1
|
Kaur R, Pandey S, Gupta S, Singh J. Harnessing the potential of long non-coding RNAs in the pathophysiology of Alzheimer's disease. Exp Neurol 2025; 385:115134. [PMID: 39740737 DOI: 10.1016/j.expneurol.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs). Among these, long non-coding RNAs (lncRNAs)-long transcripts that don't seem to be able to code for proteins-have drawn attention because they function as regulatory agents in a variety of biological processes. Recent research suggests that lncRNAs play a role in the pathogenesis of Alzheimer's disease by modulating tau hyperphosphorylation, amyloid production, synaptic impairment, neuroinflammation, mitochondrial dysfunction, and oxidative stress, though their precise effects on the disorder are unknown. The biology and modes of action of the best-characterized lncRNAs in AD will be outlined here, with an emphasis on their possible involvement in the pathophysiology of the disease. As lncRNAs may offer prospective prognostic/diagnostic biomarkers and therapeutic targets for the treatment of AD, a greater comprehension of the molecular processes and the intricate network of interactions in which they are implicated could pave the way for future research.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India.
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS)Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| |
Collapse
|
2
|
Rajanala K, Upadhyay A. Epigenetic Switches in Retinal Homeostasis and Target for Drug Development. Int J Mol Sci 2024; 25:2840. [PMID: 38474086 PMCID: PMC10932288 DOI: 10.3390/ijms25052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Retinal homeostasis, a tightly regulated process maintaining the functional integrity of the retina, is vital for visual function. Emerging research has unveiled the critical role of epigenetic regulation in controlling gene expression patterns during retinal development, maintenance, and response to mutational loads and injuries. Epigenetic switches, including DNA methylation, histone modifications, and non-coding RNAs, play pivotal roles in orchestrating retinal gene expression and cellular responses through various intracellular, extracellular, and environmental modulators. This review compiles the current knowledge on epigenetic switches in retinal homeostasis, providing a deeper understanding of their impact on retinal structural integrity and function and using them as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
| | - Arun Upadhyay
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA;
| |
Collapse
|
3
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
4
|
Sharma A, Singh NK. Long Non-Coding RNAs and Proliferative Retinal Diseases. Pharmaceutics 2023; 15:pharmaceutics15051454. [PMID: 37242701 DOI: 10.3390/pharmaceutics15051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Retinopathy refers to disorders that affect the retina of the eye, which are frequently caused by damage to the retina's vascular system. This causes leakage, proliferation, or overgrowth of blood vessels through the retina, which can lead to retinal detachment or breakdown, resulting in vision loss and, in rare cases, blindness. In recent years, high-throughput sequencing has significantly hastened the discovery of new long non-coding RNAs (lncRNAs) and their biological functions. LncRNAs are rapidly becoming recognized as critical regulators of several key biological processes. Current breakthroughs in bioinformatics have resulted in the identification of several lncRNAs that may have a role in retinal disorders. Nevertheless, mechanistic investigations have yet to reveal the relevance of these lncRNAs in retinal disorders. Using lncRNA transcripts for diagnostic and/or therapeutic purposes may aid in the development of appropriate treatment regimens and long-term benefits for patients, as traditional medicines and antibody therapy only provide temporary benefits that must be repeated. In contrast, gene-based therapies can provide tailored, long-term treatment solutions. Here, we will discuss how different lncRNAs affect different retinopathies, including age-related macular degeneration (AMD), diabetic retinopathy (DR), central retinal vein occlusion (CRVO), proliferative vitreoretinopathy (PVR), and retinopathy of prematurity (ROP), which can cause visual impairment and blindness, and how these retinopathies can be identified and treated using lncRNAs.
Collapse
Affiliation(s)
- Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wang J, Hou F, Tang L, Xiao K, Yang T, Wang Z, Liu G. The interaction between long non-coding RNA LINC01564 and POU2F1 promotes the proliferation and metastasis of gastric cancer. J Transl Med 2022; 20:220. [PMID: 35562740 PMCID: PMC9101833 DOI: 10.1186/s12967-022-03391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) serve as key regulators in tumor development and progression. However, only a few lncRNAs have been functionally characterized in gastric cancer (GC). Methods Bioinformatics analysis was conducted to find lncRNAs that are associated with GC metastasis. RNA FISH, RIP, and RNA pull down assays were used to study the complementary binding of LINC01564 complementary to the 3′UTR of transcription factor POU2F1. The transcription activation of LINC01564 by POU2F1 as a transcription factor was examined by ChIP assay. In vitro assays such as MTT, cell invasion assay, and clonogenic assay were conducted to examined the impacts of LINC01564 and POU2F1 on GC cell proliferation and invasion. Experiments in vivo were performed to access the impacts of LINC01564 and POU2F1 on GC metastasis. Results The results showed that LINC01564 complementary bound to the 3′UTR of POU2F1 to form an RNA duplex, whereby stabilizing POU2F1 mRNA and increasing the enrichment in cells. The level of LINC01564 was also increased by POU2F1 through transcription activation. In vitro assays showed that LINC01564 promoted the proliferation, invasion and migration of GC cells through increasing POU2F1. In vivo experiments indicate the promotion of GC proliferation and metastasis by the interaction between LINC01564 and POU2F1. Conclusion Taken together, our results indicate that the interaction between LINC01564 and POU2F1 promotes the proliferation, migration and invasion of GC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03391-x.
Collapse
Affiliation(s)
- Jixu Wang
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University and Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, Hunan, China
| | - Futao Hou
- Department of General Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, 61 the West Jiefang Road, Furong District, Changsha, 410003, Hunan, China
| | - Lusheng Tang
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University and Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, Hunan, China
| | - Ke Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Tengfei Yang
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University and Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, Hunan, China
| | - Zhiqiang Wang
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University and Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, Hunan, China.
