1
|
Chong-Nguyen C, Yilmaz B, Coles B, Sokol H, MacPherson A, Siepe M, Reineke D, Mosbahi S, Tomii D, Nakase M, Atighetchi S, Ferro C, Wingert C, Gräni C, Pilgrim T, Windecker S, Blasco H, Dupuy C, Emond P, Banz Y, Losmanovà T, Döring Y, Siontis GCM. A scoping review evaluating the current state of gut microbiota and its metabolites in valvular heart disease physiopathology. Eur J Clin Invest 2025; 55:e14381. [PMID: 39797472 DOI: 10.1111/eci.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored. METHODS Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included. Eligible studies used 16S rRNA or shotgun sequencing, metabolite profiling by mass spectrometry, and examined osteogenesis or fibrosis signalling in valve cells. Methods and findings were qualitatively analysed, with data charted to summarize study design, materials and outcomes. RESULTS Thirteen studies were included in the review: five human, three animal and five in vitro. Of the nine studies on calcific aortic stenosis (CAS), elevated trimethylamine N-oxide (TMAO) levels were linked to an increased risk of cardiovascular events in cohort studies, with CAS patients showing higher levels of Bacteroides plebeius, Enterobacteriaceae, Veillonella dispar and Prevotella copri. In vivo, TMAO promoted aortic valve fibrosis, while tryptophan derivatives stimulated osteogenic differentiation and interleukin-6 secretion in valvular interstitial cells. Two studies on rheumatic mitral valve disease found altered microbiota profiles and lower short-chain fatty acid levels, suggesting potential impacts on immune regulation. Two studies on Barlow's mitral valve disease in animal models revealed elevated TMAO levels in dogs with congestive heart failure, reduced Paraprevotellaceae, increased Actinomycetaceae and dysbiosis involving Turicibacter and E. coli. CONCLUSIONS TMAO has been mainly identified as a prognostic marker in VHD. Gut microbiota dysbiosis has been observed in various forms of VHD and deserve further study.
Collapse
Affiliation(s)
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Bernadette Coles
- Velindre University NHS Trust Library and Knowledge Service, Cardiff, UK
| | - Harry Sokol
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Andrew MacPherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Reineke
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selim Mosbahi
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daijiro Tomii
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Masaaki Nakase
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Sarah Atighetchi
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Cyril Ferro
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Wingert
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Hélène Blasco
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Camille Dupuy
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Patrick Emond
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Tereza Losmanovà
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - George C M Siontis
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
2
|
Omagari D, Hayatsu M, Yamamoto K, Kobayashi M, Tsukano N, Nameta M, Mikami Y. Gap junction with MLO-A5 osteoblast-like cell line induces ALP and BSP transcription of 3T3-L1 pre-adipocyte like cell line via Hspb1 while retaining adipogenic differentiation ability. Bone 2020; 141:115596. [PMID: 32814124 DOI: 10.1016/j.bone.2020.115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/09/2022]
Abstract
In bone tissues, gap junctions form direct links between the cytoplasm of an osteocyte and another adjacent osteocyte or osteoblast, which underlie both bone formation and bone resorption. We have previously demonstrated that alkaline phosphatase (ALP) and bone sialoprotein (BSP), which are osteoblast markers, were induced in mesenchymal stem cells (MSCs) co-cultured with osteoblast-like cell line. However, the molecular mechanism of this process has not been fully addressed. Furthermore, few advances have been made toward elucidating the communication networks that link the status of committed cells such as (pre-) adipocytes that differentiated from MSCs as well as osteoblasts. Therefore, the objective of the present study was to investigate the mechanism underlying the communication network between pre-adipocytes and osteoblasts. We evaluated the effect of co-culture with osteoblast on the cell status of pre-adipocytes using murine osteoblast-like cell line, MLO-A5, and pre-adipocyte-like cell line, 3T3-L1, respectively. The results presented here demonstrated that osteoblasts and pre-adipocytes communicate via gap junctions, and the ensuing drastic increase in ALP and BSP transcription in co-cultured pre-adipocytes was induced, at least partly, via heat shock protein family B member 1 (Hspb1). In addition, terminal differentiation into adipocytes was suppressed in pre-adipocytes during co-culture with osteoblast without loss of adipogenic differentiation ability. Interestingly, after co-culture with osteoblasts, isolated co-cultured pre-adipocytes were able to differentiate to adipocytes as well as original pre-adipocytes. These results suggest that gap junctional communication with osteoblasts suppressed adipogenic differentiation of pre-adipocytes without loss of adipogenic differentiation ability.
