1
|
Alfaifi SA, Louie AV, Siva S, Guckenberger M, Videtic GMM, Higgins KA, Alshafa F, AlGhamdi H, Gillespie EF, Stephans K, Mula-Hussain L, Harrow S, Palma DA. International Patterns of Practice for Stereotactic Ablative Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: Are We All in Sync?: Global patterns of practice for SABR for early-stage NSCLC. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00390-6. [PMID: 40311704 DOI: 10.1016/j.ijrobp.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
PURPOSE To generate an understanding of the similarities and variations in international practice patterns for stereotactic ablative radiotherapy (SABR) in early-stage non-small cell lung cancer (NSCLC). METHODS An online survey was conducted from October to December 2023, addressing general clinical and technical considerations for lung SABR, and for 5 specific anatomical NSCLC locations (peripheral, abutting chest wall, near brachial plexus, central, and ultra-central). Invitations to participate were extended through email and were distributed on social media. RESULTS The survey was completed by 255 radiation oncologists, each representing a single institution across 51 countries. Respondents reported treating a median of 20 cases annually. A total of 38% of participants reported using single-fraction SABR, and 54% applied an upper limit on the maximum dose (Dmax). Among those who applied a Dmax limit, 58% reported a Dmax threshold at ≥130% of the prescription, though this limit varied by region and national economy status. Respondents from low- and middle-income countries were less likely to set a Dmax limit at ≥130% (30% vs. 66%, p < 0.01) and less likely to use single-fraction SABR (14% vs. 44%, p < 0.01). Higher annual SABR patient volumes were associated with higher Dmax adoption (г = 0.23, p < 0.01). Across the 5 clinical scenarios presented; 57 distinct dose regimens were recommended. The most common regimen in each scenario was: 54 Gy in 3 fractions for peripheral tumors, 50 Gy in 5 fractions for apical, central, and abutment of chest wall, and 60 Gy in 8 fractions for ultra-central tumors. Approximately two-thirds of practices recommend a biologically effective dose (BED10) <100 Gy for one or more anatomical sites. CONCLUSION The findings reveal considerable variation in global SABR practice. These differences highlight the need for further data to guide prescription practices, and an international experts' consensus may be beneficial to standardize practice.
Collapse
Affiliation(s)
- Salem A Alfaifi
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Oncology Center, King Faisal Medical City, Abha, Saudi Arabia.
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre and the Sir Peter McCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and the University of Zurich, Zurich, Switzerland
| | | | - Kristin A Higgins
- Department of Radiation Oncology, City of Hope Atlanta, Newnan, GA, USA
| | - Faiz Alshafa
- Oncology Center, King Faisal Medical City, Abha, Saudi Arabia
| | - Hamza AlGhamdi
- Oncology Center, King Faisal Medical City, Abha, Saudi Arabia
| | - Erin F Gillespie
- Department of Radiation Oncology, University of Washington School of Medicine and Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Kevin Stephans
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Layth Mula-Hussain
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen Harrow
- Department of Clinical Oncology, Edinburgh Cancer Centre, Edinburgh, United Kingdom
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
2
|
Cordrey IL, Kucuk S, Ramsey C, Bowling J, Desai DD. A predictive model for Gamma Knife intermediate dose spill: R50% Analytic-GK. J Appl Clin Med Phys 2025; 26:e14579. [PMID: 39611733 PMCID: PMC11799916 DOI: 10.1002/acm2.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Minimizing intermediate dose spill in stereotactic radiosurgery (SRS) for brain treatment is crucial. Intermediate dose spill correlates with the exposure of normal brain tissue to high doses, which increases the risk of radionecrosis. R50%, defined as the volume of the 50% of prescription isodose cloud/planning target volume, is one metric for intermediate dose spill. A predictive model for R50% in linear accelerator VMAT-delivered SRS has been developed Desai et al. (2020) and is called R50%Analytic. This study extends the R50%Analytic model to Gamma Knife (GK) delivered SRS, resulting in the R50%Analytic-GK model. METHODS Phantom calculations were performed on 11 spherical target volumes ranging from 0.001 to 44 cm3 to develop the R50%Analytic-GK model. R50%Analytic-GK was tested against clinical data from 18 brain metastasis cases with one to 11 targets treated on GK Icon and planned in GammaPlan with lightning dose optimizer. Thirty-five targets with volumes between 0.011 and 27.4 cm3 were analyzed by extracting the R50% achieved clinically (R50%Clinical) for comparison to the predicted intermediate dose spill from R50%Analytic-GK. RESULTS The predicted R50%Analytic-GK values generally represent a lower bound for the R50%Clinical values as the model would predict. The Difference, R50%Clinical - R50%Analytic-GK, has a median value of 0.92, which quantifies the lower bound nature of R50%Analytic-GK. The model reflected the character of intermediate dose spill for the clinical cases. A few outliers were likely due to specific planning complexities. CONCLUSION The R50%Analytic-GK model for intermediate dose spill successfully extends the theoretical framework of R50%Analytic to GK-delivered SRS. It provides a method to predict the intermediate dose spill for GK Icon treatments. This model can aid in assessing SRS treatment plans by providing a benchmark for the intermediate dose spill for comparison.
