1
|
Hu Y, Luo M, Xue Y, Lv D, Huang L, Li X, Shen J. LncRNA Pvt1 aggravates cardiomyocyte apoptosis via the microRNA-216/Ccnd3 axis. Heliyon 2024; 10:e38261. [PMID: 39398060 PMCID: PMC11466676 DOI: 10.1016/j.heliyon.2024.e38261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Our study aims to evaluate the role of long non-coding RNA variant translocation gene Pvt1 in cardiomyocyte apoptosis, as well as the potential targets and mechanisms involved in Pvt1-miRNA-mRNA axis. Methods 1.Pvt1 knockdown in cells by transfection with small interfering RNA (si-Pvt1), HL-1 cells were randomly divided into control group, hypoxia group, hypoxia + negative control group and hypoxia + si-Pvt1 group. Apoptosis-related genes expression was detected by Western blot assay, RT-qPCR and Flow cytometry assay. 2.Pvt1 knockdown model (sh-Pvt1) was established by injecting adeno-associated virus (AAV) vector shRNA-Pvt1 into the caudal vein 7 days before myocardial infarction, and echocardiography was used to measure cardiac function 7 days after myocardial infarction induced by ligation of the left anterior descending branch. HE staining was used to evaluate the pathological injury of mouse heart tissue, and the apoptotic protein expression was detected by Western blot. 3.lncRNA-related microRNAs were predicted by bioinformatics tools and further verified by dual luciferase experiment. Western blot analysis was used to identify the expression of apoptotic genes following the simultaneous transfection of si-Pvt1 and miR-216 mimics. Genes differentially expressed in hypoxia + si-NC and hypoxia + si-Pvt1 groups were identified by RNA sequencing. These genes were then compared with the target genes of miR-216 predicted by bioinformatics tools. The gene of interest Ccnd3 was excluded from the analysis. Western blot analysis was used to assess the expression of Apoptosis-related proteins in HL-1 cells co-transfected with miR-216 mimics and overexpressed Ccnd3. Results 1. Pvt1 was highly expressed in HL-1 induced by hypoxia, and Pvt1 knockdown can reduce cell apoptosis in hypoxia cells. 2. MI causes myocardial injury in mice, and inhibition of Pvt 11 can improve the cardiac function of mice with myocardial infarction, prevent some inflammatory cell infiltration, and reduce myocardial cell apoptosis. 3. Pvt1 acts as a sponge for miR-216 and promotes the expression of Ccnd3. Conclusion Pvt1 may promote myocardial infarct-induced apoptosis through the miR-216/Ccnd3 axis.
Collapse
Affiliation(s)
- Yu Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Dingyi Lv
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
P16 INK4a Regulates ROS-Related Autophagy and CDK4/6-Mediated Proliferation: A New Target of Myocardial Regeneration Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1696190. [PMID: 36852326 PMCID: PMC9966567 DOI: 10.1155/2023/1696190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/20/2023]
Abstract
Neonatal mice achieve complete cardiac repair through endogenous myocardial regeneration after apical resection (AR), but this capacity is rapidly lost 7 days after birth. As an upstream inhibitor of cyclin-dependent kinase 4/6- (CDK4/6-) mediated cell cycle activity, p16INK4a is widely involved in regulating tumor and senescence. Given that p16INK4a had a significant negative regulation on cell proliferation, targeting cardiomyocytes (CMs) to inhibit p16INK4a seems to be a promising attempt at myocardial regeneration therapy. The p16INK4a expression was upregulated during perimyocardial regeneration time. Knockdown of p16INK4a stimulated CM proliferation, while p16INK4a overexpression had the opposite effect. In addition, p16INK4a knockdown prolonged the proliferation time window of newborn myocardium. And p16INK4a overexpression inhibited cell cycle activity and deteriorated myocardial regeneration after AR. The quantitative proteomic analysis showed that p16INK4a knockdown mediated the cell cycle progression and intervened in energy metabolism homeostasis. Mechanistically, overexpression of p16INK4a causes abnormal accumulation of reactive oxygen species (ROS) to induce autophagy, while scavenging ROS with N-acetylcysteine can alleviate autophagy and regulate p16INK4a, CDK4/6, and CyclinD1 in a covering manner. And the effect of inhibiting the proliferation of p16INK4a-activated CMs was significantly blocked by the CDK4/6 inhibitor Palbociclib. In summary, p16INK4a regulated CM proliferation progression through CDK4/6 and ROS-related autophagy to jointly affect myocardial regeneration repair. Our study revealed that p16INK4a might be a potential therapeutic target for myocardial regeneration after injury.
