1
|
Dale R, Mosher R. Mathematical model of RNA-directed DNA methylation predicts tuning of negative feedback required for stable maintenance. Open Biol 2024; 14:240159. [PMID: 39532148 PMCID: PMC11557233 DOI: 10.1098/rsob.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo methylation pathway that is responsible for maintenance of asymmetric methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation to the locus, maintaining methylation states through DNA replication. To understand the necessary conditions to produce stable methylation, we developed a stochastic mathematical model of RdDM. The model describes DNA target search by siRNAs derived from CHH methylated loci bound by an Argonaute. Methylation reinforcement occurs either throughout the cell cycle (steady) or immediately following replication (bursty). We compare initial and final methylation distributions to determine simulation conditions that produce stable methylation. We apply this method to the low CHH methylation case. The resulting model predicts that siRNA production must be linearly proportional to methylation levels, that bursty reinforcement is more stable and that slightly higher levels of siRNA production are required for searching DNA, compared to RNA. Unlike CG methylation, which typically exhibits bi-modality with loci having either 100% or 0% methylation, CHH methylation exists across a range. Our model predicts that careful tuning of the negative feedback in the system is required to enable stable maintenance.
Collapse
Affiliation(s)
- Renee Dale
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Rebecca Mosher
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
3
|
Szubert M, Nowak-Glück A, Domańska-Senderowska D, Szymańska B, Sowa P, Rycerz A, Wilczyński JR. miRNA Expression Profiles in Ovarian Endometriosis and Two Types of Ovarian Cancer-Endometriosis-Associated Ovarian Cancer and High-Grade Ovarian Cancer. Int J Mol Sci 2023; 24:17470. [PMID: 38139300 PMCID: PMC10743418 DOI: 10.3390/ijms242417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometriosis-associated ovarian cancer (EOC) consisting of endometrioid cancer and clear-cell ovarian cancer could be promoted by many factors. miRNAs, which are small, non-coding molecules of RNA, are among them. The aim of this study was to detect miRNAs connected with the malignant transformation of endometriosis. FFPE (formalin-fixed, paraffin-embedded) samples of 135 patients operated on for endometriosis and different types of ovarian cancer (EOC and HGSOC-high-grade serous ovarian cancer) were studied. Healthy ovarian tissue was used as a control group. From the expression panel of 754 miRNAs, 7 were chosen for further tests according to their ROC (receiver operating characteristic) curves: miR-1-3p, miR-125b-1-3p, miR-31-3p, miR-200b-3p, miR-502-5p, miR-503-5p and miR-548d-5p. Furthermore, other potentially important clinical data were analysed, which included age, BMI, Ca-125 concentration, miscarriages and deliveries and concomitant diseases such as hypertension, type 2 diabetes and smoking. Among the miRNAs, miR200b-3p had the lowest expression in neoplastic tissues. miR31-3p had the highest expression in women without any lesions in the ovaries. miR-502-5p and miR-548-5p did not differ between the studied groups. The examined miRNA panel generally distinguished significantly normal ovarian tissue and endometriosis, normal ovarian tissue and cancer, and endometriosis and cancer. The malignant transformation of endometriosis is dependent on different factors. miRNA changes are among them. The studied miRNA panel described well the differences between endometriosis and EOC but had no potential to differentiate types of ovarian cancer according to their origin. Therefore, examination of a broader miRNA panel is needed and might prove itself advantageous in clinical practice.
Collapse
Affiliation(s)
- Maria Szubert
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Club 35. Polish Society of Gynaecologists and Obstetricians, ul. Cybernetyki 7F/87, 02-677 Warsaw, Poland
| | - Anna Nowak-Glück
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| | | | - Bożena Szymańska
- Research Laboratory CoreLab, Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Piotr Sowa
- Department of Pathology, M. Pirogow’s Teaching Hospital, Wilenska 37 St., 94-029 Lodz, Poland;
| | - Aleksander Rycerz
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 St., 92-215 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| |
Collapse
|
4
|
Dhahri H, Fondufe-Mittendorf YN. Exploring the interplay between PARP1 and circRNA biogenesis and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1823. [PMID: 37957925 PMCID: PMC11089078 DOI: 10.1002/wrna.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