| | - Gu Liu
- Department of Gastrointestinal Surgery, Chenzhou First People's Hospital and The First Affiliated Hospital of Xiangnan University, 102 Luojiajing, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
7
|
Wang B, Wang M, Jia S, Li T, Yang M, Ge F. Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells. J Proteome Res 2022; 21:1137-1152. [DOI: 10.1021/acs.jproteome.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zheng P, Wu Y, Chen Y, Chen Z, Zhang T, Chen Z, Zhang T. Novel insights into the mechanisms by which lncRNA HOTAIR regulates migration and invasion in HeLa cells. Cell Cycle 2022; 21:602-617. [PMID: 35090376 PMCID: PMC8942418 DOI: 10.1080/15384101.2022.2030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
HOTAIR, as one of the few well-studied oncogenic lncRNAs, is involved in human tumorigenesis and is dys-regulated in most human cancers. The transcription co-activator factor YAP1 is broadly expressed in many tissues, and promotes cancer metastasis and progression. However, the precise biological roles of HOTAIR and YAP1 in cancer cells remain unclear. In this study, we showed that HOTAIR regulates H3K27 histone modification in the promoter of miR-200a to mediate miR-200a expression by recruiting EZH2. YAP1, as a potential target gene of miR-200a, aggravated the effects of miR-200a on the migration and invasion of HeLa cells. YAP1 activated the transcription of RPL23, which is a novel downstream transcriptional-regulator of YAP1. Agreement with this, the expression of YAP1 and RPL23 was dramatically decreased after injecting HeLa cells transfected with siHOTAIR in a xenograft mouse model. Accordingly, we propose a novel model of the molecular mechanism by which HOTAIR promotes the migration and invasion of cancer cells involving the miR-200a-3p/YAP1/RPL23 axis.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China,CONTACT Peng Zheng Institute of Biology and Medicine, College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan430065, China
| | - Yaoqin Wu
- Third Institute of Oceanography State Administration, XiamenChina
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China,Zhuo Chen Shangdong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China,Tongcun Zhang Institute of Biology and Medicine, College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Cui T, Guo J, Sun Z. A computational prognostic model of lncRNA signature for clear cell renal cell carcinoma with genome instability. Expert Rev Mol Diagn 2021; 22:213-222. [PMID: 34871123 DOI: 10.1080/14737159.2021.1979960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in genomic instability and prognosis of cancer patients, but the methods to identify genomic instability-related lncRNAs have yet to be established. In the present study, to assess the prognostic value of lncRNAs associated with genomic instability in clear cell renal cell carcinoma (ccRCC).A computational framework was established based on the mutation hypothesis and combined lncRNA expression and somatic mutation profiles of the ccRCC genome. Furthermore, a prognostic model was developed using the genome instability-derived lncRNA signature GILncSig based on three lncRNA genes (LINC02471, LINC01234, and LINC00460) and verified using multiple independent patient cohorts.This study established an effective computational method to study the role of lncRNAs in genomic instability, with potential applications in identifying new genomic instability-related cancer biomarkers.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiantao Guo
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhixia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Pan L, Du M, Liu H, Cheng B, Zhu M, Jia B, Wang Y, He W, Li X, Liu C, Gu J, Li M, Zhang Y, Yao L, Zhang Y, Hao Q. LncRNA FTX promotes the malignant progression of colorectal cancer by regulating the miR-214-5p-JAG1 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1369. [PMID: 34733921 PMCID: PMC8506562 DOI: 10.21037/atm-21-2755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) have recently been found to be vital regulators of various cancers, including colorectal cancer (CRC). It has been previously reported that the dysregulated expression of lncRNA Five prime to Xist (FTX) is involved in carcinogenesis. However, the role of lncRNA FTX in the progression of CRC is still unclear. Methods Fluorescence in situ hybridization (FISH) was used to detect the expression of lncRNA FTX and miR-214-5p in CRC tissues. Cell Counting Kit-8 assay, transwell assay, wound-healing assay, and proliferation assay were used to explore the function of lncRNA FTX in CRC cells. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and luciferase reporter assay were used to confirm the relationship between lncRNA FTX and miR-214-5p-jagged canonical Notch ligand 1 (JAG1). We further explored the role of lncRNA FTX in vivo using xenograft tumor assay. Results lncRNA FTX was found to be upregulated in CRC tissues by FISH. The downregulation of endogenous lncRNA FTX expression inhibited CRC cell proliferation, migration, and invasion. Mechanistically, lncRNA FTX sequestered miR-214-5p and thus released its repression on JAG1, driving the malignant progression of CRC. Conclusions These findings give rise to a new perspective, the lncRNA FTX-miR-214-5p-JAG1 regulatory axis, in exploring the cancer-promoting mechanism of lncRNA FTX in CRC.
Collapse
Affiliation(s)
- Luxiang Pan
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Mingrui Du
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haixia Liu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Boyang Cheng
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Maorong Zhu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinwen Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiaoju Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chenlin Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Li Yao
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
12
|
Chen XJ, Zhang CJ, Wang YH, Jin ZB. Retinal Degeneration Caused by Ago2 Disruption. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34529004 PMCID: PMC8447045 DOI: 10.1167/iovs.62.12.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Argonaute proteins are key players in small RNA-guided gene silencing processes. Ago2 is the member of the Argonaute subfamily with slicer endonuclease activity and is critical for microRNA homeostasis and indispensable for biological development. However, the impact of Ago2 dysregulation in the retina remains to be fully explored. In this study, we studied the role of Ago2 in mouse retina. Methods We explored the function of Ago2 in the mouse retina through an adeno-associated virus-mediated Ago2 disruption mouse model. An ERG was carried out to determine the retinal function. Spectral domain optical coherence tomography, fundus photographs, and immunostaining were performed to investigate the retinal structure. A quantitative RT-PCR assay was used to determine the expression of noncoding RNAs. Results Both silencing and overexpression of Ago2 in mouse retina resulted in significant retinal morphological alterations and severe impairment of retinal function, mainly with a thinned outer nuclear layer, shortened inner segment/outer segment, and diminished ERG responses. Furthermore, Ago2 disruption resulted in alterations of noncoding RNAs in retina. Conclusions Our finding demonstrated that Ago2 interruption led to severe retinal degeneration, suggested that Ago2 homeostasis contributed to retinal structural and functional maintenance.
Collapse
Affiliation(s)
- Xue-Jiao Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, China
| | - Ya-Han Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Blasiak J, Hyttinen JMT, Szczepanska J, Pawlowska E, Kaarniranta K. Potential of Long Non-Coding RNAs in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:9178. [PMID: 34502084 PMCID: PMC8431062 DOI: 10.3390/ijms22179178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
14
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
15
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Carrella S, Banfi S, Karali M. Sophisticated Gene Regulation for a Complex Physiological System: The Role of Non-coding RNAs in Photoreceptor Cells. Front Cell Dev Biol 2021; 8:629158. [PMID: 33537317 PMCID: PMC7848107 DOI: 10.3389/fcell.2020.629158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Photoreceptors (PRs) are specialized neuroepithelial cells of the retina responsible for sensory transduction of light stimuli. In the highly structured vertebrate retina, PRs have a highly polarized modular structure to accommodate the demanding processes of phototransduction and the visual cycle. Because of their function, PRs are exposed to continuous cellular stress. PRs are therefore under pressure to maintain their function in defiance of constant environmental perturbation, besides being part of a highly sophisticated developmental process. All this translates into the need for tightly regulated and responsive molecular mechanisms that can reinforce transcriptional programs. It is commonly accepted that regulatory non-coding RNAs (ncRNAs), and in particular microRNAs (miRNAs), are not only involved but indeed central in conferring robustness and accuracy to developmental and physiological processes. Here we integrate recent findings on the role of regulatory ncRNAs (e.g., miRNAs, lncRNAs, circular RNAs, and antisense RNAs), and of their contribution to PR pathophysiology. We also outline the therapeutic implications of translational studies that harness ncRNAs to prevent PR degeneration and promote their survival and function.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
18
|
Wu Y, Qiu J, Chen S, Chen X, Zhang J, Zhuang J, Liu S, Yang M, Zhou P, Chen H, Ge J, Yu K, Zhuang J. Crx Is Posttranscriptionally Regulated by Light Stimulation in Postnatal Rat Retina. Front Cell Dev Biol 2020; 8:174. [PMID: 32318566 PMCID: PMC7154164 DOI: 10.3389/fcell.2020.00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cone rod homeobox (Crx) plays a key role at the center of a regulatory network that coordinates many pathways in the retina. Its abnormal expression induces retinal disorders. However, the underlying regulatory mechanism of Crx expression is not well defined. Here, we present data that show that the levels of Crx mRNA were inconsistent with that of Crx protein in primary retinal neurocytes cultured in light conditions. Crx protein levels were significantly higher (2.56-fold) in cells cultured in the dark than in cells cultured in light, whereas Crx mRNA was not changed in either type of cell. Moreover, the expression of Crx protein showed a significant light intensity-dependent decrease. Consistently, Crx downstream genes rhodopsin and arrestin also decreased in retinal neurocytes upon light exposure. Furthermore, Crx promoter activity assay performed in primary retinal neurocytes further indicated that light exposure and darkness did not affect its inducibility. In addition, the inconsistency between Crx mRNA and protein expression after light exposure was not observed in 661w cells transfected with plasmid pcDNA3.1-Crx, suggesting that the inconsistency between Crx mRNA and protein induced by light was specific to the endogenous Crx. More importantly, this observation was confirmed in vivo in postnatal day 15 (P15) retinas but not in adult retinas, further implicating that the posttranscriptional regulation mechanism may be involved in Crx expression in the developing retina. Therefore, our study sheds light on the mechanism of Crx expression in postnatal rat retina.