Collapse
|
3
|
Hauck L, Grothe D, Billia F. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling. Peptides 2016; 83:38-48. [PMID: 27486069 DOI: 10.1016/j.peptides.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada.
| | - Daniela Grothe
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada.
| | - Filio Billia
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada; Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, Ontario, M5G 2C4, Canada; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5G 1A8, Canada.
| |
Collapse
|
4
|
Hille S, Dierck F, Kühl C, Sosna J, Adam-Klages S, Adam D, Lüllmann-Rauch R, Frey N, Kuhn C. Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res 2016; 110:381-94. [PMID: 27056896 DOI: 10.1093/cvr/cvw074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Down syndrome-associated dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) is a ubiquitously expressed protein kinase. Up to date a variety of targets have been identified, establishing a key role for Dyrk1a in selected signalling pathways. In cardiomyocytes, Dyrk1a acts as a negative regulator of hypertrophy by phosphorylating transcription factors of the NFAT family, but its mechanistic function in the heart remains poorly understood. This study was designed to investigate a potential protective role of Dyrk1a in cardiac hypertrophy in vivo. METHODS AND RESULTS We generated transgenic mice with cardiac-specific overexpression of Dyrk1a. Counterintuitively, these mice developed severe dilated cardiomyopathy associated with congestive heart failure and premature death. In search for the cause of this unexpected phenotype, we found that Dyrk1a interacts with all members of the D-cyclin family and represses their protein levels in vitro and in vivo. Particularly, forced expression of Dyrk1a leads to increased phosphorylation of Ccnd2 on Thr280 and promotes its subsequent proteasomal degradation. Accordingly, cardiomyocytes overexpressing Dyrk1a display hypo-phosphorylated Rb1, suppression of Rb/E2f-signalling, and reduced expression of E2f-target genes, which ultimately results in impaired cell cycle progression. CONCLUSIONS We identified Dyrk1a as a novel negative regulator of D-cyclin-mediated Rb/E2f-signalling. As dysregulation of this pathway with impaired cardiomyocyte proliferation leads to cardiomyopathy, dose-specific Dyrk1a expression and activity appears to be critical for the hyperplastic and hypertrophic growth of the developing heart.
Collapse
MESH Headings
- Animals
- Cardiomegaly/enzymology
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cell Cycle
- Cell Proliferation
- Cyclin D/genetics
- Cyclin D/metabolism
- Disease Models, Animal
- E2F Transcription Factors/metabolism
- Gene Expression Regulation
- HEK293 Cells
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Rats, Wistar
- Retinoblastoma/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Dyrk Kinases
Collapse
Affiliation(s)
- Susanne Hille
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Franziska Dierck
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Constantin Kühl
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Justyna Sosna
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Sabine Adam-Klages
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Christian Kuhn
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| |
Collapse
|
5
|
Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, Deng C, Xue Y, Yang M, Wu S, Shan Z. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 2015; 412:289-96. [PMID: 26699910 DOI: 10.1007/s11010-015-2635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3'UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weiwei Yuan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunmei Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wensi Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiening Zhu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiuxiong Lin
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yongheng Fu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunyu Deng
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yumei Xue
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Min Yang
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shulin Wu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
6
|
Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med 2015; 19:608-19. [PMID: 25583328 PMCID: PMC4369817 DOI: 10.1111/jcmm.12445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022] Open
Abstract
Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuai Huang
- Medical Research Department of Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can J Cardiol 2014; 30:1270-8. [PMID: 25442430 DOI: 10.1016/j.cjca.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 11/21/2022] Open
Abstract
The concept of myocyte division and myocyte-mediated regeneration has re-emerged in the past 5 years through development of sophisticated transgenic mice and carbon-dating of cells. Although recently, a couple of studies have been conducted as an attempt to intervene in myocyte division, the efficiency in adult animals remains discouragingly low. Re-enforcing myocyte division is a vision that has been desired for decades, leading to years of experience in myocyte resistance to proproliferative stimuli. Previous attempts have indeed provided a platform for basic knowledge on molecular players and signalling in myocytes. However, natural biological processes such as hypertrophy and binucleation provide layers of complexity in interpretation of previous and current findings. A major hurdle in mediating myocyte division is a lack of insight in the myocyte cell cycle. To date, no knowledge is gained on myoycte cell cycle progression and/or duration. This review will include an overview of previous and current literature on myocyte cell cycle and division. Furthermore, the limitations of current approaches and basic questions that might be essential in understanding myocardial resistance to division will be discussed.