PARP1 (poly-ADP-ribose polymerase 1) is a multidomain protein with a flexible and self-folding structure that allows it to interact with a wide range of biomolecules, including nucleic acids and target proteins. PARP1 interacts with its target molecules either covalently via PARylation or non-covalently through its PAR moieties induced by auto-PARylation. These diverse interactions allow PARP1 to participate in complex regulatory circuits and cellular functions. Although the most studied PARP1-mediated functions are associated with DNA repair and cellular stress response, subsequent discoveries have revealed additional biological functions. Based on these findings, PARP1 is now recognized as a major modulator of gene expression. Several discoveries show that this multifunctional protein has been intimately connected to several steps of mRNA biogenesis, from transcription initiation to mRNA splicing, polyadenylation, export, and translation of mRNA to proteins. Nevertheless, our understanding of PARP1's involvement in the biogenesis of both coding and noncoding RNA, notably circular RNA (circRNA), remains restricted. In this review, we outline the possible roles of PARP1 in circRNA biogenesis. A full examination of the regulatory roles of PARP1 in nuclear processes with an emphasis on circRNA may reveal new avenues to control dysregulation implicated in the pathogenesis of several diseases such as neurodegenerative disorders and cancers. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
5
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
6
|
Guan L, Grigoriev A. tatDB: a database of Ago1-mediated targets of transfer RNA fragments. Nucleic Acids Res 2023; 51:D297-D305. [PMID: 36350638 PMCID: PMC9825446 DOI: 10.1093/nar/gkac1018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, only a few tRFs targets have been experimentally validated, making it hard to extrapolate the functions or binding mechanisms of tRFs. The paucity of resources supporting the identification of the targets of tRFs creates a bottleneck in the fast-developing field. We have previously analyzed chimeric reads in crosslinked Argonaute1-RNA complexes to help infer the guide-target pairs and binding mechanisms of multiple tRFs based on experimental data in human HEK293 cells. To efficiently disseminate these results to the research community, we designed a web-based database tatDB (targets of tRFs DataBase) populated with close to 250 000 experimentally determined guide-target pairs with ∼23 000 tRF isoforms. tatDB has a user-friendly interface with flexible query options/filters allowing one to obtain comprehensive information on given tRFs (or targets). Modes of interactions are supported by secondary structures of potential guide-target hybrids and binding motifs, essential for understanding the targeting mechanisms of tRFs. Further, we illustrate the value of the database on an example of hypothesis-building for a tRFs potentially involved in the lifecycle of the SARS-CoV-2 virus. tatDB is freely accessible at https://grigoriev-lab.camden.rutgers.edu/tatdb.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
7
|
Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed HI, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 2022; 49:10975-10993. [PMID: 36057876 DOI: 10.1007/s11033-022-07871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Ehab A R Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Muhammad Sajid
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| |
Collapse
|
8
|
Karmakar S, Ramirez O, Paul KV, Gupta AK, Kumari V, Botti V, de Los Mozos IR, Neuenkirchen N, Ross RJ, Karanicolas J, Neugebauer KM, Pillai MM. Integrative genome-wide analysis reveals EIF3A as a key downstream regulator of translational repressor protein Musashi 2 (MSI2). NAR Cancer 2022; 4:zcac015. [PMID: 35528200 PMCID: PMC9070473 DOI: 10.1093/narcan/zcac015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA binding protein (RBP) that regulates asymmetric cell division and cell fate decisions in normal and cancer stem cells. MSI2 appears to repress translation by binding to 3′ untranslated regions (3′UTRs) of mRNA, but the identity of functional targets remains unknown. Here, we used individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) to identify direct RNA binding partners of MSI2 and integrated these data with polysome profiling to obtain insights into MSI2 function. iCLIP revealed specific MSI2 binding to thousands of mRNAs largely in 3′UTRs, but translational differences were restricted to a small fraction of these transcripts, indicating that MSI2 regulation is not triggered by simple binding. Instead, the functional targets identified here were bound at higher density and contain more ‘UAG’ motifs compared to targets bound nonproductively. To further distinguish direct and indirect targets, MSI2 was acutely depleted. Surprisingly, only 50 transcripts were found to undergo translational induction on acute loss. Using complementary approaches, we determined eukaryotic translation initiation factor 3A (EIF3A) to be an immediate, direct target. We propose that MSI2 downregulation of EIF3A amplifies these effects on translation. Our results also underscore the challenges in defining functional targets of RBPs since mere binding does not imply a discernible functional interaction.
Collapse
Affiliation(s)
| | - Oscar Ramirez
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Kiran V Paul
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Vandana Kumari
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Igor Ruiz de Los Mozos
- Institute of Neurology, University College London and The Francis Crick Institute, London NW1 1AT, UK
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Robert J Ross
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Xu W, Biswas J, Singer RH, Rosbash M. Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 2022; 82:389-403. [PMID: 34739873 PMCID: PMC8792254 DOI: 10.1016/j.molcel.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.
Collapse
Affiliation(s)
- Weijin Xu
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA.