Collapse
Affiliation(s)
- Yihui Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiejie Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Meng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haoting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Jiang X, Zhu Q, Wu P, Zhou F, Chen J. Upregulated Long Noncoding RNA LINC01234 Predicts Unfavorable Prognosis for Colorectal Cancer and Negatively Correlates With KLF6 Expression. Ann Lab Med 2020; 40:155-163. [PMID: 31650732 PMCID: PMC6822002 DOI: 10.3343/alm.2020.40.2.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background LINC01234, a long noncoding RNA (lncRNA), is overexpressed in several cancers, including colorectal cancer (CRC). We investigated the role of LINC01234 in CRC development and confirmed its correlation with Krüppel-like factor 6 (KLF6), a tumor suppressor gene that is dysregulated in CRC. Methods We tested mRNA levels using quantitative reverse transcription PCR (qRT-PCR). Tissue samples from patients with CRC, inflammatory bowel disease (IBD), hyperplastic polyp, and adenoma were included. Correlations between clinicopathological parameters, overall survival (OS) rate, and LINC01234 were analyzed using Kruskal-Wallis H test. Additionally, cell proliferation, apoptosis, and tumor formation in nude mice were tested to investigate the mechanism of LINC01234. Western blotting was used to determine protein levels. Results LINC01234 expression was significantly upregulated in CRC tissues and CRC cell lines than in non-tumor tissues and normal epithelial cells, respectively. LINC01234 was associated with high tumor stage, larger tumor size, and metastasis. Patients with higher LINC01234 expression showed reduced OS. Cell proliferation was inhibited by LINC01234 knockdown, whereas apoptosis was enhanced. Mice injected with SW480 cells with LINC01234 knockdown displayed decreased tumor volume, weight, and Ki-67 levels compared with those injected with control cells. KLF6 was negatively regulated by LINC01234. Overexpression of KLF6 showed effects similar to those observed following LINC01234 knockdown on cell proliferation and apoptosis. Conclusions LINC01234 could be a prognostic biomarker in CRC patients. Upregulation of LINC01234 in CRC promotes tumor development through negative regulation of KLF6.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiaoying Zhu
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Pengxi Wu
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fengsheng Zhou
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Chen
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Cissé Y, Bai L, Chen MT. LncRNAs in ocular neovascularizations. Int J Ophthalmol 2019; 12:1959-1965. [PMID: 31850182 PMCID: PMC6901876 DOI: 10.18240/ijo.2019.12.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
The prevalence of eye diseases worldwide is dramatically increasing and represents a major concern in underdeveloped and developed regions. Ocular diseases, previously associated with a higher depression risk, also impose a substantial economic burden on affected families, thus early detection and/or accurate treatment in order to avoid and prevent blindness should be emphasized. Ocular neovascularization (NV), the leading cause of blindness in a variety of eye diseases, is a pathologic process characterized by the formation, proliferation and infiltration of anomalous, tiny and leaky fragile blood vessels within the eye. Genetics have been suspected to play an important role in the occurrence of eye diseases, with the detection of a numbers of specific gene mutations. Long non-coding RNA (lncRNAs) are novel class of regulatory molecules previously associated with various biological processes and diseases, however the nature of the relation and pathways by which they might contribute to the development of corneal, choroidal and retinal NV have not yet been completely elucidated. In this review, we focus on the regulation and characteristics of lncRNAs, summarize results from ocular NV-related studies and discuss the implication of lncRNAs in ocular NV development.
Collapse
Affiliation(s)
- Yacouba Cissé
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Min-Ting Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
21
|
Lyu Y, Bai L, Qin C. Long noncoding RNAs in neurodevelopment and Parkinson's disease. Animal Model Exp Med 2019; 2:239-251. [PMID: 31942556 PMCID: PMC6930994 DOI: 10.1002/ame2.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lncRNAs are involved in regulating a variety of biological processes, including immune, cancer, stress, development and differentiation at the transcriptional, epigenetic or post-transcriptional levels. Here, we review the role of lncRNAs in the process of neurodevelopment, neural differentiation, synaptic function, and pathogenesis of Parkinson's disease (PD). These pathomechanisms include protein misfolding and aggregation, disordered protein degradation, mitochondrial dysfunction, oxidative stress, autophagy, apoptosis, and neuroinflammation. This information will provide the basis of lncRNA-based disease diagnosis and drug treatment for PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lin Bai
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Chuan Qin
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
22
|
Zhang B, Yan M, Zhang W, Ke ZY, Ma LG. Glycyrrhiza glabra suppresses nasopharyngeal carcinoma cell proliferation through inhibiting the expression of lncRNA, AK027294. Biosci Biotechnol Biochem 2019; 84:314-320. [PMID: 31589096 DOI: 10.1080/09168451.2019.1673695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycyrrhiza glabra is considered as potential drug for nasopharyngeal carcinoma (NPC). However, whether the long noncoding RNAs' (lncRNAs) contributes to the anti-cancer function of this herb is unknown. In present study, we analyzed the differential expression of lncRNA between G. glabra-treated and untreated C666-1 cells. Out of those tumor-related lncRNAs, AK027294 had a strongest down-regulation upon G. glabra treatment. Knockdown of AK027294 suppresses the proliferation of C666-1 cells by inducing the apoptosis. Moreover, either G. glabra treatment or knockdown of AK027294 significantly increases the production of EZH1 (Enhancer of zeste 1 polycomb repressive complex 2 subunit). Collectively, we have identified a potential mechanism that the down-regulation of AK027294 contributes to the anti-cancer function of G. glabra and also provide the potential inter-relationship between AK027294 and EZH1.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Min Yan
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhao-Yang Ke
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ling-Guo Ma
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
23
|
Yang F, Wu Q, Zhang L, Xie W, Sun X, Zhang Y, Wang L, Dai Q, Yu H, Chen Q, Sheng H, Qiu J, He X, Miao H, He F, Zhang K. The long noncoding RNA KCNQ1DN suppresses the survival of renal cell carcinoma cells through downregulating c-Myc. J Cancer 2019; 10:4662-4670. [PMID: 31528231 PMCID: PMC6746116 DOI: 10.7150/jca.29280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/28/2019] [Indexed: 01/29/2023] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have been demonstrated to play essential roles in renal cell carcinoma (RCC). However, the role of lncRNA KCNQ1DN in RCC remains unclear. Methods: The expression of KCNQ1DN in RCC and the corresponding adjacent tissues was measured by qPCR. RNA fluorescence in situ hybridization (FISH) assay, methylation analysis, reporter gene assays and functional tests were performed to reveal the effects of KCNQ1DN on RCC. Results: In the present study, we found that lncRNA KCNQ1DN was notably decreased in RCC tissues and cell lines. RNA FISH assay showed that KCNQ1DN mainly localized to the cytoplasm. Methylation analysis revealed that the proximal region of KCNQ1DN promoter was hypermethylated in RCC tissues relative to the adjacent normal ones. Functional studies clarified that KCNQ1DN repressed the RCC cell growth and cell cycle progression. Mechanistically, KCNQ1DN inhibited the expression of c-Myc, which might further upregulate cyclin D1 and suppress p27 at mRNA and protein levels in RCC cells. Reporter gene assays revealed that the transcriptional activity of c-Myc promoter was inhibited by KCNQ1DN. The in vivo experiments in nude mice showed that KCNQ1DN overexpression dramatically repressed the growth of xenograft tumors and the expression of corresponding c-Myc. Conclusion: These results indicated that KCNQ1DN inhibit the growth of RCC cells in vitro and in vivo through repressing the oncogene c-myc, suggesting that KCNQ1DN may serve as a novel target for the treatment of RCC.