Collapse
|
8
|
Chen G, Pan SQ, Shen C, Pan SF, Zhang XM, He QY. Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways. Acta Pharmacol Sin 2014; 35:463-75. [PMID: 24608673 DOI: 10.1038/aps.2013.185] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022]
Abstract
AIM To investigate the effects of puerarin (Pue), an isoflavone derived from Kudzu roots, on angiotensin II (Ang II)-induced hypertrophy of cardiomyocytes in vivo and in vitro. METHODS C57BL/6J mice were infused with Ang II and treated with Pue (100 mg·kg(-1)·d(-1), po) for 15 d. After the treatment, systolic blood pressure (SBP) and left ventricular wall thickness were assessed. The ratios of heart weight to body weight (HW/BW) and left ventricular weight to body weight (LVW/BW) were determined, and heart morphometry was assessed. Expression of fetal-type genes (ANP, BNP and β-MHC) in left ventricles was measured using semi-quantitative RT-PCR. Mouse primary cardiomyocytes were treated with Pue (50, 100, 200 μmol/L), then exposed to Ang II (1 μmol/L). ROS level was examined with flow cytometry, the binding activity of NF-κB was determined using EMSA. Western blot was used to measure the levels of ERK1/2, p38 and NF-κB pathway proteins. [(3)H]leucine incorporation was used to measure the rate of protein synthesis. RESULTS Oral administration of Pue significantly suppressed Ang II-induced increases in the myocyte surface area, HW/BW, LVW/BW, SBP and left ventricular wall thickness. Furthermore, Pue significantly suppressed Ang II-induced increases in ANP, BNP and β-MHC expression in the left ventricles in vivo. Treatment of cardiomyocytes with Pue (50-500 μmol/L) did not affect the viability of cardiomyocytes in vitro. Pretreatment of cardiomyocytes with Pue dose-dependently inhibited Ang II-induced increases in ROS production, NF-κB binding activity, protein synthesis and cell breadth. Furthermore, pretreatment with Pue significantly suppressed Ang II-induced activation of ERK1/2, p38 and the NF-κB pathway proteins and the expression of ANP and β-MHC in cardiomyocytes. The positive drug valsartan exerted similar effects on Ang II-induced cardiac hypertrophy in vivo and in vitro. CONCLUSION Pue attenuates Ang II-induced cardiac hypertrophy by inhibiting activation of the redox-sensitive ERK1/2, p38 and the NF-κB pathways.
Collapse
|
9
|
Hotchkiss A, Robinson J, MacLean J, Feridooni T, Wafa K, Pasumarthi KBS. Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol 2012; 90:1197-207. [PMID: 22900666 DOI: 10.1139/y2012-037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defining feature of embryonic cardiomyocytes is their relatively high rates of proliferation. A gradual reduction in proliferative capacity throughout development culminates in permanent cell cycle exit by the vast majority of cardiomyocytes around the perinatal period. Accordingly, the adult heart has severely limited capacity for regeneration in response to injury or disease. The D-type cyclins (cyclin D1, D2, and D3) along with their catalytically active partners, the cyclin dependent kinases, are positive cell cycle regulators that play important roles in regulating proliferation of cardiomyocytes during normal heart development. While expression of D-type cyclins is generally low in the adult heart, expression levels are augmented in association with cardiac hypertrophy, but are uncoupled from myocyte cell division. Accordingly, re-activation of D-type cyclin expression in the adult heart has been implicated in pathophysiological processes via mechanisms distinct from those that drive proliferation during cardiac development. Growth factors and other exogenous agents regulate D-type cyclin production and activity in embryonic and adult cardiomyocytes. Understanding differences in the precise intracellular mediators downstream from these signalling molecules in embryonic versus adult cardiomyocytes could prove valuable for designing strategies to reactivate the cell cycle in cardiomyocytes in the setting of cardiovascular disease in the adult heart.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 2012; 5:493-503. [PMID: 22705769 DOI: 10.1161/circheartfailure.112.966705] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the α-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. METHODS AND RESULTS Ang II (1.5 mg·kg(-1)·day(-1)) or PE (40 mg·kg(-1)·day(-1)) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid β-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. CONCLUSIONS Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F-induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ishii N, Ogasawara R, Kobayashi K, Nakazato K. Roles played by protein metabolism and myogenic progenitor cells in exercise-induced muscle hypertrophy and their relation to resistance training regimens. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)—possible therapeutic perspectives. ACTA ACUST UNITED AC 2011; 5:449-55. [DOI: 10.1016/j.jash.2011.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022]
|
13
|