| |
Collapse
|
11
|
Singha M, Spitalny L, Nguyen K, Vandewalle A, Spitale RC. Chemical methods for measuring RNA expression with metabolic labeling. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1650. [PMID: 33738981 DOI: 10.1002/wrna.1650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Tracking the expression of RNA in a cell-specific manner is a major challenge in basic and disease research. Herein we outline the current state of employing chemical approaches for cell-specific RNA expression studies. We define the utility of metabolic labels for tracking RNA synthesis, the approaches for characterizing metabolic incorporation and enrichment of labeled RNAs, and finally outline how these approaches have been used to study biological systems by providing mechanistic insights into transcriptional dynamics. Further efforts on this front will be the continued development of novel chemical handles for RNA enrichment and profiling as well as innovative approaches to control cell-specific incorporation of chemically modified metabolic probes. These advancements in RNA metabolic labeling techniques permit sensitive detection of RNA expression dynamics within relatively small subsets of cells in living tissues and organisms that are critical to performing complex developmental and pathological processes. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Ribonomics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Leslie Spitalny
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA.,Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, California, USA.,Department of Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
12
|
Carter JM, Ang DA, Sim N, Budiman A, Li Y. Approaches to Identify and Characterise the Post-Transcriptional Roles of lncRNAs in Cancer. Noncoding RNA 2021; 7:19. [PMID: 33803328 PMCID: PMC8005986 DOI: 10.3390/ncrna7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the non-coding genome and transcriptome exert great influence over their coding counterparts through complex molecular interactions. Among non-coding RNAs (ncRNA), long non-coding RNAs (lncRNAs) in particular present increased potential to participate in dysregulation of post-transcriptional processes through both RNA and protein interactions. Since such processes can play key roles in contributing to cancer progression, it is desirable to continue expanding the search for lncRNAs impacting cancer through post-transcriptional mechanisms. The sheer diversity of mechanisms requires diverse resources and methods that have been developed and refined over the past decade. We provide an overview of computational resources as well as proven low-to-high throughput techniques to enable identification and characterisation of lncRNAs in their complex interactive contexts. As more cancer research strategies evolve to explore the non-coding genome and transcriptome, we anticipate this will provide a valuable primer and perspective of how these technologies have matured and will continue to evolve to assist researchers in elucidating post-transcriptional roles of lncRNAs in cancer.
Collapse
Affiliation(s)
- Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Andrea Budiman
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
13
|
Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon- Magnaporthe oryzae Pathosystems. Int J Mol Sci 2021; 22:ijms22020650. [PMID: 33440747 PMCID: PMC7826919 DOI: 10.3390/ijms22020650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.
Collapse
|
14
|
Riolo G, Cantara S, Marzocchi C, Ricci C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc 2020; 4:1. [PMID: 33374478 PMCID: PMC7839038 DOI: 10.3390/mps4010001] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
Collapse
Affiliation(s)
| | | | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.); (C.M.)
| |
Collapse
|
15
|
Schaack GA, Mehle A. Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harb Perspect Med 2020; 10:a038521. [PMID: 31871241 PMCID: PMC7706581 DOI: 10.1101/cshperspect.a038521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An ever-expanding toolkit of experimental methods provides the means to discover and characterize host factors important for influenza virus. Here, we describe common methods for investigating genetic relationships and physical interactions between virus and host. A comprehensive knowledge of host:virus interactions is key to understanding how influenza virus exploits the host cell and to potentially identify vulnerabilities that may be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Grace A Schaack
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat Methods 2020; 17:311-318. [PMID: 32015544 PMCID: PMC8518020 DOI: 10.1038/s41592-019-0726-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-specific gene expression profiling. Current metabolic labeling methods rely on the inability of mammalian cells to incorporate exogenous pyrimidine analogs, which are then co-opted by ectopically-expressed enzymes. We demonstrate that mammalian cells can incorporate uracil analogs and characterize the enzymatic pathways responsible for high background incorporation. To overcome these limitations, we developed a novel small-molecule/enzyme pair consisting of uridine-cytidine kinase 2 (UCK2) and 2’-azidouridine (2’AzUd). We demonstrate that 2’AzUd is only incorporated in UCK2-expressing cells and characterize selectivity mechanisms using molecular dynamics and X-ray crystallography. Furthermore, this pair can be used to purify and track RNA from specific cellular populations, making it ideal for high-resolution cell-specific RNA labeling. Overall, these results reveal novel aspects of mammalian salvage pathways and serve as a new benchmark for designing, characterizing and evaluating cell-specific biomolecule labeling methodologies.
Collapse
|
17
|
Aznarez I, Nomakuchi TT, Tetenbaum-Novatt J, Rahman MA, Fregoso O, Rees H, Krainer AR. Mechanism of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1. Cell Rep 2019; 23:2186-2198. [PMID: 29768215 PMCID: PMC5999336 DOI: 10.1016/j.celrep.2018.04.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/20/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The splicing factor SRSF1 promotes nonsense-mediated mRNA decay (NMD), a quality control mechanism that degrades mRNAs with premature termination codons (PTCs). Here we show that transcript-bound SRSF1 increases the binding of NMD factor UPF1 to mRNAs while in, or associated with, the nucleus, bypassing UPF2 recruitment and promoting NMD. SRSF1 promotes NMD when positioned downstream of a PTC, which resembles the mode of action of exon junction complex (EJC) and NMD factors. Moreover, splicing and/or EJC deposition increase the effect of SRSF1 on NMD. Lastly, SRSF1 enhances NMD of PTC-containing endogenous transcripts that result from various events. Our findings reveal an alternative mechanism for UPF1 recruitment, uncovering an additional connection between splicing and NMD. SRSF1’s role in the mRNA’s journey from splicing to decay has broad implications for gene expression regulation and genetic diseases.
