1
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
2
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
3
|
Wang KT, Tapper J, Adler CE. Purification of Planarian Stem Cells Using a Draq5-Based FACS Approach. Methods Mol Biol 2024; 2805:203-212. [PMID: 39008184 DOI: 10.1007/978-1-0716-3854-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Planarians are flatworms that have the remarkable ability to regenerate entirely new animals. This regenerative ability requires abundant adult stem cells called neoblasts, which are relatively small in size, sensitive to irradiation and the only proliferative cells in the animal. Despite the lack of cell surface markers, fluorescence-activated cell sorting (FACS) protocols have been developed to discriminate and isolate neoblasts, based on DNA content. Here, we describe a protocol that combines staining of far-red DNA dye Draq5, Calcein-AM and DAPI, along with a shortened processing time. This profiling strategy can be used to functionally characterize the neoblast population in pharmacologically-treated or gene knockdown animals. Highly purified neoblasts can be analyzed with downstream assays, such as in situ hybridization and RNA sequencing.
Collapse
Affiliation(s)
- Kuang-Tse Wang
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Justin Tapper
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
4
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
5
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
7
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
8
|
Minh-Thai TN, Samarasinghe S, Levin M. A Comprehensive Conceptual and Computational Dynamics Framework for Autonomous Regeneration Systems. ARTIFICIAL LIFE 2021; 27:80-104. [PMID: 34473826 DOI: 10.1162/artl_a_00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many biological organisms regenerate structure and function after damage. Despite the long history of research on molecular mechanisms, many questions remain about algorithms by which cells can cooperate towards the same invariant morphogenetic outcomes. Therefore, conceptual frameworks are needed not only for motivating hypotheses for advancing the understanding of regeneration processes in living organisms, but also for regenerative medicine and synthetic biology. Inspired by planarian regeneration, this study offers a novel generic conceptual framework that hypothesizes mechanisms and algorithms by which cell collectives may internally represent an anatomical target morphology towards which they build after damage. Further, the framework contributes a novel nature-inspired computing method for self-repair in engineering and robotics. Our framework, based on past in vivo and in silico studies on planaria, hypothesizes efficient novel mechanisms and algorithms to achieve complete and accurate regeneration of a simple in silico flatwormlike organism from any damage, much like the body-wide immortality of planaria, with minimal information and algorithmic complexity. This framework that extends our previous circular tissue repair model integrates two levels of organization: tissue and organism. In Level 1, three individual in silico tissues (head, body, and tail-each with a large number of tissue cells and a single stem cell at the centre) repair themselves through efficient local communications. Here, the contribution extends our circular tissue model to other shapes and invests them with tissue-wide immortality through an information field holding the minimum body plan. In Level 2, individual tissues combine to form a simple organism. Specifically, the three stem cells form a network that coordinates organism-wide regeneration with the help of Level 1. Here we contribute novel concepts for collective decision-making by stem cells for stem cell regeneration and large-scale recovery. Both levels (tissue cells and stem cells) represent networks that perform simple neural computations and form a feedback control system. With simple and limited cellular computations, our framework minimises computation and algorithmic complexity to achieve complete recovery. We report results from computer simulations of the framework to demonstrate its robustness in recovering the organism after any injury. This comprehensive hypothetical framework that significantly extends the existing biological regeneration models offers a new way to conceptualise the information-processing aspects of regeneration, which may also help design living and non-living self-repairing agents.