Lee KH, Jang Y, Chung JH. Heat shock protein 90 regulates IκB kinase complex and NF-κB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med 2011; 42:703-11. [PMID: 20980790 DOI: 10.3858/emm.2010.42.10.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heat shock protein 90 (HSP90), one of the most abundant proteins in the cardiac cells is essential for cell survival. Previous studies have shown that angiotensin II induces cardiac cell hypertrophy. However, the role of HSP90 in the angiotensin II-induced cardiac hypertrophy is unclear. In this study, we showed that HSP90 regulated angiotensin II-induced hypertrophy via maintenance of the IκB kinase (IKK) complex stability in cardiac cells. An HSP90 inhibitor, geldanamycin (GA), significantly suppressed angiotensin II-induced [³H]leucine incorporation and atrial natriuretic factor expression in cardiac cells. GA also inhibited the NF-κB activation induced by angiotensin II. Importantly, treatment with GA caused a degradation of IKKα/β; on the other hand, a proteasome-specific inhibitor restored the level of IKKα/β. We also found that GA prevented HSP90-IKKs complex induced by angiotensin II in cardiac cells. The small interfering RNA (siRNA)-mediated knockdown of HSP90 expression significantly inhibited angiotensin II-induced cell hypertrophy and NF-κB activation. These results suggest that angiotensin II-induced cardiac hypertrophy requires HSP90 that regulates the stability and complex of IKK.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University Health System, Seoul 120-752, Korea
| | | | | |
Collapse
|
14
|
Effect of a low-protein diet during pregnancy on expression of genes involved in cardiac hypertrophy in fetal and adult mouse offspring. J Dev Orig Health Dis 2010; 1:371-5. [DOI: 10.1017/s2040174410000541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Wohlschlaeger J, Schmitz KJ, Takeda A, Takeda N, Vahlhaus C, Stypmann J, Schmid C, Baba HA. Reversible regulation of the retinoblastoma protein/E2F-1 pathway during "reverse cardiac remodelling" after ventricular unloading. J Heart Lung Transplant 2010; 29:117-24. [PMID: 20123249 DOI: 10.1016/j.healun.2009.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cyclin D1, the retinoblastoma (Rb) protein, and the E2F transcription factors are involved in the pathogenesis of cardiac hypertrophy. Cyclin D1/cdk4 complexes, by phosphorylation, inactivate Rb, thereby abrogating its growth-inhibitory effect. Ventricular unloading is associated with reversible regulation of numerous cardiomyocyte molecular systems and decreased hypertrophy. Accordingly, the hypothesis whether the Rb/E2F-1 pathway is altered by ventricular unloading was tested, and correlations with the cyclin D1 protein expression and cardiomyocyte diameters were explored. METHODS In 21 paired myocardial samples (before and after unloading) from patients with congestive heart failure (CHF), cyclin D1, phosphorylated Rb (pRb), its homologues p107 and p130 (pocket proteins), and E2F-1 were immunohistochemically investigated and morphometrically quantified. Cardiomyocyte diameters were morphometrically determined. RESULTS Cyclin D1 and the proteins of the Rb/E2F-1 pathway were significantly increased during CHF compared with controls and were significantly decreased after unloading. Cyclin D1, pRb, and p130 protein expression correlated significantly with cardiomyocyte diameters. A significant positive correlation was noted between the pocket proteins, E2F-1, and cyclin D1. CONCLUSION Increased protein expression of phosphorylated (inactivated) Rb and the pocket proteins is associated with cardiomyocyte hypertrophy in CHF. Rb inactivation might be explained by phosphorylation by increased numbers of cyclin D1/cdk4 complexes associated with cardiomyocyte hypertrophy. However, ventricular unloading can reversibly regulate this process. These data underscore the importance of cell cycle regulatory proteins in the pathogenesis of CHF-associated (maladaptive) cardiomyocyte hypertrophy and might offer novel clues for pharmacologic approaches of congestive heart failure.
Collapse
Affiliation(s)
- Jeremias Wohlschlaeger
- Department of Pathology and Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Booth AJ, Csencsits-Smith K, Wood SC, Lu G, Lipson KE, Bishop DK. Connective tissue growth factor promotes fibrosis downstream of TGFbeta and IL-6 in chronic cardiac allograft rejection. Am J Transplant 2010; 10:220-30. [PMID: 19788504 PMCID: PMC2860022 DOI: 10.1111/j.1600-6143.2009.02826.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac transplantation is an effective treatment for multiple types of heart failure refractive to therapy. Although immunosuppressive therapeutics have increased survival rates within the first year posttransplant, chronic rejection (CR) remains a significant barrier to long-term graft survival. Indicators of CR include patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Multiple factors have been implicated in the onset and progression of CR, including TGFbeta, IL-6 and connective tissue growth factor (CTGF). While associated with CR, the role of CTGF in CR and the factors necessary for CTGF induction in vivo are not understood. To this end, we utilized forced expression and neutralizing antibody approaches. Transduction of allografts with CTGF significantly increased fibrotic tissue development, though not to levels observed with TGFbeta transduction. Further, intragraft CTGF expression was inhibited by IL-6 neutralization whereas TGFbeta expression remained unchanged, indicating that IL-6 effects may potentiate TGFbeta-mediated induction of CTGF. Finally, neutralizing CTGF significantly reduced graft fibrosis without reducing TGFbeta and IL-6 expression levels. These findings indicate that CTGF functions as a downstream mediator of fibrosis in CR, and that CTGF neutralization may ameliorate fibrosis and hypertrophy associated with CR.