Collapse
Affiliation(s)
- Isabel Aznarez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | - Oliver Fregoso
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Holly Rees
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
18
|
In-cell identification and measurement of RNA-protein interactions. Nat Commun 2019; 10:5317. [PMID: 31757954 PMCID: PMC6876571 DOI: 10.1038/s41467-019-13235-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
Regulatory RNAs exert their cellular functions through RNA-binding proteins (RBPs). Identifying RNA-protein interactions is therefore key for a molecular understanding of regulatory RNAs. To date, RNA-bound proteins have been identified primarily through RNA purification followed by mass spectrometry. Here, we develop incPRINT (in cell protein-RNA interaction), a high-throughput method to identify in-cell RNA-protein interactions revealed by quantifiable luminescence. Applying incPRINT to long noncoding RNAs (lncRNAs), we identify RBPs specifically interacting with the lncRNA Firre and three functionally distinct regions of the lncRNA Xist. incPRINT confirms previously known lncRNA-protein interactions and identifies additional interactions that had evaded detection with other approaches. Importantly, the majority of the incPRINT-defined interactions are specific to individual functional regions of the large Xist transcript. Thus, we present an RNA-centric method that enables reliable identification of RNA-region-specific RBPs and is applicable to any RNA of interest. RNA-interacting proteome can be identified by RNA affinity purification followed by mass spectrometry. Here the authors developed a different RNA-centric technology that combines high-throughput immunoprecipitation of RNA binding proteins and luciferase-based detection of their interaction with the RNA.
Collapse
|
19
|
No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci Rep 2019; 9:13752. [PMID: 31551491 PMCID: PMC6760161 DOI: 10.1038/s41598-019-50287-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) has strong antiviral activity in a range of animal phyla, but the extent to which RNAi controls virus infection in chordates, and specifically mammals remains incompletely understood. Here we analyze the antiviral activity of RNAi against a number of positive-sense RNA viruses using Argonaute-2 deficient human cells. In line with absence of virus-derived siRNAs, Sindbis virus, yellow fever virus, and encephalomyocarditis virus replicated with similar kinetics in wildtype cells and Argonaute-2 deficient cells. Coxsackievirus B3 (CVB3) carrying mutations in the viral 3A protein, previously proposed to be a virus-encoded suppressor of RNAi in another picornavirus, human enterovirus 71, had a strong replication defect in wildtype cells. However, this defect was not rescued in Argonaute-2 deficient cells, arguing against a role of CVB3 3A as an RNAi suppressor. In agreement, neither infection with wildtype nor 3A mutant CVB3 resulted in small RNA production with the hallmarks of canonical vsiRNAs. Together, our results argue against strong antiviral activity of RNAi under these experimental conditions, but do not exclude that antiviral RNAi may be functional under other cellular, experimental, or physiological conditions in mammals.
Collapse
|
20
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
21
|
Giambruno R, Mihailovich M, Bonaldi T. Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Front Mol Biosci 2018; 5:90. [PMID: 30467545 PMCID: PMC6236024 DOI: 10.3389/fmolb.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets.
Collapse
Affiliation(s)
| | | | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
22
|
Xu JZ, Zhang JL, Zhang WG. Antisense RNA: the new favorite in genetic research. J Zhejiang Univ Sci B 2018; 19:739-749. [PMID: 30269442 PMCID: PMC6194357 DOI: 10.1631/jzus.b1700594] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.
Collapse
Affiliation(s)
- Jian-zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun-lan Zhang
- Department of In Vitro Diagnostics (IVD), Baiming Biotechnology Co., Ltd., Yancheng 224000, China
| | - Wei-guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Zanini S, Šečić E, Jelonek L, Kogel KH. A Bioinformatics Pipeline for the Analysis and Target Prediction of RNA Effectors in Bidirectional Communication During Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1212. [PMID: 30177942 PMCID: PMC6109766 DOI: 10.3389/fpls.2018.01212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/27/2018] [Indexed: 05/23/2023]
Abstract
Small RNA (sRNA) molecules are key factors in the communication between hosts and their interacting pathogens, where they function as effectors that can modulate both host defense and microbial virulence/pathogenicity through a mechanism termed cross-kingdom RNA interference (ck-RNAi). Consistent with this recent knowledge, sRNAs and their double-stranded RNA precursor have been adopted to control diseases in crop plants, demonstrating a straight forward application of the new findings to approach agricultural problems. Despite the great interest in natural ck-RNAi, it is astonishing to find just a few additional examples in the literature since the first report was published in 2013. One reason might be that the identification of sRNA effectors is hampered both by technical challenges and lack of routine bioinformatics application strategies. Here, we suggest a practical procedure to find, characterize, and validate sRNA effectors in plant-microbe interaction. The aim of this review is not to present and discuss all possible tools, but to give guidelines toward the best established software available for the analysis.