Collapse
Affiliation(s)
- Ivan L. Cordrey
- Thompson Cancer Survival CenterCumberland Medical CenterCrossvilleTennesseeUSA
| | - Sare Kucuk
- Department of Nuclear Engineering ComplexUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | | | - Dharmin D. Desai
- Advanced Oncology SolutionsVarian Medical SystemsHixsonTennesseeUSA
| |
Collapse
|
3
|
Gaudreault M, Hardcastle N, Jackson P, McIntosh L, Higgs B, Pryor D, Sidhom M, Dykyj R, Moore A, Kron T, Siva S. Dose-Effect Relationship of Kidney Function After SABR for Primary Renal Cell Carcinoma: TROG 15.03 FASTRACK II. Int J Radiat Oncol Biol Phys 2024; 120:648-654. [PMID: 38679212 DOI: 10.1016/j.ijrobp.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Stereotactic ablative body radiotherapy (SABR) is a novel option to treat primary renal cell carcinoma. However, a high radiation dose may be received by the treated kidney, which may affect its function posttreatment. This study investigates the dose-effect relationship of kidney SABR with posttreatment renal function. METHODS AND MATERIALS This was a prespecified secondary endpoint of the multicenter FASTRACK II (Focal Ablative STereotactic RAdiotherapy for Cancers of the Kidney phase II) clinical trial (National Clinical Trial 02613819). Patients received either 26 Gy in a single fraction (SF) for tumors with a maximal diameter of 4 cm or less or 42 Gy in 3 fractions (multifraction [MF]) for larger tumors. To determine renal function change, 99mTc-dimercaptosuccinic acid (DMSA) single-photon emission computed tomography/computed tomography (SPECT/CT) scans were acquired, and the glomerular filtration rate was estimated at baseline, 12, and 24 months posttreatment. Imaging data sets were rigidly registered to the planning CT where kidneys were segmented to calculate dose-response curves. RESULTS From 71 enrolled patients, 36 (51%) and 26 (37%) patients were included in this study based on availability of posttreatment data at 12 and 24 months, respectively. The ipsilateral kidney glomerular filtration rate decreased from baseline by 42% and 39% in the SF cohort and by 45% and 62% in the MF cohort, at 12 and 24 months, respectively (P < .03). The loss in renal function was 3.6%/Gy ± 0.8%/Gy and 4.5%/Gy ± 1.0%/Gy in the SF cohort and 1.7%/Gy ± 0.1%/Gy and 1.7%/Gy ± 0.2%/Gy in the MF cohort at 12 and 24 months, respectively. The major loss in renal function occurred in high-dose regions, where dose-response curves converged to a plateau. CONCLUSIONS For the first time in a multicenter study, the dose-effect relationship at 12 and 24 months post-SABR treatment for primary renal cell carcinoma was quantified. Kidney function reduces linearly with dose up to 100 Gy BED3.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia.