Collapse
Affiliation(s)
- Tran Nguyen Minh-Thai
- Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII)
- Can Tho University, College of Information and Communication Technology
| | - Sandhya Samarasinghe
- Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII).
| | | |
Collapse
|
9
|
Liu H, Song Q, Zhen H, Deng H, Zhao B, Cao Z. miR-8b is involved in brain and eye regeneration of Dugesia japonica in head regeneration. Biol Open 2021; 10:269275. [PMID: 34184734 PMCID: PMC8272931 DOI: 10.1242/bio.058538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of evolutionarily conserved small non-coding RNAs that regulate gene expression at the translation level in cell growth, proliferation and differentiation. In addition, some types of miRNAs have been proven to be key modulators of both CNS development and plasticity, such as let-7, miR-9 and miR-124. In this research, we found miR-8b acts as an important regulator involved in brain and eyespot regeneration in Dugesia japonica. miR-8b was highly conserved among species and was abundantly expressed in central nervous system. Here, we detected the expression dynamics of miR-8b by qPCR during the head regeneration of D. japonica. Knockdown miR-8b by anti-MIRs method caused severe defects of eyes and CNS. Our study revealed the evolutionary conserved role of miR-8b in the planarian regeneration process, and further provided more research ideas and available information for planarian miRNAs. Summary: Most miRNAs in planarians are homologous to humans and other mammals, and may also play a similar regulatory role. Knockdown miR-8b planarian miR-8b induces brain and eyespot defects during head regeneration.
Collapse
Affiliation(s)
- Hongjin Liu
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qian Song
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo 255049, China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo 255049, China
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhonghong Cao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
10
|
Lakshmanan V, Sujith TN, Bansal D, Shivaprasad PV, Palakodeti D, Krishna S. Comprehensive annotation and characterization of planarian tRNA and tRNA-derived fragments (tRFs). RNA (NEW YORK, N.Y.) 2021; 27:477-495. [PMID: 33446492 PMCID: PMC7962491 DOI: 10.1261/rna.077701.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
tRNA-derived fragments (tRFs) have recently gained a lot of scientific interest due to their diverse regulatory roles in several cellular processes. However, their function in dynamic biological processes such as development and regeneration remains unexplored. Here, we show that tRFs are dynamically expressed during planarian regeneration, suggesting a possible role for these small RNAs in the regulation of regeneration. In order to characterize planarian tRFs, we first annotated 457 tRNAs in S. mediterranea combining two tRNA prediction algorithms. Annotation of tRNAs facilitated the identification of three main species of tRFs in planarians-the shorter tRF-5s and itRFs, and the abundantly expressed 5'-tsRNAs. Spatial profiling of tRFs in sequential transverse sections of planarians revealed diverse expression patterns of these small RNAs, including those that are enriched in the head and pharyngeal regions. Expression analysis of these tRF species revealed dynamic expression of these small RNAs over the course of regeneration suggesting an important role in planarian anterior and posterior regeneration. Finally, we show that 5'-tsRNA in planaria interact with all three SMEDWI proteins and an involvement of AGO1 in the processing of itRFs. In summary, our findings implicate a novel role for tRFs in planarian regeneration, highlighting their importance in regulating complex systemic processes. Our study adds to the catalog of posttranscriptional regulatory systems in planaria, providing valuable insights on the biogenesis and the function of tRFs in neoblasts and planarian regeneration.
Collapse
MESH Headings
- Algorithms
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Molecular Sequence Annotation
- Nucleic Acid Conformation
- Planarians/genetics
- Planarians/metabolism
- RNA, Helminth/chemistry
- RNA, Helminth/classification
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/classification
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Regeneration/genetics
Collapse
Affiliation(s)
- Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
- SASTRA University, 613401 Thanjavur, India
| | - T N Sujith
- National Centre for Biological Sciences (NCBS), 560065 Bangalore, India
| | - Dhiru Bansal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
| | | | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
| | - Srikar Krishna
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
- SASTRA University, 613401 Thanjavur, India
| |
Collapse
|
11
|
Expression profiling of Echinococcus multilocularis miRNAs throughout metacestode development in vitro. PLoS Negl Trop Dis 2021; 15:e0009297. [PMID: 33750964 PMCID: PMC8016320 DOI: 10.1371/journal.pntd.0009297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE. Alveolar echinococcosis (AE) is a zoonotic disease caused by the metacestode stage of the helminth parasite Echinococcus multilocularis. Current treatment requires surgery and/or prolonged drug therapy. Thus, novel strategies for the treatment of AE are needed. MicroRNAs (miRNAs), a class of small ~22-nucleotide (nt) non-coding RNAs with a major role in regulating gene expression, have been suggested as potential therapeutic targets for treatment and control of helminth parasite infections. In this work, we analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro. We predicted functional roles for highly expressed miRNAs and found that they could be involved in essential roles for survival and development in the host. We determined that E. multilocularis miR-71, a highly expressed miRNA that is absent in the human host, is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. Germinative cells are a relevant cell type to target for anti-echinococcosis drug development. MiRNAs that are absent in the human host, involved in essential functions, highly expressed and/or expressed in germinative cells in E. multilocularis metacestodes may represent selective therapeutic targets for treatment and control of AE.