Collapse
Affiliation(s)
- Silvia Zanini
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
25
|
Li Y, Aggarwal MB, Ke K, Nguyen K, Spitale RC. Improved Analysis of RNA Localization by Spatially Restricted Oxidation of RNA-Protein Complexes. Biochemistry 2018; 57:1577-1581. [PMID: 29474061 PMCID: PMC6234203 DOI: 10.1021/acs.biochem.8b00053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent analysis of transcriptomes has revealed that RNAs perform a myriad of functions beyond encoding proteins. Critical to RNA function is its transport to unique subcellular locations. Despite the importance of RNA localization, it is still very challenging to study in an unbiased manner. We recently described the ability to tag RNA molecules within subcellular locations through spatially restricted nucleobase oxidation. Herein, we describe a dramatic improvement of this protocol through the localized oxidation and tagging of proteins. Isolation of RNA-protein complexes enabled the enrichment of challenging RNA targets on chromatin and presented a considerably optimized protocol for the analysis of RNA subcellular localization within living cells.
Collapse
|
26
|
Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 2018; 75:797-814. [PMID: 28905147 PMCID: PMC11105550 DOI: 10.1007/s00018-017-2656-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Haejeong Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun-Sook Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
- EncodeGEN Co. Ltd, Seoul, 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
27
|
Li Y, Aggarwal MB, Nguyen K, Ke K, Spitale RC. Assaying RNA Localization in Situ with Spatially Restricted Nucleobase Oxidation. ACS Chem Biol 2017; 12:2709-2714. [PMID: 28952711 DOI: 10.1021/acschembio.7b00519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report herein a novel chemical-genetic method for assaying RNA localization within living cells. RNA localization is critical for normal physiology as well as the onset of cancer and neurodegenerative disorders. Despite its importance, there is a real lack of chemical methods to directly assay RNA localization with high resolution in living cells. Our novel approach relies on in situ nucleobase oxidation by singlet oxygen generated from spatially confined fluorophores. We demonstrate that our novel method can identify RNA molecules localized within specific cellular compartments. We anticipate that this platform will provide the community with a much-needed methodology for tracking RNA localization within living cells, and set the stage for systematic large scale analysis of RNA localization in living systems.
Collapse
Affiliation(s)
- Ying Li
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mahima B. Aggarwal
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kim Nguyen
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ke Ke
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Robert C. Spitale
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
28
|
Wheeler EC, Van Nostrand EL, Yeo GW. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28853213 PMCID: PMC5739989 DOI: 10.1002/wrna.1436] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
RNA binding proteins (RBPs) play key roles in determining cellular behavior by manipulating the processing of target RNAs. Robust methods are required to detect the numerous binding sites of RBPs across the transcriptome. RNA‐immunoprecipitation followed by sequencing (RIP‐seq) and crosslinking followed by immunoprecipitation and sequencing (CLIP‐seq) are state‐of‐the‐art methods used to identify the RNA targets and specific binding sites of RBPs. Historically, CLIP methods have been confounded with challenges such as the requirement for tens of millions of cells per experiment, low RNA yields resulting in libraries that contain a high number of polymerase chain reaction duplicated reads, and technical inconveniences such as radioactive labeling of RNAs. However, recent improvements in the recovery of bound RNAs and the efficiency of converting isolated RNAs into a library for sequencing have enhanced our ability to perform the experiment at scale, from less starting material than has previously been possible, and resulting in high quality datasets for the confident identification of protein binding sites. These, along with additional improvements to protein capture, removal of nonspecific signals, and methods to isolate noncanonical RBP targets have revolutionized the study of RNA processing regulation, and reveal a promising future for mapping the human protein‐RNA regulatory network. WIREs RNA 2018, 9:e1436. doi: 10.1002/wrna.1436 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Methods > RNA Analyses in Cells
Collapse
Affiliation(s)
- Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA.,Molecular Engineering Laboratory, A*STAR, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
29
|
Eckenfelder A, Ségéral E, Pinzón N, Ulveling D, Amadori C, Charpentier M, Nidelet S, Concordet JP, Zagury JF, Paillart JC, Berlioz-Torrent C, Seitz H, Emiliani S, Gallois-Montbrun S. Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner. Nucleic Acids Res 2017; 45:4158-4173. [PMID: 28003477 PMCID: PMC5397155 DOI: 10.1093/nar/gkw1289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022] Open
Abstract
Argonaute (Ago) proteins associate with microRNAs (miRNAs) to form the core of the RNA-induced silencing complex (RISC) that mediates post-transcriptional gene silencing of target mRNAs. As key players in anti-viral defense, Ago proteins are thought to have the ability to interact with human immunodeficiency virus type 1 (HIV-1) RNA. However, the role of this interaction in regulating HIV-1 replication has been debated. Here, we used high throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to explore the interaction between Ago2 and HIV-1 RNA in infected cells. By only considering reads of 50 nucleotides length in our analysis, we identified more than 30 distinct binding sites for Ago2 along the viral RNA genome. Using reporter assays, we found four binding sites, located near splice donor sites, capable of repressing Luciferase gene expression in an Ago-dependent manner. Furthermore, inhibition of Ago1 and Ago2 levels in cells expressing HIV-1 led to an increase of viral multiply spliced transcripts and to a strong reduction in the extracellular CAp24 level. Depletion of Dicer did not affect these activities. Our results highlight a new role of Ago proteins in the control of multiply spliced HIV-1 transcript levels and viral production, independently of the miRNA pathway.