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Braden Higgs
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia; University of South Australia, South Australia, Australia
| | - David Pryor
- Princess Alexandra Hospital, Queensland, Australia
| | - Mark Sidhom
- Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Rachael Dykyj
- Trans Tasman Radiation Oncology Group, Waratah, New South Wales, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group, Waratah, New South Wales, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, the University of Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Orovwighose T, Rhein B, Schramm O, Jäkel O, Batista V. Definition of a framework for volumetric modulated arc therapy plan quality assessment with integration of dose-, complexity-, and robustness metrics. Phys Imaging Radiat Oncol 2024; 32:100685. [PMID: 39717184 PMCID: PMC11663972 DOI: 10.1016/j.phro.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Background and purpose Conventionally, the quality of radiotherapy treatment plans is assessed through visual inspection of dose distributions and dose-volume histograms. This study developed a framework to evaluate plan quality using dose, complexity, and robustness metrics. Additionally, a method for predicting plan robustness metrics using dose and complexity metrics was introduced for cases where plan robustness evaluation is unavailable or impractical. Materials and methods The framework and prediction models were developed and validated using 103-bronchial Volumetric Modulated Arc Therapy (VMAT)-plans. The application of the framework was demonstrated using 25-VMAT-plans. To identify significant metrics for plan evaluation, 122-metrics were analysed and narrowed down using multivariate Spearman correlation. Metric limits were set with Statistical process control (SPC). Robustness metrics were predicted using multivariable or single linear regression models based on dose-and complexity-metrics. Results Twenty-five-metrics were selected based on the amount and strength of correlations. R95(dose coverage) and HI95/5(homogeneity index) stood out among the dose-metrics, while the complexity-metrics showed similar correlations. Average scenarios dose at 95 % Clinical Target Volume D95mean(CTV) and Errorbar-based Volume-Histograms (EVH) were notable for robustness metrics. Approximately 99 % of evaluated metrics fell within established SPC limits. The prediction model for D95mean(CTV) showed good performance (adjusted R2 = 0.88, mean squared error (MSE) = 3.84 × 10-6), while the model for EVH demonstrated moderate reliability (adjusted R2 = 0.52, MSE = 0.2). No statistically significant differences were found between the predicted (using dose-and complexity-metrics) and calculated robustness metrics (EVH (p-value = 0.9) and D95mean(CTV) (p-value = 1)). Conclusions The developed framework enables early detection of sub-optimal, complex and non-robust treatment plans. The predictive model can be used when robustness evaluations are impractical.
Collapse
Affiliation(s)
- Tina Orovwighose
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bernhard Rhein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Schramm
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Dep. Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vania Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
5
|
Kuperman VY, Altundal Y, Kouskoulas TN. Toward an improved assessment of dose conformity in radiotherapy. Med Phys 2024; 51:2210-2220. [PMID: 37947447 DOI: 10.1002/mp.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Evaluation of dose conformity is important to ensure minimum dose to normal tissue and sufficient dose coverage of the planning target volume (PTV). The existing conformity indices depend on the PTV volume and do not differentiate between two different scenarios: overdosing normal tissue and underdosing PTV. PURPOSE In this study, we introduce a novel index to assess conformity of dose distributions in radiotherapy. METHODS The suggested conformity indexC I d e x p $C{I_{{d_{exp}}}}$ is defined by the ratio of the volume representing actual "non-conformity" of the planned dose and the volume representing acceptable "non-conformity." The latter volume is produced by expanding the PTV. If both the average distance (d ¯ $\overline d $ ) between the reference isodose surface and planning target volume and arbitrarily selected PTV expansion margin (d e x p ${d_{exp}}$ ) are much smaller than the size of the PTV,C I d e x p $C{I_{{d_{exp}}}}$ approximately equals the ratiod ¯ d e x p $\dfrac{{\bar d}}{{{d_{exp}}}}$ . In this work,C I d e x p $C{I_{{d_{exp}}}}$ was utilized to analyze 90 cases of brain metastases treated with stereotactic radiation therapy (SRS) and 102 cases of lung cancer treated with stereotactic body radiation therapy (SBRT). RESULTS Ford e x p ${d_{exp}}$ = 0.1 cm, all considered SRS treatment plans were characterized byC I d e x p < 1 $C{I_{{d_{exp}}}} < 1$ while 2 out of 102 SBRT plans hadC I d e x p > 1 $C{I_{{d_{exp}}}} > 1$ . The average values ofC I d e x p $C{I_{{d_{exp}}}}$ for SRS and SBRT plans were 0.31 and 0.43, respectively. Ford e x p ${d_{exp}}$ = 0.2 cm, all studied treatment plans hadC I d e x p < 1 $C{I_{{d_{exp}}}} < 1$ , and the average values ofC I d e x p $C{I_{{d_{exp}}}}$ for SRS and SBRT plans were 0.15 and 0.25, respectively. CONCLUSIONS The suggested conformity indexC I d e x p $C{I_{{d_{exp}}}}$ varies less with PTV volume than the RTOG and Riet-Paddick indices frequently used for evaluation of dose conformity. In addition,C I d e x p $C{I_{{d_{exp}}}}$ can be expressed as a sum of two terms which describe "over-coverage" and "under-coverage" of the treatment target. The results confirm thatC I d e x p $C{I_{{d_{exp}}}}$ can be used for evaluation of dose conformity in SRS and SBRT.