Collapse
Affiliation(s)
- A. J. Booth
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - K. Csencsits-Smith
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - S. C. Wood
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - G. Lu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | | | - D. K. Bishop
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109,Corresponding Author: D. Keith Bishop, Ph. D. Transplant Immunology Research, Section of General Surgery, A560 MSRB II, Box 0654, University of Michigan Medical Center, 1150 W. Medical Center Dr. Ann Arbor, MI 48109, 734-763-0326 (Phone); 734-763-6199 (Fax),
| |
Collapse
|
17
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
18
|
Diaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK. Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant 2009; 9:1773-83. [PMID: 19538487 PMCID: PMC2756490 DOI: 10.1111/j.1600-6143.2009.02706.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic cardiac allograft rejection is the major barrier to long term graft survival. There is currently no effective treatment for chronic rejection except re-transplantation. Though neointimal development, fibrosis, and progressive deterioration of graft function are hallmarks of chronic rejection, the immunologic mechanisms driving this process are poorly understood. These experiments tested a functional role for IL-6 in chronic rejection by utilizing serial echocardiography to assess the progression of chronic rejection in vascularized mouse cardiac allografts. Cardiac allografts in mice transiently depleted of CD4+ cells that develop chronic rejection were compared with those receiving anti-CD40L therapy that do not develop chronic rejection. Echocardiography revealed the development of hypertrophy in grafts undergoing chronic rejection. Histologic analysis confirmed hypertrophy that coincided with graft fibrosis and elevated intragraft expression of IL-6. To elucidate the role of IL-6 in chronic rejection, cardiac allograft recipients depleted of CD4+ cells were treated with neutralizing anti-IL-6 mAb. IL-6 neutralization ameliorated cardiomyocyte hypertrophy, graft fibrosis, and prevented deterioration of graft contractility associated with chronic rejection. These observations reveal a new paradigm in which IL-6 drives development of pathologic hypertrophy and fibrosis in chronic cardiac allograft rejection and suggest that IL-6 could be a therapeutic target to prevent this disease.
Collapse
Affiliation(s)
- J A Diaz
- Department of Surgery, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Rabkin SW, Klassen SS. Jumonji is a potential regulatory factor mediating nitric oxide-induced modulation of cardiac hypertrophy. J Cardiovasc Med (Hagerstown) 2009; 10:206-11. [DOI: 10.2459/jcm.0b013e3283212ecd] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Hinrichsen R, Hansen AH, Haunsø S, Busk PK. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy. Cell Prolif 2008; 41:813-29. [PMID: 18700867 DOI: 10.1111/j.1365-2184.2008.00549.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES A number of stimuli induce cardiac hypertrophy and may lead to cardiomyopathy and heart failure. It is believed that cardiomyocytes withdraw from the cell cycle shortly after birth and become terminally differentiated. However, cell cycle regulatory proteins take part in the development of hypertrophy, and it is important to elucidate the mechanisms of how these proteins are involved in the hypertrophic response in cardiomyocytes. MATERIALS AND METHODS, AND RESULTS In the present study, by immunohistochemistry with a phosphorylation-specific antibody, we found that cyclin D-cdk4/6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4/6. Inhibition of cyclin E-cdk2 complex only partly impaired E2F activity and did not prevent hypertrophic growth, but diminished endoreplication during hypertrophy. CONCLUSIONS These results indicate that cyclin D-cdk4/6-dependent phosphorylation of pRb and activation of E2F is necessary for hypertrophic growth in cardiomyocytes, whereas cyclin E-cdk2 kinase is not necessary for hypertrophy but regulates endoreplication in these cells. The data support the notion that hypertrophic growth of cardiomyocytes involves a partial progression through the G1 phase of the cell cycle
Collapse
Affiliation(s)
- R Hinrichsen
- Risø National Laboratory, Biosystems Department, Cell Biology Programme, Roskilde, Denmark.
| | | | | | | |
Collapse
|
21
|
Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy. J Card Fail 2008; 14:703-9. [PMID: 18926443 DOI: 10.1016/j.cardfail.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/10/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND The pathogenic mechanisms of dilated cardiomyopathy are still uncertain. A number of cytokines and growth factors participate in the remodeling process of the disease. METHODS We investigated the cardiac myostatin, transforming growth factor (TGF)beta, and activin-A/Smad growth inhibitory signaling pathway in experimental dilated cardiomyopathy. Transvenous endomyocardial biopsies of the interventricular septum were taken weekly in 15 beagle dogs during the development of heart failure (HF) induced by rapid pacing over a period of 7 weeks. Genes involved in the myostatin-TGFbeta-activin-A/Smad signaling pathway and the cardiac hypertrophic process were quantified by real-time quantitative polymerase chain reaction. Left ventricular volume, function, and mass were evaluated by echocardiography. RESULTS Overpacing was associated with increased left ventricular volumes and decreased ejection fraction, whereas the left ventricular mass remained unchanged. TGFbeta was increased in moderate HF. Activin-A mRNA expression was 4-fold higher in overt congestive HF than at baseline. A 2-fold decrease of activin type II receptors and activin receptor interacting protein 2 gene expressions were observed, as well as a transient decrease of follistatin. Activin type I receptors, activin receptor interacting protein 1, follistatin-related gene, and myostatin remained unchanged. The inhibitory Smad 7, a negative feedback loop regulator of the Smad pathway, was overexpressed in severe HF. Gene expression of the cyclin-dependent kinase inhibitor p21, a direct target gene of the Smad pathway, was 8-fold up-regulated in HF, whereas cyclin D1 was down-regulated. CONCLUSION We conclude that tachycardia-induced dilated cardiomyopathy is characterized by gene overexpression of the TGFbeta-activin-A/Smad signaling pathway and their target gene p21 and by the absence of ventricular hypertrophy.