Collapse
Affiliation(s)
- Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naruchika Tsukano
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan.
| |
Collapse
|
3
|
miR-27b-3p Suppressed Osteogenic Differentiation of Maxillary Sinus Membrane Stem Cells by Targeting Sp7. IMPLANT DENT 2018; 26:492-499. [PMID: 28719571 DOI: 10.1097/id.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To explore the critical role and function of miRNAs in the regulation of development and physiology of maxillary sinus membrane stem cell (MSMSC) osteogenesis. METHODS Microarray analysis was performed to screen the miRNAs expression profiles during the process of MSMSC osteogenic differentiation. Quantitative real-time polymerase chain reaction was applied to verify the miRNAs expression profiles. Gain- and loss-of-function experiments were used to demonstrate that miR-27b-3p inhibited MSMSC osteoblastic differentiation. Bioinformatic analysis was performed to predict the potential target of miR-27b-3p and then demonstrated by luciferase reporter assay and western blot. The negative regulation between miR-27b-3p and Sp7 was further confirmed using mimic and inhibitor of miR-27b-3p in vitro. Xenograft mice model was generated to confirm the relationship between miR-27b-3p and Sp7 using recombinant adenoviruses in vivo. RESULTS MiR-27b-3p was downregulated during osteogenic differentiation of MSMSCs. The expression of Sp7, alkaline phosphatase, and osteocalcin decreased when transfected with miR-27b-3p-mimic in MSMSCs after osteogenic differentiation. MiR-27b-3p directly targeted Sp7 and inhibited the MSMSC osteogenesis in vivo. CONCLUSION MiR-27b-3p suppressed the osteogenic differentiation of MSMSCs by directly inhibiting Sp7.
Collapse
|
4
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Mikami Y, Tsuda H, Akiyama Y, Honda M, Shimizu N, Suzuki N, Komiyama K. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner. J Bone Miner Metab 2016; 34:627-637. [PMID: 26475372 DOI: 10.1007/s00774-015-0719-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yuko Akiyama
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
6
|
Chu J, Tu Y, Chen J, Tan D, Liu X, Pi R. Effects of melatonin and its analogues on neural stem cells. Mol Cell Endocrinol 2016; 420:169-79. [PMID: 26499395 DOI: 10.1016/j.mce.2015.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaqi Chu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yalin Tu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dunxian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA
| | - Xingguo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
7
|
Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine. Anat Sci Int 2013; 89:1-10. [DOI: 10.1007/s12565-013-0208-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/27/2013] [Indexed: 01/09/2023]
|
8
|
Yang L, Cheng P, Chen C, He HB, Xie GQ, Zhou HD, Xie H, Wu XP, Luo XH. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27:1598-606. [PMID: 22467200 DOI: 10.1002/jbmr.1621] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
microRNAs (miRNAs) play pivotal roles in osteoblast differentiation. However, the mechanisms of miRNAs regulating osteoblast mineralization still need further investigation. Here, we performed miRNA profiling and identified that miR-93 was the most significantly downregulated miRNA during osteoblast mineralization. Overexpression of miR-93 in cultured primary mouse osteoblasts attenuated osteoblast mineralization. Expression of the Sp7 transcription factor 7 (Sp7, Osterix), a zinc finger transcription factor and critical regulator of osteoblast mineralization, was found to be inversely correlated with miR-93. Then Sp7 was confirmed to be a target of miR-93. Overexpression of miR-93 in cultured osteoblasts reduced Sp7 protein expression without affecting its mRNA level. Luciferase reporter assay showed that miR-93 directly targeted Sp7 by specifically binding to the target coding sequence region (CDS) of Sp7. Experiments such as electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and promoter luciferase reporter assay confirmed that Sp7 bound to the promoter of miR-93. Furthermore, overexpression of Sp7 reduced miR-93 transcription, whereas blocking the expression of Sp7 promoted miR-93 transcription. Our study showed that miR-93 was an important regulator in osteoblast mineralization and miR-93 carried out its function through a novel miR-93/Sp7 regulatory feedback loop. Our findings provide new insights into the roles of miRNAs in osteoblast mineralization.
Collapse
Affiliation(s)
- Li Yang
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, 139# Middle Renmin Road, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|