Collapse
Affiliation(s)
- Agathe Eckenfelder
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Emmanuel Ségéral
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Natalia Pinzón
- CNRS, UPR 1142, Institut de Génétique Humaine, Montpellier 34396, France
| | - Damien Ulveling
- CNAM, Laboratoire Génomique, Bioinformatique et Applications (EA 4627), Paris 75003, France
| | - Céline Amadori
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Marine Charpentier
- INSERM, U1154, CNRS, UMR7196, Museum National d'Histoire Naturelle, Paris 75231, France
| | - Sabine Nidelet
- Plateforme MGX, Institut de Génomique Fonctionnelle, CNRS, UMR5203, INSERM, U661, Montpellier 34094, France
| | - Jean-Paul Concordet
- INSERM, U1154, CNRS, UMR7196, Museum National d'Histoire Naturelle, Paris 75231, France
| | - Jean-François Zagury
- CNAM, Laboratoire Génomique, Bioinformatique et Applications (EA 4627), Paris 75003, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg 67084, France
| | - Clarisse Berlioz-Torrent
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Hervé Seitz
- CNRS, UPR 1142, Institut de Génétique Humaine, Montpellier 34396, France
| | - Stéphane Emiliani
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Sarah Gallois-Montbrun
- INSERM, U1016, Institut Cochin, Paris 75014, France.,CNRS, UMR8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| |
Collapse
|
30
|
Nainar S, Marshall PR, Tyler CR, Spitale RC, Bredy TW. Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 2017; 19:1292-8. [PMID: 27669990 DOI: 10.1038/nn.4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
In this Perspective, we expand the notion of temporal regulation of RNA in the brain and propose that the qualitative nature of RNA and its metabolism, together with RNA abundance, are essential for the molecular mechanisms underlying experience-dependent plasticity. We discuss emerging concepts in the newly burgeoning field of epitranscriptomics, which are predicted to be heavily involved in cognitive function. These include activity-induced RNA modifications, RNA editing, dynamic changes in the secondary structure of RNA, and RNA localization. Each is described with an emphasis on its role in regulating the function of both protein-coding genes, as well as various noncoding regulatory RNAs, and how each might influence learning and memory.
Collapse
Affiliation(s)
- Sarah Nainar
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Paul R Marshall
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Christina R Tyler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
31
|
Lee B, Flynn RA, Kadina A, Guo JK, Kool ET, Chang HY. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA (NEW YORK, N.Y.) 2017; 23:169-174. [PMID: 27879433 PMCID: PMC5238792 DOI: 10.1261/rna.058784.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/20/2016] [Indexed: 05/10/2023]
Abstract
Recent advances in SHAPE technology have converted the classic primer extension method to next-generation sequencing platforms, allowing transcriptome-level analysis of RNA secondary structure. In particular, icSHAPE and SHAPE-MaP, using NAI-N3 and 1M7 reagents, respectively, are methods that claim to measure in vivo structure with high-throughput sequencing. However, these compounds have not been compared on an unbiased, raw-signal level. Here, we directly compare several in vivo SHAPE acylation reagents using the simple primer extension assay. We conclude that while multiple SHAPE technologies are effective at measuring purified RNAs in vitro, acylimidazole reagents NAI and NAI-N3 give markedly greater signals with lower background than 1M7 for in vivo measurement of the RNA structurome.
Collapse
Affiliation(s)
- Byron Lee
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jimmy K Guo
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
32
|
Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae. Methods Mol Biol 2017; 1648:201-220. [PMID: 28766299 DOI: 10.1007/978-1-4939-7204-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.
Collapse
|
33
|
Zhu L, Jiang H, Sheong FK, Cui X, Wang Y, Gao X, Huang X. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:39-46. [PMID: 27697475 DOI: 10.1016/j.pbiomolbio.2016.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022]
Abstract
At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hanlun Jiang
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia
| | - Yanli Wang
- Laboratory of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
34
|
Harold C, Cox D, Riley KJ. Epstein-Barr viral microRNAs target caspase 3. Virol J 2016; 13:145. [PMID: 27565721 PMCID: PMC5002152 DOI: 10.1186/s12985-016-0602-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that transforms B cells and causes several malignancies including Burkitt’s lymphoma. EBV differentially expresses at least 49 mature microRNAs (miRNAs) during latency in various infected epithelial and B cells. Recent high-throughput studies and functional assays have begun to reveal the function of the EBV miRNAs suggesting roles in latency, cell cycle control, and apoptosis. In particular, the central executioner of apoptosis, Caspase 3 (CASP3), was proposed as a target of select EBV miRNAs. However, whether CASP3 is truly a target of EBV miRNAs, and if so, which specific miRNAs target CASP3 is still under debate. Based on previously published high-throughput biochemical data and a bioinformatic analysis of the entire CASP3 3′-UTR, we identified 12 EBV miRNAs that have one or more seed binding sites in the CASP3 3′-UTR. We individually tested all 12 miRNAs for repression of CASP3 in luciferase reporter assays, and nine showed statistically significant (P < 0.001) repression of a full-length CASP3 reporter. Further, three EBV miRNAs, including BART22, exhibited repression of endogenous CASP3 protein. These data confirm that CASP3 is a direct target of specific EBV BART miRNAs.