Collapse
Affiliation(s)
- Vadim Y Kuperman
- Florida Cancer Specialists & Research Institute, Hudson, Florida, USA
| | - Yücel Altundal
- Florida Cancer Specialists & Research Institute, Hudson, Florida, USA
| | | |
Collapse
|
6
|
Verification of an optimizer algorithm by the beam delivery evaluation of intensity-modulated arc therapy plans. Radiol Oncol 2021; 55:508-515. [PMID: 34821138 PMCID: PMC8647790 DOI: 10.2478/raon-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background In the case of dynamic radiotherapy plans, the fractionation schemes can have dosimetric effects. Our goal was to define the effect of the fraction dose on the plan quality and the beam delivery. Materials and methods Treatment plans were created for 5 early-stage lung cancer patients with different dose schedules. The planned total dose was 60 Gy, fraction dose was 2 Gy, 3 Gy, 5 Gy, 12 Gy and 20 Gy. Additionally renormalized plans were created by changing the prescribed fraction dose after optimization. The dosimetric parameters and the beam delivery parameters were collected to define the plan quality and the complexity of the treatment plans. The accuracy of dose delivery was verified with dose measurements using electronic portal imaging device (EPID). Results The plan quality was independent from the used fractionation scheme. The fraction dose could be changed safely after the optimization, the delivery accuracy of the treatment plans with changed prescribed dose was not lower. According to EPID based measurements, the high fraction dose and dose rate caused the saturation of the detector, which lowered the gamma passing rate. The aperture complexity score, the gantry speed and the dose rate changes were not predicting factors for the gamma passing rate values. Conclusions The plan quality and the delivery accuracy are independent from the fraction dose, moreover the fraction dose can be changed safely after the dose optimization. The saturation effect of the EPID has to be considered when the action limits of the quality assurance system are defined.
Collapse
|
7
|
Kaplan LP, Korreman SS. A systematically compiled set of quantitative metrics to describe spatial characteristics of radiotherapy dose distributions and aid in treatment planning. Phys Med 2021; 90:164-175. [PMID: 34673370 DOI: 10.1016/j.ejmp.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Many quantitative metrics have been proposed in literature for characterization of spatial dose properties. The aim of this study is to work towards much-needed consensus in the radiotherapy community on which of these metrics to use. We do this by comparing characteristics of the metrics and providing a systematically selected set of metrics to comprehensively quantify properties of the spatial dose distribution. METHODS We searched the literature for metrics to quantitatively evaluate dose conformity, homogeneity, gradient (overall and directional), and distribution and location of over- and under-dosed sub-volumes. For each spatial dose property, we compared the responses of its corresponding metrics to simulated dose variations in a virtual water phantom. Selection criteria were a metric's ability to describe simulated scenarios robustly and to be visualized in an intuitive way. RESULTS We saw substantial differences in the responses of metrics to the simulated dose variations. Some conformity and homogeneity metrics were unable to quantify certain types of changes (e.g. target under-coverage). Others showed a large dependency on the shape and volume of targets and isodoses. Metric values differed between calculations in a static plan and in simulated full treatment courses including setup errors, especially for metrics quantifying distribution and location of hot and cold spots. We provide an Eclipse plugin script to calculate and visualize selected metrics. CONCLUSION The selected set of metrics provides complementary and comprehensive quantitative information about the spatial dose distribution. This work serves as a step towards broader consensus on the use of spatial dose metrics.
Collapse
Affiliation(s)
- Laura Patricia Kaplan
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Stine Sofia Korreman
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Qi Y, Li J, Zhang Y, Shao Q, Liu X, Li F, Wang J, Li Z, Wang W. Effect of abdominal compression on target movement and extension of the external boundary of peripheral lung tumours treated with stereotactic radiotherapy based on four-dimensional computed tomography. Radiat Oncol 2021; 16:173. [PMID: 34493303 PMCID: PMC8425044 DOI: 10.1186/s13014-021-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of abdominal compression on tumour motion and target volume and to determine suitable planning target volume (PTV) margins for patients treated with lung stereotactic body radiotherapy (SBRT) based on four-dimensional computed tomography (4DCT). METHODS Twenty-three patients diagnosed to have a peripheral pulmonary tumour were selected and divided into an all lesions group (group A), an upper middle lobe lesions group (group B), and a lower lobe lesions group (group C). Two 4DCT scans were performed in each patient, one with and one without abdominal compression. Cone beam computed tomography (CBCT) was performed before starting treatment. The gross target volumes (GTVs) were delineated and internal gross target volumes (IGTVs) were defined. IGTVs were generated using two methods: (1) the maximum intensity projections (MIPs) based on the 4DCT were reconstructed to form a single volume and defined as the IGTVMIP and (2) GTVs from all 10 phases were combined to form a single volume and defined as the IGTV10. A 5-mm, 4-mm, and 3-mm margin was added in all directions on the IGTVMIP and the volume was constructed as PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm. RESULTS There was no significant difference in the amplitude of tumour motion in the left-right, anterior-posterior, or superior-inferior direction according to whether or not abdominal compression was applied (group A, p = 0.43, 0.27, and 0.29, respectively; group B, p = 0.46, 0.15, and 0.45; group C, p = 0.79, 0.86, and 0.37; Wilcoxon test). However, the median IGTVMIP without abdominal compression was 33.67% higher than that with compression (p = 0.00), and the median IGTV10 without compression was 16.08% higher than that with compression (p = 0.00). The median proportion of the degree of inclusion of the IGTVCBCT in PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm ≥ 95% was 100%, 100%, and 83.33%, respectively. CONCLUSIONS Abdominal compression was useful for reducing the size of the IGTVMIP and IGTV10 and for decreasing the PTV margins based on 4DCT. In IGTVMIP with abdominal compression, adding a 4-mm margin to account for respiration is feasible in SBRT based on 4DCT.
