals which plays an important role in cellular damage. Objective of the current study is to evaluate the cardio-protective and antioxidant effect of diosmin on ischemia-reperfusion related cardiac dysfunction, oxidative stress and apoptosis. Diosmin (50 and 100 mg/kg body weight (bw)) was given every day to the rats orally throughout the experimental period. Ischemia/reperfusion protocol was carried out ex vivo using langendorff perfusion method and the cardiac functional recovery was assessed in terms of percentage rate pressure product. Coronary effluents of LDH and CK-MB activities, antioxidant enzyme activities, lipid peroxidation products, activity of TCA cycle enzymes were evaluated. Moreover, in vitro superoxide anion and hydroxyl radical scavenging potential of diosmin was also quantified. Finally, quantitative real-time PCR was used for assessing Bcl-2 mRNA expression in heart. Cardiac functional recovery was impaired after reperfusion compared with continuously perfused heart. It was significantly prevented by diosmin treatment. Impaired antioxidant enzyme activities and elevated lipid peroxidation products level were also significantly suppressed. The activity of TCA cycle enzymes was protected against reperfusion stress. Down regulated Bcl-2 was also significantly increased. This study concluded that diosmin pretreatment prevents all the impaired patterns including cardiac function, oxidative stress and apoptosis associated with reperfusion in control heart by its antioxidant role.
Collapse
Affiliation(s)
- Oomaidurai Senthamizhselvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Jeganathan Manivannan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Thangarasu Silambarasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Boobalan Raja
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
48
|
Ozeke O, Gungor M, Topaloglu S, Aras D, Ozer C. Chronic total artery occlusions in noninfarct-related coronary arteries. Int J Angiol 2014; 23:17-22. [PMID: 24627613 DOI: 10.1055/s-0033-1356648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has been rarely encountered some patients in clinical practice with coronary artery chronic total occlusion (CTO) on angiography but no any clinical history or electrocardiographic, echocardiographic, or left ventriculographic evidence of previous myocardial infarction. These noninfarct-related artery CTO (non-IRA CTO) lesions may be used as a clinical role model of endogenous cardioprotective mechanisms in addition to continuing the process of atherosclerosis. The objective of this study was to characterize the clinical characteristics of patients with non-IRA CTO patients and compared them to those with infarct-related CTO (IRA-CTO). We reviewed our invasive cardiology database searching for the CTO of any major coronary arteries, and assessed whether or not they have the clinical history or electrocardiographic, echocardiographic, and left ventriculographic evidence of previous myocardial infarction. Interestingly, we detected that all these patients with non-IRA CTO had diabetes mellitus, and the clinical and demographic features of these non-IRA CTO patients were compared with age- and sex-matched diabetic IRA-CTO patients with regard to conventional coronary risk factors and the angiographic collateral grading system. There were total 99 CTO patients (49 patients with non-IRA CTO and 50 patients with IRA-CTO).All patients with non-IRA CTO had better collateral circulation (96 vs. 40% p < 0.001) compared with those having IRA-CTO. The only significant difference between the groups was the status of current smoking (4 vs. 88%; p < 0.001). The present study showed that the non-IRA CTOs were associated with diabetes mellitus and better collateral development compared with IRA-CTO. In diabetic patients, the concomitant smoking use may be harmful by preventing endogenous cardioprotective mechanisms.
Collapse
Affiliation(s)
- Ozcan Ozeke
- Department of Cardiology, Turkiye Yuksek Ihtisas Hospital, Ankara, Turkey
| | - Mutlu Gungor
- Department of Cardiology, Bayindir Hospital, Ankara, Turkey
| | - Serkan Topaloglu
- Department of Cardiology, Turkiye Yuksek Ihtisas Hospital, Ankara, Turkey
| | - Dursun Aras
- Department of Cardiology, Turkiye Yuksek Ihtisas Hospital, Ankara, Turkey
| | - Can Ozer
- Department of Cardiology, Bayindir Hospital, Ankara, Turkey
| |
Collapse
|
49
|
Fan Y, Yang S, Cao Y, Huang Y. Effects of acute and chronic atorvastatin on cardioprotection of ischemic postconditioning in isolated rat hearts. Cardiovasc Ther 2014; 31:187-92. [PMID: 22954178 DOI: 10.1111/j.1755-5922.2012.00318.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Myocardial reperfusion therapy remains the most effective strategy to limit infarct size and improve clinical outcome. However, reperfusion injury is still inevitable, and a number of strategies have been developed to ameliorate its lethal outcome. The beneficial roles of ischemic postconditioning (Ipost) have regained more interest in targeting myocardial reperfusion phase to improve cardioprotection. AIMS This study was to determine whether acute or chronic treatment with atorvastatin affects cardioprotection when it was combined with Ipost. RESULTS Acute or chronic atorvastatin treatment significantly reduced infarct size and recovered contractile dysfunction during reperfusion. When Ipost was combined with atorvastatin treatment, chronic, but not acute, atorvastatin therapy attenuated the cardioprotective effects of Ipost. Chronic, but not acute, atorvastatin treatment also abolished Ipost-induced phosphorylation level of Akt and endothelial nitric oxide synthase (eNOS). CONCLUSIONS Chronic atorvastatin treatment could interfere with cardioprotective effects of Ipost on limiting infarct size and contractile dysfunction, possibly via inhibition of Akt and eNOS activity. This study suggests that Ipost should be used carefully when atorvastatin is taken by patients with AMI.
Collapse
Affiliation(s)
- Ying Fan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | | | | | | |
Collapse
|
50
|
Koch S. Preconditioning the human brain: practical considerations for proving cerebral protection. Transl Stroke Res 2013; 1:161-9. [PMID: 24323521 DOI: 10.1007/s12975-010-0025-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic preconditioning has evolved as one of the most powerful strategies for cerebral protection in laboratory models of ischemia. Translating the success of laboratory studies to human cerebral protection will necessitate an approximation of laboratory conditions. This would require a practical, easily implemented method of preconditioning and clinical settings in which cerebral ischemia is anticipated, thereby allowing cerebral preconditioning prior to ischemia onset. Remote limb ischemic preconditioning is readily instituted and used in several ongoing cardiac studies for ischemic myocardial protection. It is a potentially promising intervention for brain protection as well. Suitable clinical settings, in which a preliminary study of ischemic preconditioning in neurological disorders appears feasible, include carotid endarterectomy or stenting, cardiac surgery, and subarachnoid hemorrhage with the accompanying risk of vasospasm. These are settings, in which there is substantial risk of brain ischemia, which occurs over a short and predictable period, allowing for preconditioning to be implemented prior to ischemia onset.
Collapse
Affiliation(s)
- Sebastian Koch
- Department of Neurology, University of Miami, 1150 NW 14th Street, PAC, Suite#609, Miami, FL, 33136, USA,
| |
Collapse
|