Collapse
|
22
|
Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR. A cyclin D2-Rb pathway regulates cardiac myocyte size and RNA polymerase III after biomechanical stress in adult myocardium. Circ Res 2008; 102:1222-9. [PMID: 18420946 PMCID: PMC2447867 DOI: 10.1161/circresaha.107.163550] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Normally, cell cycle progression is tightly coupled to the accumulation of cell mass; however, the mechanisms whereby proliferation and cell growth are linked are poorly understood. We have identified cyclin (Cyc)D2, a G(1) cyclin implicated in mediating S phase entry, as a potential regulator of hypertrophic growth in adult post mitotic myocardium. To examine the role of CycD2 and its downstream targets, we subjected CycD2-null mice to mechanical stress. Hypertrophic growth in response to transverse aortic constriction was attenuated in CycD2-null compared with wild-type mice. Blocking the increase in CycD2 in response to hypertrophic agonists prevented phosphorylation of CycD2-target Rb (retinoblastoma gene product) in vitro, and mice deficient for Rb had potentiated hypertrophic growth. Hypertrophic growth requires new protein synthesis and transcription of tRNA genes by RNA polymerase (pol) III, which increases with hypertrophic signals. This load-induced increase in RNA pol III activity is augmented in Rb-deficient hearts. Rb binds and represses Brf-1 and TATA box binding protein (TBP), subunits of RNA pol III-specific transcription factor B, in adult myocardium under basal conditions. However, this association is disrupted in response to transverse aortic constriction. RNA pol III activity is unchanged in CycD2(-/-) myocardium after transverse aortic constriction, and there is no dissociation of TBP from Rb. These investigations identify an essential role for the CycD2-Rb pathway as a governor of cardiac myocyte enlargement in response to biomechanical stress and, more fundamentally, as a regulator of the load-induced activation of RNA pol III.
Collapse
Affiliation(s)
- Ekaterini Angelis
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Alejandro Garcia
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Shing S. Chan
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Katja Schenke-Layland
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Shuxen Ren
- Cardiovascular Research Laboratory, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Sarah J. Goodfellow
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria C. Jordan
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Kenneth P. Roos
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Robert J. White
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - W. Robb MacLellan
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| |
Collapse
|
23
|
Liu J, Shen Q, Wu Y. Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway. Life Sci 2008; 82:991-6. [DOI: 10.1016/j.lfs.2008.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/23/2008] [Accepted: 02/10/2008] [Indexed: 10/22/2022]
|
24
|
Berry JM, Cao DJ, Rothermel BA, Hill JA. Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 2008; 7:53-67. [PMID: 18171314 DOI: 10.1517/14740338.7.1.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. Studies in preclinical models suggest that inhibition of histone deacetylase (HDAC) activity - using compounds that show promise in ongoing oncology trials - blunts pathologic growth of cardiac myocytes. Indeed, small-molecule inhibitors of HDACs are members of an evolving class of pharmacologic agents in development for the treatment of several diseases. If proved effective in the treatment of heart disease, HDAC inhibitors could have a significant impact on public health, as cardiovascular disease remains the leading cause of death in the US. This paper reviews understanding of the mechanisms of action of HDAC inhibitors in the heart and summarizes emerging data regarding their effects on disease-related cardiac remodeling and function.