Collapse
Affiliation(s)
- Yuanjun Qi
- Shandong First Medical University and Shandong Academy of Medical Sciences and Now Studies at Shandong Cancer Hospital and Institute , Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Jinzhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| |
Collapse
|
9
|
DVH Analyzer: design and algorithm to reveal DVH bands for quantitative analysis of robust radiotherapy treatment plans. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Desai DD, Johnson EL, Cordrey IL. The surface area effect: How the intermediate dose spill depends on the PTV surface area in SRS. J Appl Clin Med Phys 2021; 22:186-195. [PMID: 33596329 PMCID: PMC7984485 DOI: 10.1002/acm2.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is rapidly becoming the standard of care for many intracranial targets. The characteristics of the planning target volume (PTV) can affect the intermediate dose spill and thus normal brain volume dose which is correlated with brain toxicity. R50% (volume receiving 50% of prescription dose divided by PTV volume) is a useful metric to quantify the intermediate dose spill. We propose a novel understanding of how the PTV surface area (SAPTV ) affects the intermediate dose spill of SRS treatments. METHODS Using a phantom model provided by a computed tomography (CT) of the IROC Head Phantom® and Eclipse® Treatment Planning System, we investigate the relationship of R50% and SAPTV in single-target SRS treatments. The planning studies are conducted for SRS treatments on a Varian TrueBeam® linear accelerator with high-definition MLC and a 6 MVFFF beam mode. These data are analyzed to ascertain trends in R50% related to SAPTV . Since SAPTV is not available as a structure property in the Eclipse RTPS, we introduce an Eclipse script to extract PTV surface area of arbitrary-shaped PTVs. We compare a physically reasonable theoretical prediction of R50%, R50%Analytic , to the R50% achieved in treatment planning studies. RESULTS The SRS phantom study indicates good correlation between the plan R50% and SAPTV . A near-linear relationship of plan R50% vs SAPTV is observed as predicted by the R50%Analytic model. Agreement between plan R50% values and R50%Analytic predictions is good for all but the very smallest PTV volumes. CONCLUSIONS We demonstrate dependence of the intermediate dose spill measured by R50% on the SAPTV . We call that dependence the surface area effect. This dependence is explicit in the R50%Analytic prediction model. The predicted value of R50%Analytic for a given PTV could be used for guidance during SRS treatment plan optimization, and plan evaluation for that PTV.