Collapse
Affiliation(s)
- Fan Yang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qingjian Wu
- Department of Urology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Xiaoli Sun
- Nursing division, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Wang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qian Dai
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qian Chen
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| |
Collapse
|
24
|
Wan Y, Liu X, Zheng D, Wang Y, Chen H, Zhao X, Liang G, Yu D, Gan L. Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing. BMC Genomics 2019; 20:559. [PMID: 31286854 PMCID: PMC6615288 DOI: 10.1186/s12864-019-5903-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background A great mass of long noncoding RNAs (lncRNAs) have been identified in mouse genome and increasing evidences in the last decades have revealed their crucial roles in diverse biological processes. Nevertheless, the biological roles of lncRNAs in the mouse retina remains largely unknown due to the lack of a comprehensive annotation of lncRNAs expressed in the retina. Results In this study, we applied the long-reads sequencing strategy to unravel the transcriptomes of developing mouse retinas and identified a total of 940 intergenic lncRNAs (lincRNAs) in embryonic and neonatal retinas, including about 13% of them were transcribed from unannotated gene loci. Subsequent analysis revealed that function of lincRNAs expressed in mouse retinas were closely related to the physiological roles of this tissue, including 90 lincRNAs that were differentially expressed after the functional loss of key regulators of retinal ganglion cell (RGC) differentiation. In situ hybridization results demonstrated the enrichment of three class IV POU-homeobox genes adjacent lincRNAs (linc-3a, linc-3b and linc-3c) in ganglion cell layer and indicated they were potentially RGC-specific. Conclusions In summary, this study systematically annotated the lincRNAs expressed in embryonic and neonatal mouse retinas and implied their crucial regulatory roles in retinal development such as RGC differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5903-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | | | - Yuying Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Huan Chen
- Key Laboratory of microbiological technology and Bioinformatics in Zhejiang Province, Hangzhou, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China. .,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China.
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Cao M, Ouyang J, Liang H, Guo J, Lin S, Yang S, Xie T, Chen S. Regional Gene Expression Profile Comparison Reveals the Unique Transcriptome of the Optic Fissure. Invest Ophthalmol Vis Sci 2019; 59:5773-5784. [PMID: 30521666 DOI: 10.1167/iovs.18-23962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The optic fissure (OF) is a transient opening in the ventral optic cup (OC) that acts as a passage for blood vessels and retinal ganglion cell axons during early eye development. Failure to close the OF is the developmental basis for uveal coloboma, a congenital blinding eye disease that significantly contributes to childhood blindness. Genes specifically expressed in the OF region may play important roles in OF development and function. The aim of this study was to characterize the transcriptome of OC cells in the OF region and investigate the function of OF-specific genes during OF closure. Methods Laser-assisted microdissection was used to collect different regions of OC tissues. Microarray analysis was used to obtain and compare gene expression profiles of different OC regions. RNA in situ hybridization (ISH) was used to further characterize OF-specific gene expression patterns. Morpholino knockdown in zebrafish was used to study the function of a newly discovered OF-specific gene during OF closure. Results Microarray comparison revealed that the OC at the OF region exhibited a unique gene expression profile. OC expression patterns of a number of newly discovered OF-specific genes were confirmed by ISH. Morpholino knockdown and downstream target expression and function analysis demonstrated that afap1l2, a newly discovered OF-specific gene, controls OF closure by regulating pax2a expression. Conclusions Our study characterized the unique transcriptome of the OF region of the OC and demonstrated the essential role of a newly discovered OF-specific gene in OF closure. This study provides a valuable foundation for future mechanism dissection in OF development and physiology, and for human coloboma etiology exploration.
Collapse
Affiliation(s)
- Mingzhe Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huilin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Siyuan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, Missouri, United States
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Zhang Y, Tao Y, Liao Q. Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform 2019; 19:930-945. [PMID: 28449042 DOI: 10.1093/bib/bbx042] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) had been defined as a novel class of functional RNAs longer than 200 nucleotides around a decade ago. It is widely acknowledged that lncRNAs play a significant role in regulation of gene expression, but the biological and molecular mechanisms are diverse and complex, and remain to be determined. Especially, the regulatory network of lncRNAs associated with other biological molecules is still a controversial matter, thus becoming a new frontier of the studies on transcriptome. Recent advance in high-throughput sequencing technologies and bioinformatics approaches may be an accelerator to lift the mysterious veil. In this review, we will outline well-known associations between lncRNAs and other biological molecules, demonstrate the diverse bioinformatics approaches applied in prediction and analysis of lncRNA interaction and perform a case study for lncRNA linc00460 to concretely decipher the lncRNA regulatory network.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, Zhejiang, China
| | - Yang Tao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Gao S, Lin Z, Li C, Wang Y, Yang L, Zou B, Chen J, Li J, Feng D, Song Z, Liu G. lncINS-IGF2 Promotes Cell Proliferation and Migration by Promoting G1/S Transition in Lung Cancer. Technol Cancer Res Treat 2019; 18:1533033818823029. [PMID: 30803359 PMCID: PMC6374000 DOI: 10.1177/1533033818823029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 01/16/2023] Open
Abstract
Long noncoding RNAs are capable of regulating gene expression at multiple levels. These RNA molecules are also involved in a variety of physiological and pathological processes. Emerging data demonstrate that a series of differentially expressed long noncoding RNAs are implicated in tumorigenesis. In the present study, we used microarray analysis to identify long noncoding RNAs that are dysregulated in non-small-cell lung cancer when compared to normal lung tissues. Accordingly, we performed quantitative real-time polymerase chain reaction to analyze the levels of long noncoding RNA and the cis target gene. We further found the oncogene property of long noncoding RNA that long noncoding RNA downexpression inhibits non-small-cell lung cancer cells proliferation and migration based on 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and colony formation assays and wound healing as well as transwell assays. The influence of long noncoding RNA on cell cycle of non-small-cell lung cancer cells is also analyzed by flow cytometry. Among the dysregulated long noncoding RNAs, we identified INS-IGF2 readthrough, transcript variant 1, noncoding RNA (NR_003512.3) is upregulated in non-small-cell lung cancer tissues, the cis gene of which is insulin-like growth factor 2 gene hinted by bioinformatics analysis. We also observed that downregulation of INS-IGF2 readthrough, transcript variant 1, noncoding RNA reduces insulin-like growth factor 2 messenger RNA expression. Furthermore, INS-IGF2 readthrough, transcript variant 1, noncoding RNA downregulation suppresses non-small-cell lung cancer cell proliferation and migration. This downregulation results in a concomitant inhibition of the G1/S transition in non-small-cell lung cancer cells. Our findings suggest that INS-IGF2 readthrough, transcript variant 1, noncoding RNA may be an oncogene involved in the development of lung cancer. Therefore, we speculate that INS-IGF2 readthrough, transcript variant 1, noncoding RNA represents a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyan Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bao’an Zou
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Chen
- Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianwen Li
- Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dehui Feng
- Elderly Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