Collapse
Affiliation(s)
- Jeff M Berry
- University of Texas Southwestern Medical Center, Donald W Reynolds Cardiovascular Clinical Research Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
25
|
Baumann M, Bartholome R, Peutz-Kootstra CJ, Smits JFM, Struijker-Boudier HAJ. Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am J Hypertens 2008; 21:177-82. [PMID: 18188163 DOI: 10.1038/ajh.2007.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hypertensive target organ damage shows characteristics of accelerated cell turnover and aging. This might have developed during the evolution of hypertension. In the kidney, high cell turnover is mainly restricted to tubular cells. It was the aim of this study to investigate whether a transient intervention in spontaneously hypertensive rats (SHRs) leads to reduced tubular cell turnover and attenuates the renal aging process and tubulo-interstitial damage in the long-term. METHODS SHRs (i) were prehypertensively (weeks 4-8) treated with losartan (ii) or hydralazine (iii) (20 and 4 mg/kg/day, respectively) and compared to Wistar-Kyoto (WKY) rats (iv). Groups were investigated at weeks 8 and 72 (except iii). At both time points tubular cell proliferation (proliferative cell nuclear antigen) and systolic blood pressure (SBP) were evaluated. At week 72, aging parameters such as telomere length were assessed. Renal damage was semiquantitatively assessed (scale: 0-4) by measuring the parenchyma (atrophy) and vasculature (media thickness). RESULTS Treatments equipotently reduced SBP in young SHRs (P < 0.01) but only losartan reduced renal proliferation (proliferative cell nuclear antigen: (i) 2.8 +/- 0.8, (ii) 1.3 +/- 0.3, (iii) 3.0 +/- 0.6, (iv) 0.1 +/- 0.1 cells/mm(2)). In SHRs treated with losartan(SHR-Los) tubular proliferation remained reduced and renal telomere length was significantly greater than in untreated SHRs (fold: (i) 1.0 +/- 0.1, (ii) 2.8 +/- 0.3, P < 0.01). Untreated SHRs (median 2.0, range 1-3; P < 0.007), but not SHR-Los (median 1.0, range 0-2; P = 0.06) demonstrated more tubular atrophy than WKY rats (median 0.5, range 0-1). CONCLUSIONS Transient losartan treatment reduces cell-turnover not only acutely but also for a prolonged period after drug withdrawal. This results in the long-term in reduced aging and attenuated tubulo-interstitial damage, suggesting there exists a modulating effect of angiotensin II (ANGII)-antagonism on long-term cell turnover.
Collapse
|
26
|
Kim YH, Han HJ. Synergistic effect of high glucose and ANG II on proliferation of mouse embryonic stem cells: Involvement of PKC and MAPKs as well as AT1 receptor. J Cell Physiol 2008; 215:374-82. [DOI: 10.1002/jcp.21314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Han HJ, Han JY, Heo JS, Lee SH, Lee MY, Kim YH. ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca2+/PKC as well as EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse embryonic stem cells. J Cell Physiol 2007; 211:618-29. [PMID: 17219409 DOI: 10.1002/jcp.20967] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.
| | | | | | | | | | | |
Collapse
|
28
|
Morikawa-Futamatsu K, Adachi S, Maejima Y, Tamamori-Adachi M, Suzuki JI, Kitajima S, Ito H, Isobe M. HMG-CoA reductase inhibitor fluvastatin prevents angiotensin II-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1. Life Sci 2006; 79:1380-90. [PMID: 16712874 DOI: 10.1016/j.lfs.2006.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 03/13/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Kino Morikawa-Futamatsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Emerging evidence demonstrates that heart disease may originate during fetal development. This review will focus on the role of maternal nutrition in the development of the fetal cardiovascular system. Emphasis will be placed upon the concept that nutritional inadequacies during gestation may be major programming stimuli that alter fetal cardiac, as well as vascular, physiology and predispose an individual to cardiovascular abnormalities in postnatal life. It is hypothesized that this research area will yield new information, resulting in improved fetal nutrition, growth and development through efficient maternal nutrition before and during pregnancy and will form the basis for nutritional strategies for the primary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Department of Human Nutritional Sciences, Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre (R3020), Winnipeg, Manitoba, R2H 2A6, Canada.
| | | |
Collapse
|
30
|
Abstract
Histones control gene expression by modulating the structure of chromatin and the accessibility of regulatory DNA sequences to transcriptional activators and repressors. Posttranslational modifications of histones have been proposed to establish a "code" that determines patterns of cellular gene expression. Acetylation of histones by histone acetyltransferases stimulates gene expression by relaxing chromatin structure, allowing access of transcription factors to DNA, whereas deacetylation of histones by histone deacetylases promotes chromatin condensation and transcriptional repression. Recent studies demonstrate histone acetylation/deacetylation to be a nodal point for the control of cardiac growth and gene expression in response to acute and chronic stress stimuli. These findings suggest novel strategies for "transcriptional therapies" to control cardiac gene expression and function. Manipulation of histone modifying enzymes and the signaling pathways that impinge on them in the settings of pathological cardiac growth, remodeling, and heart failure represents an auspicious therapeutic approach.