Collapse
Affiliation(s)
- Cecelia Harold
- Department of Chemistry, Rollins College, Winter Park, FL, 32789, USA.,Present Address: Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Diana Cox
- Department of Chemistry, Rollins College, Winter Park, FL, 32789, USA.,Present Address: Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kasandra J Riley
- Department of Chemistry, Rollins College, Winter Park, FL, 32789, USA.
| |
Collapse
|
35
|
Nainar S, Feng C, Spitale RC. Chemical Tools for Dissecting the Role of lncRNAs in Epigenetic Regulation. ACS Chem Biol 2016; 11:2091-100. [PMID: 27267401 PMCID: PMC5068361 DOI: 10.1021/acschembio.6b00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper control and maintenance of gene expression is critical for cellular identity and maintenance. Transcription of RNA from the genome is intimately controlled by post-translational chemical modification of histone tails and DNA. Recent studies have demonstrated that chromatin-remodeling complexes seek out their target genomic loci through the help of noncoding RNA molecules. Within this Review, we will outline how the use of biochemical techniques has shed light on the mechanisms employed by RNA to guide these complexes and therefore control gene expression.
Collapse
Affiliation(s)
- Sarah Nainar
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697, United States
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697, United States
| |
Collapse
|
36
|
Seok H, Ham J, Jang ES, Chi SW. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Mol Cells 2016; 39:375-81. [PMID: 27117456 PMCID: PMC4870184 DOI: 10.14348/molcells.2016.0013] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (∼22 nucleotides) regulating gene expression at the post-transcriptional level. By directing the RNA-induced silencing complex (RISC) to bind specific target mRNAs, miRNA can repress target genes and affect various biological phenotypes. Functional miRNA target recognition is known to majorly attribute specificity to consecutive pairing with seed region (position 2-8) of miRNA. Recent advances in a transcriptome-wide method of mapping miRNA binding sites (Ago HITS-CLIP) elucidated that a large portion of miRNA-target interactions in vivo are mediated not only through the canonical "seed sites" but also via non-canonical sites (∼15-80%), setting the stage to expand and determine their properties. Here we focus on recent findings from transcriptome-wide non-canonical miRNA-target interactions, specifically regarding "nucleation bulges" and "seed-like motifs". We also discuss insights from Ago HITS-CLIP data alongside structural and biochemical studies, which highlight putative mechanisms of miRNA target recognition, and the biological significance of these non-canonical sites mediating marginal repression.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Juyoung Ham
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351,
Korea
| | | | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| |
Collapse
|
37
|
The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 2016; 468:1029-40. [PMID: 27165283 PMCID: PMC4893068 DOI: 10.1007/s00424-016-1819-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.
Collapse
|
38
|
Wang Y, Qu J, Ji S, Wallace AJ, Wu J, Li Y, Gopalan V, Ding B. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II. THE PLANT CELL 2016; 28:1094-107. [PMID: 27113774 PMCID: PMC4904678 DOI: 10.1105/tpc.16.00100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 05/05/2023]
Abstract
Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Jie Qu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Shaoyi Ji
- College of Life Sciences, Peking University, Beijing, China
| | - Andrew J Wallace
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Jian Wu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Yi Li
- College of Life Sciences, Peking University, Beijing, China
| | - Venkat Gopalan
- The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Biao Ding
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
39
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Zhu L, Jiang H, Sheong FK, Cui X, Gao X, Wang Y, Huang X. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus. J Phys Chem B 2016; 120:2709-20. [PMID: 26908081 DOI: 10.1021/acs.jpcb.5b12426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.