Cui Y, Chen X, Niu Y, Wang D, Luo H, Fan Z, Wang D, Wu W, Teng X, He S, Luo J, Chen R. Dynamic-BM: multispecies Dynamic BodyMap database from temporal RNA-seq data. Brief Bioinform 2018; 19:1302-1309. [PMID: 28575155 DOI: 10.1093/bib/bbx059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Biological processes, especially developmental processes, are often dynamic. Previous BodyMap projects for human and mouse have provided researchers with portals to tissue-specific gene expression, but these efforts have not included dynamic gene expression patterns. Over the past few years, substantial progress in our understanding of the molecular mechanisms of protein-coding and long noncoding RNA (lncRNA) genes in development processes has been achieved through numerous time series RNA sequencing (RNA-seq) studies. However, none of the existing databases focuses on these time series data, thus rendering the exploration of dynamic gene expression patterns inconvenient. Here, we present Dynamic BodyMap (Dynamic-BM), a database for temporal gene expression profiles, obtained from 2203 time series of RNA-seq samples, covering >25 tissues from five species. Dynamic-BM has a user-friendly Web interface designed for browsing and searching the dynamic expression pattern of genes from different sources. It is an open resource for efficient data exploration, providing dynamic expression profiles of both protein-coding genes and lncRNAs to facilitate the generation of new hypotheses in developmental biology research. Additionally, Dynamic-BM includes a literature-based knowledgebase for lncRNAs associated with tissue development and a list of manually selected lncRNA candidates that may be involved in tissue development. Dynamic-BM is available at http://bioinfo.ibp.ac.cn/Dynamic-BM.
Collapse
Affiliation(s)
- Ya Cui
- Key Laboratory of RNA Biology, Institute of Biophysics and University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Chen
- Core Facility for Protein Research and the Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Institute of Biophysics and University of the Chinese Academy of Sciences, Beijing, China
| | - Dongpeng Wang
- Key Laboratory of RNA Biology, Institute of Biophysics and University of the Chinese Academy of Sciences, Beijing, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Zhen Fan
- Core Facility for Protein Research and the Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Dan Wang
- Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics and University of the Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics and University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Non-coding RNAs in retinal development and function. Hum Genet 2018; 138:957-971. [DOI: 10.1007/s00439-018-1931-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
|
30
|
Celiac Diasease-associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells. J Pediatr Gastroenterol Nutr 2018; 67:225-231. [PMID: 29601440 DOI: 10.1097/mpg.0000000000001970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study is to identify additional celiac disease associated loci in the major histocompatibility complex (MHC) independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. METHODS We performed a high-resolution single-nucleotide polymorphism (SNP) genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. RESULTS MHC genotyping revealed 2 associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci. Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. CONCLUSIONS We have successfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HCG14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.
Collapse
|
31
|
The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci 2018; 19:ijms19030682. [PMID: 29495592 PMCID: PMC5877543 DOI: 10.3390/ijms19030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being “transcriptional noise”, increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.
Collapse
|
32
|
Zheng P, Yin Z, Wu Y, Xu Y, Luo Y, Zhang TC. LncRNA HOTAIR promotes cell migration and invasion by regulating MKL1 via inhibition miR206 expression in HeLa cells. Cell Commun Signal 2018; 16:5. [PMID: 29391067 PMCID: PMC5796349 DOI: 10.1186/s12964-018-0216-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as a new and crucial layer of gene regulation in recent years and regulate various biological processes such as carcinogenesis and metastasis. LncRNA HOTAIR, an oncogenic lncRNA, is involved in human tumorigenesis and dysregulated in cervical cancer. Megakaryoblastic leukemia 1 (MKL1), as a transcription coactivity factor, involved in cancer metastasis and cell differentiation. However, the precise mechanism of biological roles of HOTAIR and MKL1 in cancer cells remain unclear. Methods The expression levels of HOTAIR and MKL1 were measured by quantitative PCR (qPCR), immunoblotting, in situ hybridization (ISH) and immunohistochemistry (IHC). Wound-healing and transwell assays were used to examine the invasive abilities of HeLa cells. Luciferase reporter assays and CHIP were used to determine how MKL1 regulates HOTAIR. Tissue microarray and immunohistochemical staining were used to assess the correlation between HOTAIR and MKL1 in Cervical cancer tissues in vivo. Result In this study, we have identified that MKL1 had a role in the induction of migration and invasion in cervical cancer cells. Moreover, the expression level of MKL1, as the targeting gene of miR206, was decreased after HOTAIR inhibition in HeLa cells. Agreement with it, Highly level of MKL1 correlation with HOTAIR is validated in cervical cancer tissues. Importantly, HOTAIR is observed to participate in the silencing of miR206 expression. Interestingly, HOTAIR inhibition could also accelerate the expression of MKL1 in cytoplasm. What is more, MKL1 can activate the transcription of HOTAIR through binding the CArG box in the promoter of HOTAIR. Conclusion These elucidates that the phenotypic effects of migration and invasion observed after HOTAIR inhibition, at least in part, through the regulation of MKL1 via inhibition of miR206 expression in HeLa cells. These data indicate the existence of a positive feedback loop between HOTAIR and MKL1. Together, these findings suggest that MKL1 is an important player in the functions of HOTAIR in the migration and invasion of cancer cells. Electronic supplementary material The online version of this article (10.1186/s12964-018-0216-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Zheng
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China. .,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Ze Yin
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China
| | - Ying Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yao Xu
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China.,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ying Luo
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China
| | - Tong-Cun Zhang
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China. .,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
33
|
Long non-coding RNA MEG3 silencing protects against light-induced retinal degeneration. Biochem Biophys Res Commun 2018; 496:1236-1242. [DOI: 10.1016/j.bbrc.2018.01.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
|
34
|
Zelinger L, Swaroop A. RNA Biology in Retinal Development and Disease. Trends Genet 2018; 34:341-351. [PMID: 29395379 DOI: 10.1016/j.tig.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
For decades, RNA has served in a supporting role between the genetic carrier (DNA) and the functional molecules (proteins). It is finally time for RNA to take center stage in all aspects of biology. The retina provides a unique opportunity to dissect the molecular underpinnings of neuronal diversity and disease. Transcriptome profiles of the retina and its resident cell types have unraveled unique features of the RNA landscape. The discovery of distinct RNA molecules and the recognition that RNA processing is a major cause of retinal neurodegeneration have prompted the design of biomarkers and novel therapeutic paradigms. We review here RNA biology as it pertains to the retina, emphasizing new avenues for investigations in development and disease.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Saha P, Verma S, Pathak RU, Mishra RK. Long Noncoding RNAs in Mammalian Development and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:155-198. [PMID: 28815540 DOI: 10.1007/978-981-10-5203-3_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shreekant Verma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rashmi U Pathak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
36
|
Clark BS, Blackshaw S. Understanding the Role of lncRNAs in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:253-282. [PMID: 28815543 DOI: 10.1007/978-981-10-5203-3_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of lncRNAs has expanded within mammals in tandem with the evolution of increased brain complexity, suggesting that lncRNAs play an integral role in this process. In this chapter, we will highlight the identification and characterization of lncRNAs in nervous system development. We discuss the potential role of lncRNAs in nervous system and brain evolution, along with efforts to create comprehensive catalogues that analyze spatial and temporal changes in lncRNA expression during nervous system development. Additionally, we focus on recent endeavors that attempt to assign function to lncRNAs during nervous system development. We highlight discrepancies that have been observed between in vitro and in vivo studies of lncRNA function and the challenges facing researchers in conducting mechanistic analyses of lncRNAs in the developing nervous system. Altogether, this chapter highlights the emerging role of lncRNAs in the developing brain and sheds light on novel, RNA-mediated mechanisms by which nervous system development is controlled.