Collapse
Affiliation(s)
| | - E. L. Johnson
- Department of Radiation MedicineUniversity of Kentucky Chandler Medical CenterLexingtonKYUSA
| | | |
Collapse
|
11
|
Rokni MB, Pointer KB, George J, Luke JJ, Chmura SJ, Redler G. Radiation treatment planning study to investigate feasibility of delivering Immunotherapy in Combination with Ablative Radiosurgery to Ultra-High DoSes (ICARUS). J Appl Clin Med Phys 2021; 22:196-206. [PMID: 33626240 PMCID: PMC7984482 DOI: 10.1002/acm2.13204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Immune checkpoint inhibitors improve survival in metastatic diseases for some cancers. Multisite SBRT with pembrolizumab (SBRT + Pembro) was shown to be safe with promising local control using biologically effective doses (BEDs) = 95-120 Gy. Increased BED may improve response rate; however, SBRT doses are limited by surrounding organs at risk (OARs). The purpose of this work was to develop and validate methods for safe delivery of ultra-high doses of radiation (BED10 > 300) to be used in future clinical trials. METHODS AND MATERIALS The radiation plans from 15 patients enrolled on a phase I trial of SBRT + pembro were reanalyzed. Metastatic disease sites included liver (8/15), inguinal region (1/15), pelvis (2/15), lung (1/15), abdomen (1/15), spleen (1/15), and groin (1/15). Gross tumor volumes (GTVs) ranged from 80 to 708 cc. Following the same methodology used in the Phase I trial on which these patients were treated, GTVs > 65 cc were contracted to a 65 cc subvolume (SubGTV) resulting in only a portion of the GTV receiving prescription dose. Volumetric modulated arc therapy (VMAT) was used to plan treatments BED10 = 360 Gy. Plans utilizing both 6FFF and 10FFF beams were compared to clinical plans delivering BED10 = 112.50 Gy. The target primary goal was V100% > 95% with a secondary goal of V70% > 99% and OAR objectives per the trial. To demonstrate feasibility, plans were delivered to a diode array phantom and evaluated for fidelity using gamma analysis. RESULTS All 30 plans met the secondary coverage goal and satisfied all OAR constraints. The primary goal was achieved in 12/15 of the 6FFF plans and 13/15 of the 10FFF plans. Average gamma analysis passing rate using criteria of 3% dose difference and 3, 2, and 1 mm were 99.1 ± 1.0%, 98.5 ± 1.6%, and 95.1 ± 3.8%, respectively. CONCLUSION Novel VMAT planning approaches with clinical treatment planning software and linear accelerators prove capable of delivering radiation doses in excess of 360 Gy BED10 to tumor subvolumes, while maintaining safe OAR doses.
Collapse
Affiliation(s)
- Michelle B Rokni
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Kelli B Pointer
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Jonathan George
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Jason J Luke
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
12
|
Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, Götstedt J, Jurado-Bruggeman D, Mukumoto N, Kaplan LP, Koniarová I, Piotrowski T, Placidi L, Vaniqui A, Jornet N. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol 2020; 153:26-33. [PMID: 32987045 DOI: 10.1016/j.radonc.2020.09.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Spain.
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Denmark; Institute of Clinical Research, University of Southern Denmark, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | | | - Anna Bäck
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Julia Götstedt
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate, School of Medicine, Kyoto University, Japan
| | | | - Irena Koniarová
- National Radiation Protection Institute, Prague, Czech Republic
| | - Tomasz Piotrowski
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland; Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - Ana Vaniqui
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Nuria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
13
|
Desai DD, Cordrey IL, Johnson EL. A physically meaningful relationship between R50% and PTV surface area in lung SBRT. J Appl Clin Med Phys 2020; 21:47-56. [PMID: 32725674 PMCID: PMC7497922 DOI: 10.1002/acm2.12964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose We propose a novel understanding of two characteristics of the planning target volume (PTV) that affect the intermediate‐dose spill in lung stereotactic body radiation therapy (SBRT) as measured by R50%. This phantom model research investigates two characteristics of the PTV that have a marked effect on the value of R50%: the mean dose deposited within the PTV (Dav) and the surface area of the PTV (SAPTV). Methods Using a phantom model provided by a CT of the IROC Thorax‐Lung Phantom® (IROC Houston QA Center, Houston, TX) and Eclipse® Treatment Planning System (Varian Medical Systems, Palo Alto, CA), we investigate the two characteristics for spherical and cylindrical PTVs. A total of 135 plans with tightly controlled PTV characteristics are employed. A lower bound for R50% (R50%min∆r) is derived and clearly establishes a relationship between R50% and SAPTV that has not been fully appreciated previously. Results The study of PTV Dav revealed a local minimum for R50% as a function of the PTV Dav at Dav ≈ 110% of Rx dose. As PTV Dav increases above this local minimum, R50% increases; while for PTV Dav less than this local minimum, the R50% value also increases. The study of PTV surface area (SAPTV) demonstrated that as the SAPTV increases, the R50% increases if the PTV volume stays the same. The SAPTV result is predicted by the theoretical investigation that yields the R50% lower bound, R50%min∆r. Conclusions This research has identified two characteristics of the PTV that have a marked influence on R50%: PTV Dav and SAPTV. These characteristics have not been clearly articulated in the vast body of previous research in SBRT. These results could help explain plans that cannot meet the RTOG criteria for R50%. With further development, these concepts could be extended to provide additional guidance for creating acceptable SBRT plans.