Collapse
Affiliation(s)
| | | | | | - Xuefeng Cui
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia
| | - Yanli Wang
- Laboratory of Non-Coding RNA, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | | |
Collapse
|
41
|
G Hendrickson D, Kelley DR, Tenen D, Bernstein B, Rinn JL. Widespread RNA binding by chromatin-associated proteins. Genome Biol 2016; 17:28. [PMID: 26883116 PMCID: PMC4756407 DOI: 10.1186/s13059-016-0878-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Background Recent evidence suggests that RNA interaction can regulate the activity and localization of chromatin-associated proteins. However, it is unknown if these observations are specialized instances for a few key RNAs and chromatin factors in specific contexts, or a general mechanism underlying the establishment of chromatin state and regulation of gene expression. Results Here, we perform formaldehyde RNA immunoprecipitation (fRIP-Seq) to survey the RNA associated with a panel of 24 chromatin regulators and traditional RNA binding proteins. For each protein that reproducibly bound measurable quantities of bulk RNA (90 % of the panel), we detect enrichment for hundreds to thousands of both noncoding and mRNA transcripts. Conclusion For each protein, we find that the enriched sets of RNAs share distinct biochemical, functional, and chromatin properties. Thus, these data provide evidence for widespread specific and relevant RNA association across diverse classes of chromatin-modifying complexes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0878-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David G Hendrickson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - David R Kelley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | | | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. .,Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
42
|
Kubota M, Tran C, Spitale RC. Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 2015; 11:933-41. [PMID: 26575240 PMCID: PMC5068366 DOI: 10.1038/nchembio.1958] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023]
Abstract
Proper gene expression is essential for the survival of every cell. Once thought to be a passive transporter of genetic information, RNA has recently emerged as a key player in nearly every pathway in the cell. A full description of its structure is critical to understanding RNA function. Decades of research have focused on utilizing chemical tools to interrogate the structures of RNAs, with recent focus shifting to performing experiments inside living cells. This Review will detail the design and utility of chemical reagents used in RNA structure probing. We also outline how these reagents have been used to gain a deeper understanding of RNA structure in vivo. We review the recent merger of chemical probing with deep sequencing. Finally, we outline some of the hurdles that remain in fully characterizing the structure of RNA inside living cells, and how chemical biology can uniquely tackle such challenges.
Collapse
Affiliation(s)
- Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Catherine Tran
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
43
|
Protein-RNA networks revealed through covalent RNA marks. Nat Methods 2015; 12:1163-70. [PMID: 26524240 PMCID: PMC4707952 DOI: 10.1038/nmeth.3651] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo.
Collapse
|
44
|
Kubota M, Chan D, Spitale RC. RNA structure: merging chemistry and genomics for a holistic perspective. Bioessays 2015; 37:1129-38. [PMID: 26288173 DOI: 10.1002/bies.201300146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby sequencing power can be interpreted to understand nucleic acid proximity, nucleic acid conformation, or nucleic acid-protein interactions. Utilizing such technologies in this way has the promise to provide novel structural insights into the mechanisms that control normal cellular physiology and provide insight into how structure could be perturbed in disease.
Collapse
Affiliation(s)
- Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
45
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Mol Cell Biol 2015; 35:3116-30. [PMID: 26124283 DOI: 10.1128/mcb.00093-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis.
Collapse
|
47
|
Bracken CP, Khew-Goodall Y, Goodall GJ. Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer. Cancer Res 2015; 75:2594-9. [PMID: 26069247 DOI: 10.1158/0008-5472.can-15-0287] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
microRNAs (miRNA) are well suited to the task of regulating gene expression networks, because any given miRNA has the capacity to target dozens, if not hundreds, of genes. The simultaneous targeting of multiple genes within a pathway may enable miRNAs to more strongly regulate the pathway, or to achieve more subtle control through the targeting of distinct subnetworks of genes. Therefore, as our capacity to discover miRNA targets en masse increases, so must our consideration of the complex networks in which these genes participate. We highlight recent studies in which the comprehensive identification of targets has been used to elucidate miRNA-regulated gene networks in cancer, focusing especially upon miRNAs such as members of the miR-200 family that regulate epithelial-mesenchymal transition (EMT), a reversible phenotypic switch whereby epithelial cells take on the more invasive properties of their mesenchymal counterparts. These studies have expanded our understanding of the roles of miRNAs in EMT, which were already known to form important regulatory loops with key transcription factors to regulate the epithelial or mesenchymal properties of cells.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
48
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Small RNAs in plants: recent development and application for crop improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:208. [PMID: 25883599 PMCID: PMC4382981 DOI: 10.3389/fpls.2015.00208] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 05/19/2023]
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Mohan Kamthan
- Indian Institute of Toxicology ResearchLucknow, India
| | - Asis Datta
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
49
|
Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays 2015; 37:379-88. [PMID: 25683051 PMCID: PMC4671252 DOI: 10.1002/bies.201400191] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
Despite a library full of literature on miRNA biology, core issues relating to miRNA target detection, biological effect, and mode of action remain controversial. This essay proposes that the predominant mechanism of direct miRNA action is translational inhibition, whereas the bulk of miRNA effects are mRNA based. It explores several issues confounding miRNA target detection, and discusses their impact on the dominance of “miRNA seed” dogma and the exploration of non-canonical binding sites. Finally, it makes comparisons between miRNA target prediction and transcription factor binding prediction, and questions the value of characterizing miRNA binding sites based on which miRNA nucleotides are paired with an mRNA.
Collapse
Affiliation(s)
- Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Genomic Biology Lab, Herston, QLD, Australia
| |
Collapse
|
50
|
Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 2015; 22:29-35. [DOI: 10.1038/nsmb.2921] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
|