Collapse
Affiliation(s)
- Brian S Clark
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Ding W, Ren J, Ren H, Wang D. Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer. Sci Rep 2017; 7:17261. [PMID: 29222472 PMCID: PMC5722884 DOI: 10.1038/s41598-017-17492-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
LncRNA HOX transcript antisense RNA (HOTAIR) is involved in lots of cancers. The pro-survival protein Bcl-w is frequently found in cancer development. However, the effect of HOTAIR on Bcl-w in breast cancer is not well documented. In this study, we first evaluated the correlation between HOTAIR level and Bcl-w expression in clinical breast cancer tissues. We observed that the expression levels of Bcl-w were much higher in the breast cancer samples than that in their paired noncancerous tissues. Moreover, the levels of HOTAIR were positively associated with those of Bcl-w in clinical breast cancer samples. As expected, we observed that HOTAIR was able to up-regulate the expression of Bcl-w in breast cancer cells. Mechanistically, we found that miR-206 was capable of inhibiting the expression of Bcl-w by directly binding to the 3′UTR of Bcl-w mRNA. Interestingly, HOTAIR could increase the expression of Bcl-w through sequestering miR-206 at post-transcriptional level. Functionally, our data showed that HOTAIR-induced Bcl-w by miR-206 facilitated the proliferation of breast cancer cells. Thus, we conclude that HOTAIR up-regulates Bcl-w to enhance cell proliferation through sequestering miR-206 in breast cancer. Our finding provides new insights into the mechanism of breast cancer mediated by HOTAIR.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jin Ren
- Department of Respiratory medicine, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Hui Ren
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
38
|
Zhang N, Zhang C, Wang X, Qi Y. High-throughput sequencing reveals novel lincRNA in age-related cataract. Int J Mol Med 2017; 40:1829-1839. [PMID: 29039457 PMCID: PMC5716429 DOI: 10.3892/ijmm.2017.3185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Age-related cataract (ARC) is a major cause of blindness. Long non-coding RNAs (lncRNAs) are a heterogeneous class of RNAs that are non-protein-coding transcripts >200 nucleotides in length. LncRNAs are involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Furthermore, the dysregulation of lncRNAs causes a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders and various cancers. However, the role of lncRNA in cataract remains unclear. Therefore, in the present study, lens anterior capsular membrane was collected from normal subjects and patients with ARC and total RNA was extracted. High-throughput sequencing was applied to detect differentially expressed lncRNAs and mRNAs. The analysis identified a total of 42,556 candidate differentially expressed mRNAs (27,447 +15,109) and a total of 7,041 candidate differentially expressed lncRNAs (4,146 + 2,895). Through bioinformatics analysis, the significant differential expression of novel lincRNA was observed and its possible molecular mechanism was explored. Reverse transcription-quantitative polymerase chain reaction was used to validate the different expression levels of selected lncRNAs. These findings may lead to the development of novel strategies for genetic diagnosis and gene therapy.
Collapse
Affiliation(s)
- Na Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chunmei Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
39
|
Yao H, Duan M, Lin L, Wu C, Fu X, Wang H, Guo L, Chen W, Huang L, Liu D, Rao R, Wang S, Ding Y. TET2 and MEG3 promoter methylation is associated with acute myeloid leukemia in a Hainan population. Oncotarget 2017; 8:18337-18347. [PMID: 28407691 PMCID: PMC5392332 DOI: 10.18632/oncotarget.15440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
The promoter of MEG3, which encodes the long non-coding RNA (lncRNA) MEG3, is often hypermethylated in acute myeloid leukemia (AML). Additionally, the Tet methylcytosine dioxygenase 2 gene (TET2) is frequently inactivated, which can lead to impaired DNA methylation and promote AML development. We examined the association between TET2 and MEG3 promoter hypermethylation in Hainan patients with AML. The expression of MEG3, TET2, miR-22-3p, and miR-22-5p was assessed in bone marrow samples from AML patients and healthy controls using real-time quantitative PCR. Using Sequenom MassARRAY technology, we compared MEG3 promoter methylation in AML patients and healthy controls. MEG3 expression was lower in AML patients than in the controls (P = 0.136). Moreover, there was greater methylation of MEG3 promoter in the AML patients than the controls (P < 0.05). Methylation of the MEG3 promoter correlated negatively with TET2 expression (P < 0.05, r < 0). Likewise there was a negative correlation between TET2 activity and MEG3 promoter methylation (P < 0.05, r < 0). These results suggest that hypermethylation of the MEG3 promoter in AML may result from decreased TET2 activity. These data provide insight into the molecular mechanisms underlying AML development and progression.
Collapse
Affiliation(s)
- Hongxia Yao
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Mengling Duan
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Lie Lin
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Congming Wu
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Xiangjun Fu
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Hua Wang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Li Guo
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Wenting Chen
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Li Huang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Dan Liu
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Ruo Rao
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Shuwen Wang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| | - Yipeng Ding
- Department of Emergency, Hainan General Hospital, Haikou, Hainan, 570311, R.R. China
| |
Collapse
|
40
|
Gao S, Lin Z, Li C, Wang Y, Yang L, Zou B, Chen J, Li J, Song Z, Liu G. TFPI2AS1, a novel lncRNA that inhibits cell proliferation and migration in lung cancer. Cell Cycle 2017; 16:2249-2258. [PMID: 28933981 DOI: 10.1080/15384101.2017.1373223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence demonstrates that a series of differentially expressed lncRNAs is important in tumorigenesis. However, the function of many of the lncRNAs in lung cancer remains elusive. In the present study, we used microarray analysis to identify lncRNAs that are dysregulated in non-small-cell lung cancer (NSCLC) as compared with normal tissues. Among the dysregulated lncRNAs, we identified TFPI2AS1, an antisense transcript of the tumor suppressor TFPI2 (tissue factor pathway inhibitor 2). TFPI2AS1 was shown to be markedly upregulated in NSCLC patient tumors as compared to paired non-tumor samples. TFPI2AS1 knockdown increased NSCLC cell proliferation and migration, which was associated with enhanced G1/S transition and downregulation of cyclin D1 and cyclin-dependent kinases 2 (CDK2), while TFPI2AS1 overexpression had the opposite effect. Knockdown and overexpression experiments also suggested that TFPI2AS1 regulates NSCLC cell migration and AKT activation. Moreover, TFPI2AS1 is a positive regulator of TFPI2. Our findings bring new insights for understanding the role of TFPI2AS1 in mediating the proliferation and migration of NSCLC cells by regulating TFPI2 expression.