Collapse
Affiliation(s)
- Johannes Backs
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
31
|
Li Volti G. Letter regarding article by Hu et al, "heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo". Circulation 2005; 111:e100; author reply e100. [PMID: 15710770 DOI: 10.1161/01.cir.0000155250.27345.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Nader GA, McLoughlin TJ, Esser KA. mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 2005; 289:C1457-65. [PMID: 16079186 DOI: 10.1152/ajpcell.00165.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify the potential downstream functions associated with mammalian target of rapamycin (mTOR) signaling during myotube hypertrophy. Terminally differentiated myotubes were serum stimulated for 3, 6, 12, 24, and 48 h. This treatment resulted in significant myotube hypertrophy (protein/DNA) and increased RNA content (RNA/DNA) with no changes in DNA content or indices of cell proliferation. During myotube hypertrophy, the increase in RNA content was accompanied by an increase in tumor suppressor protein retinoblastoma (Rb) phosphorylation and a corresponding increase in the availability of the ribosomal DNA transcription factor upstream binding factor (UBF). Serum stimulation also induced an increase in cyclin D1 protein expression in the differentiated myotubes with a concomitant increase in cyclin D1-dependent cyclin-dependent kinase (CDK)-4 activity toward Rb. The increases in myotube hypertrophy and RNA content were blocked by rapamycin treatment, which also prevented the increase in cyclin D1 protein expression, CDK-4 activity, Rb phosphorylation, and the increase in UBF availability. Our findings demonstrate that activation of mTOR is necessary for myotube hypertrophy and suggest that the role of mTOR is in part to modulate cyclin D1-dependent CDK-4 activity in the regulation of Rb and ribosomal RNA synthesis. On the basis of these results, we propose that common molecular mechanisms contribute to the regulation of myotube hypertrophy and growth during the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Gustavo A Nader
- School of Kinesiology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
33
|
Larkin JE, Frank BC, Gaspard RM, Duka I, Gavras H, Quackenbush J. Cardiac transcriptional response to acute and chronic angiotensin II treatments. Physiol Genomics 2004; 18:152-66. [PMID: 15126644 DOI: 10.1152/physiolgenomics.00057.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of experimental animals to increased angiotensin II (ANG II) induces hypertension associated with cardiac hypertrophy, inflammation, and myocardial necrosis and fibrosis. Some of the most effective antihypertensive treatments are those that antagonize ANG II. We investigated cardiac gene expression in response to acute (24 h) and chronic (14 day) infusion of ANG II in mice; 24-h treatment induces hypertension, and 14-day treatment induces hypertension and extensive cardiac hypertrophy and necrosis. For genes differentially expressed in response to ANG II treatment, we tested for significant regulation of pathways, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Microarray Pathway Profiler (GenMAPP) databases, as well as functional classes based on Gene Ontology (GO) terms. Both acute and chronic ANG II treatments resulted in decreased expression of mitochondrial metabolic genes, notably those for the electron transport chain and Krebs-TCA cycle; chronic ANG II treatment also resulted in decreased expression of genes involved in fatty acid metabolism. In contrast, genes involved in protein translation and ribosomal activity increased expression following both acute and chronic ANG II treatments. Some classes of genes showed differential response between acute and chronic ANG II treatments. Acute treatment increased expression of genes involved in oxidative stress and amino acid metabolism, whereas chronic treatments increased cytoskeletal and extracellular matrix genes, second messenger cascades responsive to ANG II, and amyloidosis genes. Although a functional linkage between Alzheimer disease, hypertension, and high cholesterol has been previously documented in studies of brain tissue, this is the first demonstration of induction of Alzheimer disease pathways by hypertension in heart tissue. This study provides the most comprehensive available survey of gene expression changes in response to acute and chronic ANG II treatment, verifying results from disparate studies, and suggests mechanisms that provide novel insight into the etiology of hypertensive heart disease and possible therapeutic interventions that may help to mitigate its effects.
Collapse
Affiliation(s)
- Jennie E Larkin
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol 2004; 558:111-21. [PMID: 15133065 PMCID: PMC1664914 DOI: 10.1113/jphysiol.2004.061697] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, alpha-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac alpha-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.
Collapse
Affiliation(s)
- Hyung-Chul Han
- Center for the Study of Fetal Programming and Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
35
|
Tamamori-Adachi M, Ito H, Nobori K, Hayashida K, Kawauchi J, Adachi S, Ikeda MA, Kitajima S. Expression of cyclin D1 and CDK4 causes hypertrophic growth of cardiomyocytes in culture: a possible implication for cardiac hypertrophy. Biochem Biophys Res Commun 2002; 296:274-80. [PMID: 12163013 DOI: 10.1016/s0006-291x(02)00854-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiated cardiomyocytes have little capacity to proliferate and show the hypertrophic growth in response to alpha1-adrenergic stimuli via the Ras/MEK pathway. In this study, we investigated a role of cyclin D1 and CDK4, a positive regulator of cell cycle, in cultured neonatal rat cardiomyocyte hypertrophy. D-type cyclins including cyclin D1 were induced in cells stimulated by phenylephrine. This induction was inhibited by MEK inhibitor PD98059 and the dominant negative RasN17, but mimicked by expression of the constitutive active Ras61L. Over-expression of cyclin D1 and CDK4 using adenovirus gene transfer caused the hypertrophic growth of cardiomyocytes, as evidenced by an increase of the cell size as well as the amount of cellular protein and its rate of synthesis. However, the cyclin D1/CDK4 kinase activity was not up-regulated in cells treated by hypertrophic stimuli or in cells over-expressing the cyclin D1 and CDK4. Furthermore, a CDK inhibitor, p16, did not inhibit the hypertrophic growth of cardiomyocytes. These results clearly indicated that cyclin D1 and CDK4 have a role in hypertrophic growth of cardiomyocytes through a novel mechanism(s) which appears not to be related to its activity required for cell cycle progression.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|