1
|
Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther 2022; 232:107991. [PMID: 34592203 PMCID: PMC8930437 DOI: 10.1016/j.pharmthera.2021.107991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, precursor mRNAs (pre-mRNAs) produce a unique class of biologically active molecules namely circular RNAs (circRNAs) with a covalently closed-loop structure via back-splicing. Because of this unconventional circular form, circRNAs exhibit much higher stability than linear RNAs due to the resistance to exonuclease degradation and thereby play exclusive cellular regulatory roles. Recent studies have shown that circRNAs are widely expressed in eukaryotes and display tissue- and disease-specific expression patterns, including in the cardiovascular system. Although numerous circRNAs are discovered by in silico methods, a limited number of circRNAs have been studied. This review intends to summarize the current understanding of the characteristics, biogenesis, and functions of circRNAs and delineate the practical approaches for circRNAs investigation. Moreover, we discuss the emerging roles of circRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohan Mei
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America.
| |
Collapse
|
2
|
Zwettler FU, Spindler MC, Reinhard S, Klein T, Kurz A, Benavente R, Sauer M. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nat Commun 2020; 11:3222. [PMID: 32591508 PMCID: PMC7320163 DOI: 10.1038/s41467-020-17017-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/08/2020] [Indexed: 01/03/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific nuclear multiprotein complex that is essential for proper synapsis, recombination and segregation of homologous chromosomes. We combined structured illumination microscopy (SIM) with different expansion microscopy (ExM) protocols including U-ExM, proExM, and magnified analysis of the proteome (MAP) to investigate the molecular organization of the SC. Comparison with structural data obtained by single-molecule localization microscopy of unexpanded SCs allowed us to investigate ultrastructure preservation of expanded SCs. For image analysis, we developed an automatic image processing software that enabled unbiased comparison of structural properties pre- and post-expansion. Here, MAP-SIM provided the best results and enabled reliable three-color super-resolution microscopy of the SCs of a whole set of chromosomes in a spermatocyte with 20-30 nm spatial resolution. Our data demonstrate that post-expansion labeling by MAP-SIM improves immunolabeling efficiency and allowed us thus to unravel previously hidden details of the molecular organization of SCs.
Collapse
Affiliation(s)
- Fabian U Zwettler
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marie-Christin Spindler
- Department of Cell and Developmental Biology Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Kurz
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Chen W, Moore J, Ozadam H, Shulha HP, Rhind N, Weng Z, Moore MJ. Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling. Cell 2018; 173:1031-1044.e13. [PMID: 29727662 PMCID: PMC6090549 DOI: 10.1016/j.cell.2018.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.
Collapse
Affiliation(s)
- Weijun Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jill Moore
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hakan Ozadam
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hennady P Shulha
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
4
|
Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. While the revolution will not be crystallized, biochemistry reigns supreme. Protein Sci 2016; 26:69-81. [PMID: 27673321 DOI: 10.1002/pro.3054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Single-particle cryo-electron microscopy (EM) is currently gaining attention for the ability to calculate structures that reach sub-5 Å resolutions; however, the technique is more than just an alternative approach to X-ray crystallography. Molecular machines work via dynamic conformational changes, making structural flexibility the hallmark of function. While the dynamic regions in molecules are essential, they are also the most challenging to structurally characterize. Single-particle EM has the distinct advantage of being able to directly visualize purified molecules without the formation of ordered arrays of molecules locked into identical conformations. Additionally, structures determined using single-particle EM can span resolution ranges from very low- to atomic-levels (>30-1.8 Å), sometimes even in the same structure. The ability to accommodate various resolutions gives single-particle EM the unique capacity to structurally characterize dynamic regions of biological molecules, thereby contributing essential structural information needed for the development of molecular models that explain function. Further, many important molecular machines are intrinsically dynamic and compositionally heterogeneous. Structures of these complexes may never reach sub-5 Å resolutions due to this flexibility required for function. Thus, the biochemical quality of the sample, as well as, the calculation and interpretation of low- to mid-resolution cryo-EM structures (30-8 Å) remains critical for generating insights into the architecture of many challenging biological samples that cannot be visualized using alternative techniques.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Elad Binshtein
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Kathleen F Mittendorf
- Vanderbilt-Ingram Cancer Center Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
5
|
Hernández-Hernández A, Masich S, Fukuda T, Kouznetsova A, Sandin S, Daneholt B, Höög C. The central element of the synaptonemal complex in mice is organized as a bilayered junction structure. J Cell Sci 2016; 129:2239-49. [PMID: 27103161 DOI: 10.1242/jcs.182477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/14/2016] [Indexed: 01/25/2023] Open
Abstract
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis.
Collapse
Affiliation(s)
| | - Sergej Masich
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Bertil Daneholt
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| |
Collapse
|