Collapse
Affiliation(s)
- Shenglan Gao
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Ziying Lin
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Chunyan Li
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Yahong Wang
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Lawei Yang
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Baoan Zou
- b Department of Respiratory Medicine , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,c Department of Cardiothoracic Surgery , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,d Department of Vascular , Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Jie Chen
- c Department of Cardiothoracic Surgery , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Jianwen Li
- d Department of Vascular , Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Zeqing Song
- b Department of Respiratory Medicine , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,c Department of Cardiothoracic Surgery , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,d Department of Vascular , Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| | - Gang Liu
- a Clinical Research Center, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,b Department of Respiratory Medicine , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,c Department of Cardiothoracic Surgery , Affiliated Hospital of Guangdong Medical University , Zhanjiang , China.,d Department of Vascular , Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University , Zhanjiang , China
| |
Collapse
|
41
|
Zelinger L, Karakülah G, Chaitankar V, Kim JW, Yang HJ, Brooks MJ, Swaroop A. Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL. Invest Ophthalmol Vis Sci 2017; 58:4422-4435. [PMID: 28863214 PMCID: PMC5584472 DOI: 10.1167/iovs.17-21805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Transcriptome analysis by next generation sequencing allows qualitative and quantitative profiling of expression patterns associated with development and disease. However, most transcribed sequences do not encode proteins, and little is known about the functional relevance of noncoding (nc) transcriptome in neuronal subtypes. The goal of this study was to perform a comprehensive analysis of long noncoding (lncRNAs) and antisense (asRNAs) RNAs expressed in mouse retinal photoreceptors. Methods Transcriptomic profiles were generated at six developmental time points from flow-sorted Nrlp-GFP (rods) and Nrlp-GFP;Nrl-/- (S-cone like) mouse photoreceptors. Bioinformatic analysis was performed to identify novel noncoding transcripts and assess their regulation by rod differentiation factor neural retina leucine zipper (NRL). In situ hybridization (ISH) was used for validation and cellular localization. Results NcRNA profiles demonstrated dynamic yet specific expression signature and coexpression clusters during rod development. In addition to currently annotated 586 lncRNAs and 454 asRNAs, we identified 1037 lncRNAs and 243 asRNAs by de novo assembly. Of these, 119 lncRNAs showed altered expression in the absence of NRL and included NRL binding sites in their promoter/enhancer regions. ISH studies validated the expression of 24 lncRNAs (including 12 previously unannotated) and 4 asRNAs in photoreceptors. Coexpression analysis demonstrated 63 functional modules and 209 significant antisense-gene correlations, allowing us to predict possible role of these lncRNAs in rods. Conclusions Our studies reveal coregulation of coding and noncoding transcripts in rod photoreceptors by NRL and establish the framework for deciphering the function of ncRNAs during retinal development.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Matthew J. Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
42
|
Wan P, Su W, Zhuo Y. Precise long non-coding RNA modulation in visual maintenance and impairment. J Med Genet 2017; 54:450-459. [PMID: 28003323 PMCID: PMC5502309 DOI: 10.1136/jmedgenet-2016-104266] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are remarkably powerful, flexible and pervasive cellular regulators. With the help of cheaper RNA-seq, high-throughput screening of lncRNAs has become widely applied and has identified large numbers of specific lncRNAs in various physiological or pathological processes. Vision is known to be a complex and vital perception that comprises 80% of the sensory information we receive. A consensus has been reached that normal visual maintenance and impairment are primarily driven by gene regulation. Recently, it has become understood that lncRNAs are key regulators in most biological processes, including cell proliferation, apoptosis, differentiation, immune responses, oxidative stress and inflammation. Our review is intended to provide insight towards a comprehensive view of the precise modulation of lncRNAs in visual maintenance and impairment. We also highlight the challenges and future directions in conducting lncRNA studies, particularly in patients whose lncRNAs may hold expanded promise for diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Peixing Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Shi C, Zhang L, Qin C. Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease. Brain Res Bull 2017; 132:160-169. [PMID: 28347717 DOI: 10.1016/j.brainresbull.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding roles, interfere with gene expression and signaling events at various stages. Increasing evidence has suggested that lncRNAs function in the regulation of tissue homeostasis and under pathophysiologic conditions. In the nervous system, the expression of lncRNAs has been detected and characterized under normal physiologic conditions and in disease states. Some lncRNAs regulate brain development and synaptic plasticity. In Alzheimer's disease (AD), several lncRNAs have been demonstrated to regulate β-amyloid production/generation, synaptic impairment, neurotrophin depletion, inflammation, mitochondrial dysfunction, and stress responses. This review summarizes data on lncRNA expression and focuses on neural lncRNAs that may function in AD. Although our understanding of lncRNAs remains in its infancy, this review provides insight into the contribution of lncRNAs to AD.
Collapse
Affiliation(s)
- Changhua Shi
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
44
|
Xia W, Zhu XW, Mo XB, Wu LF, Wu J, Guo YF, Zeng KQ, Wang MJ, Lin X, Qiu YH, Wang L, He P, Xie FF, Bing PF, Lu X, Liu YZ, Yi NJ, Deng FY, Lei SF. Integrative multi-omics analysis revealed SNP-lncRNA-mRNA (SLM) networks in human peripheral blood mononuclear cells. Hum Genet 2017; 136:451-462. [PMID: 28243742 DOI: 10.1007/s00439-017-1771-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) serve as important controller of cellular functions via regulating RNA transcription, degradation and translation. However, what are the regulation patterns of lncRNAs on downstream mRNA and how the upstream genetic variants regulate lncRNAs are largely unknown. We first performed a comprehensive expression quantitative trait locus (eQTL) analysis (MatrixeQTL package, R) using genome-wide lncRNA expression and SNP genotype data from human peripheral blood mononuclear cells (PBMCs) of 43 unrelated individuals. Subsequently, multi-omics integrative network analysis was applied to construct SNP-lncRNA-mRNA (SLM) interaction networks. The causal inference test (CIT) was used to identify lncRNA-mediated (epi-) genetic regulation on mRNA expressions. Our eQTL analysis detected 707 pairs of cis-effect associations (p < 5.64E-06) and 6657 trans-effect associations (p < 3.51E-08), respectively. We also found that top significant cis-eSNPs were enriched around the lncRNA transcription start site regions, and that enrichment patterns of cis-eSNPs differs among different lncRNA sizes (small, medium and large).The constructed SLM interaction networks (1 primary networks and four small separate networks) showed various complex interaction patterns. Especially, the in-depth CIT detected 50 significant lncRNA-mediated SLM trios, and some hotspots (e.g., SNPs: rs926370, rs7716167 and rs16880521; lncRNAs: HIT000061975 and ENST00000579057.1). This study represents the first effort of dissecting the SLM interaction patterns in PBMCs by multi-omics integrative network analysis and causal inference test for clearing the regulation chain. The results provide novel insights into the regulation patterns of lncRNA, and may facilitate investigations of PBMC-related immune physiological process and immunological diseases in the future.