Collapse
|
12
|
Cao Z, Rosenkranz D, Wu S, Liu H, Pang Q, Zhang X, Liu B, Zhao B. Different classes of small RNAs are essential for head regeneration in the planarian Dugesia japonica. BMC Genomics 2020; 21:876. [PMID: 33287698 PMCID: PMC7722302 DOI: 10.1186/s12864-020-07234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Planarians reliably regenerate all body parts after injury, including a fully functional head and central nervous system. But until now, the expression dynamics and functional role of miRNAs and other small RNAs during the process of head regeneration are not well understood. Furthermore, little is known about the evolutionary conservation of the relevant small RNAs pathways, rendering it difficult to assess whether insights from planarians will apply to other taxa. RESULTS In this study, we applied high throughput sequencing to identify miRNAs, tRNA fragments and piRNAs that are dynamically expressed during head regeneration in Dugesia japonica. We further show that knockdown of selected small RNAs, including three novel Dugesia-specific miRNAs, during head regeneration induces severe defects including abnormally small-sized eyes, cyclopia and complete absence of eyes. CONCLUSIONS Our findings suggest that a complex pool of small RNAs takes part in the process of head regeneration in Dugesia japonica and provide novel insights into global small RNA expression profiles and expression changes in response to head amputation. Our study reveals the evolutionary conserved role of miR-124 and brings further promising candidate small RNAs into play that might unveil new avenues for inducing restorative programs in non-regenerative organisms via small RNA mimics based therapies.
Collapse
Affiliation(s)
- Zhonghong Cao
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - David Rosenkranz
- grid.5802.f0000 0001 1941 7111Institute of Organismic and Molecular Evolution (iOME), Anthropology, Anselm-Franz-von-Bentzel-Weg 7, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Suge Wu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Hongjin Liu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Qiuxiang Pang
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Xiufang Zhang
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Baohua Liu
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| | - Bosheng Zhao
- grid.412509.b0000 0004 1808 3414School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo, 255049 People’s Republic of China
| |
Collapse
|
13
|
The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer. PLoS One 2020; 15:e0225357. [PMID: 32298266 PMCID: PMC7162276 DOI: 10.1371/journal.pone.0225357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
miRNAs are an important class of small non-coding RNAs, which play a versatile role in gene regulation at the post-transcriptional level. Expression of miRNAs is often deregulated in human cancers. We analyzed small RNA massive parallel sequencing data from 50 locally advanced breast cancers aiming to identify novel breast cancer related miRNAs. We successfully predicted 10 novel miRNAs, out of which 2 (hsa-miR-nov3 and hsa-miR-nov7) were recurrent. Applying high sensitivity qPCR, we detected these two microRNAs in 206 and 214 out of 223 patients in the study from which the initial cohort of 50 samples were drawn. We found hsa-miR-nov3 and hsa-miR-nov7 both to be overexpressed in tumor versus normal breast tissue in a separate set of 13 patients (p = 0.009 and p = 0.016, respectively) from whom both tumor tissue and normal tissue were available. We observed hsa-miR-nov3 to be expressed at higher levels in ER-positive compared to ER-negative tumors (p = 0.037). Further stratifications revealed particularly low levels in the her2-like and basal-like cancers compared to other subtypes (p = 0.009 and 0.040, respectively). We predicted target genes for the 2 microRNAs and identified inversely correlated genes in mRNA expression array data available from 203 out of the 223 patients. Applying the KEGG and GO annotations to target genes revealed pathways essential to cell development, communication and homeostasis. Although a weak association between high expression levels of hsa-miR-nov7 and poor survival was observed, this did not reach statistical significance. hsa-miR-nov3 expression levels had no impact on patient survival.