Collapse
Affiliation(s)
- Dharmin D Desai
- Radiation Oncology, CHI Memorial Hospital, Chattanooga, TN, USA
| | - Ivan L Cordrey
- Radiation Oncology, CHI Memorial Hospital, Chattanooga, TN, USA
| | - E L Johnson
- Department of Radiation Medicine, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| |
Collapse
|
14
|
Patel G, Mandal A, Choudhary S, Mishra R, Shende R. Plan evaluation indices: A journey of evolution. Rep Pract Oncol Radiother 2020; 25:336-344. [PMID: 32210739 PMCID: PMC7082629 DOI: 10.1016/j.rpor.2020.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
AIM A systemic review and analysis of evolution journey of indices, such as conformity index (CI), homogeneity index (HI) and gradient index (GI), described in the literature. BACKGROUND Modern radiotherapy techniques like VMAT, SRS and SBRT produce highly conformal plans and provide better critical structure and normal tissue sparing. These treatment techniques can generate a number of competitive plans for the same patients with different dose distributions. Therefore, indices like CI, HI and GI serve as complementary tools in addition to visual slice by slice isodose verification while plan evaluation. Reliability and accuracy of these indices have been tested in the past and found shortcomings and benefits when compared to one another. MATERIAL AND METHODS Potentially relevant studies published after 1993 were identified through a pubmed and web of science search using words "conformity index", "Homogeneity index", "Gradient index"," Stereotactic radiosurgery"," stereotactic Body radiotherapy" "complexity metrics" and "plan evaluation index". Combinations of words "plan evaluation index conformity index" were also searched as were bibliographies of downloaded papers. RESULTS AND CONCLUSIONS Mathematical definitions of plan evaluation indices modified with time. CI definitions presented by various authors tested at their own and could not be generalized. Those mathematical definitions of CI which take into account OAR sparing grant more confidence in plan evaluation. Gradient index emerged as a significant plan evaluation index in addition to CI whereas homogeneity index losing its credibility. Biological index base plan evaluation is becoming popular and may replace or alter the role of dosimetrical indices.
Collapse
Affiliation(s)
- Ganeshkumar Patel
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abhijit Mandal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sunil Choudhary
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ritusha Mishra
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravindra Shende
- Department of Radiotherapy, Balco Medical Center, New Raipur, Sector 36, Raipur, Chattisgarh 493661, India
| |
Collapse
|
15
|
de Jong EEC, Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Milder M, Møller DS, Nyeng TB, Tanadini-Lang S, Lartigau E, Lacornerie T, Senan S, Verbakel W, Verellen D, De Kerf G, Hurkmans C. Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91. Radiother Oncol 2020; 142:217-223. [PMID: 31767472 DOI: 10.1016/j.radonc.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE In 2017 the ACROP guideline on SBRT for peripherally located early stage NSCLC was published. Later that year ICRU-91 about prescribing, recording and reporting was published. The purpose of this study is to quantify the current variation in prescription practice in the institutions that contributed to the ACROP guideline and to establish the link between the ACROP and ICRU-91 recommendations. MATERIAL AND METHODS From each of the eight participating centres, 15 SBRT plans for stage I NSCLC were analyzed. Plans were generated following the institutional protocol, centres prescribed 3 × 13.5 Gy, 3 × 15 Gy, 3 × 17 Gy or 3 × 18 Gy. Dose parameters of the target volumes were reported as recommended by ICRU-91 and also converted to BED10Gy. RESULTS The intra-institutional variance in D98%, Dmean and D2% of the PTV and GTV/ITV is substantially smaller than the inter-institutional spread, indicating well protocollised planning procedures are followed. The median values per centre ranged from 56.1 Gy to 73.1 Gy (D2%), 50.4 Gy to 63.3 Gy (Dmean) and 40.5 Gy to 53.6 Gy (D98%) for the PTV and from 57.1 Gy to 73.6 Gy (D2%), 53.7 Gy to 68.7 Gy (Dmean) and 48.5 Gy to 62.3 Gy (D98%) for the GTV/ITV. Comparing the variance in PTV D98% with the variance in GTV Dmean per centre, using an F-test, shows that four centres have a larger variance in GTV Dmean, while one centre has a larger variance in PTV D98% (p values <0.01). This shows some centres focus on achieving a constant PTV coverage while others aim at a constant GTV coverage. CONCLUSION More detailed recommendations for dose planning and reporting of lung SBRT in line with ICRU-91 were formulated, including a minimum PTV D98% of 100 Gy BED10Gy and minimum GTV/ITV mean dose of 150 Gy BED10Gy and a D2% in the range of 60-70 Gy.