Collapse
Affiliation(s)
- Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Statistical, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xin-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yu-Fan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ke-Qin Zeng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ming-Jun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiang Lin
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Ying-Hua Qiu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fang-Fei Xie
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng-Fei Bing
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yao-Zhong Liu
- Department of Biostatistics and Bioinformatics, Center of Genomics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Neng-Jun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med 2017; 39:347-356. [PMID: 28075444 PMCID: PMC5358694 DOI: 10.3892/ijmm.2017.2854] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/29/2016] [Indexed: 12/22/2022] Open
Abstract
Exploring the biological functions of long non-coding RNAs (lncRNAs) has come to the foreground in recent years. Studies have indicated that the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) not only regulates tumorigenesis in hepatocellular carcinoma, but also controls cell cycle progression in hematopoietic cells. The present study was designed to investigate the biological role of lncRNA MALAT1 in liver regeneration. We carried out a series of assays during liver regeneration following 2/3 partial hepatectomy in mice. We explored the functions of lncRNA MALAT1 with a series of functional analyses in vitro. We found that MALAT1 was upregulated during liver regeneration. Moreover, MALAT1 accelerated hepatocyte proliferation by stimulating cell cycle progression from the G1 to the S phase and inhibiting apoptosis in vitro. In addition, our findings also demonstrated that MALAT1 was regulated by p53 during liver regeneration, and that p53 may be a key upstream regulator of MALAT1 activity. Mechanistically, we found that MALAT1 activated the Wnt/β-catenin pathway by inhibiting the expression of Axin1 and adenomatous polyposis coli (APC), and subsequently promoting the expression of cyclin D1. On the whole, the findings of this study suggest that MALAT1 is a critical molecule for liver regeneration. Pharmacological interventions targeting MALAT1 may thus prove to be therapeutically beneficial in liver failure or liver transplantation by promoting liver regeneration.
Collapse
Affiliation(s)
- Cuicui Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Lei Chang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhiquan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
46
|
Hu W, Li S, Park JY, Boppana S, Ni T, Li M, Zhu J, Tian B, Xie Z, Xiang M. Dynamic landscape of alternative polyadenylation during retinal development. Cell Mol Life Sci 2016; 74:1721-1739. [PMID: 27990575 DOI: 10.1007/s00018-016-2429-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
The development of the central nervous system (CNS) is a complex process that must be exquisitely controlled at multiple levels to ensure the production of appropriate types and quantity of neurons. RNA alternative polyadenylation (APA) contributes to transcriptome diversity and gene regulation, and has recently been shown to be widespread in the CNS. However, the previous studies have been primarily focused on the tissue specificity of APA and developmental APA change of whole model organisms; a systematic survey of APA usage is lacking during CNS development. Here, we conducted global analysis of APA during mouse retinal development, and identified stage-specific polyadenylation (pA) sites that are enriched for genes critical for retinal development and visual perception. Moreover, we demonstrated 3'UTR (untranslated region) lengthening and increased usage of intronic pA sites over development that would result in gaining many different RBP (RNA-binding protein) and miRNA target sites. Furthermore, we showed that a considerable number of polyadenylated lncRNAs are co-expressed with protein-coding genes involved in retinal development and functions. Together, our data indicate that APA is highly and dynamically regulated during retinal development and maturation, suggesting that APA may serve as a crucial mechanism of gene regulation underlying the delicate process of CNS development.
Collapse
Affiliation(s)
- Wenyan Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China
| | - Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ji Yeon Park
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Sridhar Boppana
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Miaoxin Li
- Department of Medical Genetics, Center for Genome Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
47
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
48
|
Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res 2016; 366:509-521. [PMID: 27365087 DOI: 10.1007/s00441-016-2451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) were once regarded as nonfunctional by-products of transcription but their effects are now gradually being elucidated. Evidence suggests that lncRNAs play crucial roles in cell biology, especially in regulating gene expression. However, because of the diversity and complexity of their regulatory mechanisms, our knowledge of the function of lncRNAs represents only the tip of the iceberg. Recent studies have shown that lncRNAs are capable of regulating cell differentiation and pluripotency. Thus, we consider it to be an appropriate time to review the progress in understanding the role of lncRNAs in these two biological processes. In this review, the biological characteristics and regulatory mechanisms of lncRNAs at the chromatin remodeling level, transcriptional level and post-transcriptional level are described and recent advances in our comprehension of the role of lncRNAs in cell differentiation and pluripotency are discussed.
Collapse
|
49
|
Li F, Wen X, Zhang H, Fan X. Novel Insights into the Role of Long Noncoding RNA in Ocular Diseases. Int J Mol Sci 2016; 17:478. [PMID: 27043545 PMCID: PMC4848934 DOI: 10.3390/ijms17040478] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022] Open
Abstract
Recent advances have suggested that long noncoding RNAs (lncRNAs) are differentially expressed in ocular tissues and play a critical role in the pathogenesis of different types of eye diseases. Here, we summarize the functions and mechanisms of known aberrantly-expressed lncRNAs and present a brief overview of relevant reports about lncRNAs in such ocular diseases as glaucoma, proliferative vitreoretinopathy (PVR), diabeticretinopathy (DR), and ocular tumors. We intend to highlight comprehensive studies that provide detailed data about the mechanisms of lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights into the methods by which lncRNAs interfere with ocular diseases.
Collapse
Affiliation(s)
- Fang Li
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| |
Collapse
|
50
|
Qiao J, Yao H, Xia Y, Chu P, Li M, Wu Y, Li W, Ding L, Qi K, Li D, Xu K, Zeng L. Long non-coding RNAs expression profiles in hepatocytes of mice after hematopoietic stem cell transplantation. IUBMB Life 2016; 68:232-41. [PMID: 26805554 DOI: 10.1002/iub.1479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/06/2016] [Indexed: 11/12/2022]
Abstract
Hepatic veno-occlusive disease (HVOD), one serious complication following hematopoietic stem cell transplantation (HSCT), is mainly initiated by the damage to sinusoidal endothelial cells and hepatocytes. Long non-coding RNAs (lncRNAs) play an important role in the proliferation of hepatocytes and liver regeneration. lncRNAs profile in hepatocytes post-HSCT remains unclear. The aim of this study is to evaluate the profile of lncRNAs in hepatocytes of mice after HSCT. Mice HSCT model was established through infusion of 5 × 10(6) bone marrow mononuclear cells. On day 7, 14 and 33 after HSCT, mice were sacrificed for analysis of liver pathology, function and index. Total RNA was extracted from hepatocytes of mice on day 14 for microarray analysis of the expression profiles of lncRNAs by Arraystar Mouse lncRNA Microarray v2.0. Obvious edema and spotty necrosis of hepatocytes with inflammatory cells infiltration were observed post-HSCT. Meanwhile, increased levels of alkaline phosphatase, aspartate transaminase, and total bilirubin, as well as elevated liver index were also found. 2,918 up-regulated and 1,911 down-regulated lncRNAs in hepatocytes were identified. Some of differentially expressed mRNAs had adjacent lncRNAs that were also significantly dysregulated, with the same dysregulation direction. T-cell receptor (up-regulation) and VEGF signaling pathway (down-regulation) were identified as one of the most enriched pathways. Dysregulated lncRNAs might be involved in hepatocytes damage after HSCT, suggesting targeting them might be a novel approach in amelioration of hepatocytes damage.
Collapse
Affiliation(s)
- Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Haina Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yuan Xia
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Peipei Chu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Mingfeng Li
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yulu Wu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Wen Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Lan Ding
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|