Collapse
Affiliation(s)
| | | | | | | | | | - Maaike Milder
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | | | | | | | | | | | - Suresh Senan
- Amsterdam University Medical Center, the Netherlands.
| | | | - Dirk Verellen
- Iridium Kankernetwerk, Antwerp University, Antwerp, Belgium.
| | - Geert De Kerf
- Iridium Kankernetwerk, Antwerp University, Antwerp, Belgium.
| | | |
Collapse
|
16
|
Lee J, Dean C, Patel R, Webster G, Eaton DJ. Multi-center evaluation of dose conformity in stereotactic body radiotherapy. Phys Imaging Radiat Oncol 2019; 11:41-46. [PMID: 33458276 PMCID: PMC7807546 DOI: 10.1016/j.phro.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiotherapy (SBRT) is an emerging technique for treating oligometastases, but limited data is available on what plan quality is achievable for a range of modalities and clinical sites. METHODS SBRT plans for lung, spine, bone, adrenal, liver and node sites from 17 participating centers were reviewed. Centers used various delivery techniques including static and rotational intensity-modulation and multiple non-coplanar beams. Plans were split into lung and other body sites and evaluated with different plan quality metrics, including two which are independent of target coverage; "prescription dose spillage" (PDS) and "modified gradient index" (MGI). These were compared to constraints from the ROSEL and RTOG 0813 clinical trials. RESULTS Planning target volume (PTV) coverage was compromised (PTV V100% < 90%) in 29% of patient plans in order to meet organ-at-risk (OAR) tolerances, supporting the use of plan quality metrics which are independent of target coverage. Both lung (n = 48) and other body (n = 99) site PDS values agreed well with ROSEL constraints on dose spillage, but RTOG 0813 values were too high to detect sub-optimal plans. MGI values for lung plans were mis-matched to both sets of previous constraints, with ROSEL values too high and RTOG 0813 values too low. MGI values were lower for other body plans as expected, though this was only statistically significant for PTV volumes <20 cm3. CONCLUSIONS Updated guidance for lung and other body site SBRT plan quality using the PDS and MGI metrics is presented.
Collapse
Affiliation(s)
- Jonny Lee
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| | | | - Rushil Patel
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| | | | - David J. Eaton
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
| |
Collapse
|
17
|
Colbert LE, Rebueno N, Moningi S, Beddar S, Sawakuchi GO, Herman JM, Koong AC, Das P, Holliday EB, Koay EJ, Taniguchi CM. Dose escalation for locally advanced pancreatic cancer: How high can we go? Adv Radiat Oncol 2018; 3:693-700. [PMID: 30370371 PMCID: PMC6200902 DOI: 10.1016/j.adro.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose There are limited treatment options for locally advanced, unresectable pancreatic cancer (LAPC) and no likelihood of cure without surgery. Radiation offers an option for local control, but radiation dose has previously been limited by nearby bowel toxicity. Advances in on-board imaging and treatment planning may allow for dose escalation not previously feasible and improve local control. In preparation for development of clinical trials of dose escalation in LAPC, we undertook a dosimetric study to determine the maximum possible dose escalation while maintaining known normal tissue constraints. Methods and Materials Twenty patients treated at our institution with either SBRT or dose-escalated hypofractionated IMRT (DE-IMRT) were re-planned using dose escalated SBRT to 70 Gy in 5 fractions to the GTV and 40 Gy in 5 fractions to the PTV. Standard accepted organ at risk (OAR) constraints were used for planning. Descriptive statistics were generated for homogeneity, conformality, OAR's and GTV/PTV. Results Mean iGTV coverage by 50 Gy was 91% (±0.07%), by 60 Gy was 61.3% (±0.08%) and by 70 Gy was 24.4% (±0.05%). Maximum PTV coverage by 70 Gy was 33%. Maximum PTV coverage by 60 Gy was 77.5%. The following organ at risk (OAR) constraints were achieved for 90% of generated plans: Duodenum V20 < 30 cc, V30 < 3 cc, V35 < 1 cc; Small Bowel V20 < 15 cc, V30 < 1 cc, V35 < 0.1 cc; Stomach V20 < 20 cc, V30 < 2 cc, V35 < 1 cc. V40 < 0.5 cc was achieved for all OAR. Conclusions Dose escalation to 60 Gy is dosimetrically feasible with adequate GTV coverage. The identified constraints for OAR's will be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Neal Rebueno
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Shalini Moningi
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sam Beddar
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gabriel O Sawakuchi
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Joseph M Herman
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Emma B Holliday
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|