Collapse
|
14
|
Post-transcriptional regulation in planarian stem cells. Semin Cell Dev Biol 2018; 87:69-78. [PMID: 29870807 DOI: 10.1016/j.semcdb.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Planarians are known for their immense regenerative abilities. A pluripotent stem cell population provides the cellular source for this process, as well as for the homeostatic cell turnover of the animals. These stem cells, known as neoblasts, present striking similarities at the morphological and molecular level to germ cells, but however, give rise to somatic tissue. Many RNA binding proteins known to be important for germ cell biology are also required for neoblast function, highlighting the importance of post-transcriptional regulation for stem cell control. Many of its aspects, including alternative splicing, alternative polyadenylation, translational control and mRNA deadenylation, as well as small RNAs such as microRNAs and piRNA are critical for stem cells. Their inhibition often abrogates both regeneration and cell turnover, resulting in lethality. Some of aspects of post-transcriptional regulation are conserved from planarian to mammalian stem cells.
Collapse
|
15
|
Almazan EMP, Lesko SL, Markey MP, Rouhana L. Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers. Dev Biol 2018; 433:433-447. [PMID: 28774726 PMCID: PMC5750089 DOI: 10.1016/j.ydbio.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G. dorotocephala. Akin to orthologs in other planarian species, G. dorotocephala Piwi1 (GdPiwi1) was found to be a robust marker of the planarian stem cell population and GdPiwi2 an essential component for stem cell-driven regeneration. Identification of G. dorotocephala homologs of the early stem cell descendent marker PROG-1 revealed a family of lysine-rich proteins expressed during epithelial cell differentiation. Sequences from the MA-C2 transcriptome were found to be 98-99% identical to nucleotide sequences from G. dorotocephala populations with different chromosomal number, demonstrating strong conservation regardless of karyotype evolution. Altogether, this work establishes G. dorotocephala as a viable and accessible option for analysis of gene function in North America.
Collapse
Affiliation(s)
- Eugene Matthew P Almazan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Sydney L Lesko
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Michael P Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|
16
|
Small RNAome sequencing delineates the small RNA landscape of pluripotent adult stem cells in the planarian Schmidtea mediterranea. GENOMICS DATA 2017; 14:114-125. [PMID: 29124009 PMCID: PMC5671611 DOI: 10.1016/j.gdata.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Small noncoding RNAs play a pivotal role in the regulation of gene expression, and are key regulators of animal development. Freshwater planarian exhibits an extraordinary ability to regenerate any missing body parts, representing an emerging model for studying mechanism underlying stem cell regulation and tissue regeneration. Here, we utilized next-generation sequencing (NGS) to identify small RNAs that are expressed in planarian adult stem cells, and are implicated in tissue regeneration. We profiled microRNAs (miRNAs), piwi-interacting RNA (piRNAs), small rDNA-derived RNAs (srRNAs) and endogenous interfering RNAs (endo-siRNAs) population from size 18–30 nt, measured the expression of 244 conserved miRNAs, and identified 41 novel miRNAs and 64 novel endo-siRNAs. Expression profiling analyses revealed that most piRNAs and srRNAs are up-regulated during regeneration, and that the most abundantly expressed srRNAs are from 5.8s and 28s rRNA. Furthermore, a target prediction method was adopted to investigate the anti-correlation of small RNAs and mRNA expression. We built up a gene regulatory network based on the genes that are targeted by dynamically changed small RNAs. These results expand the known small RNA repertoire in planarian, and provide valuable insights and a rich resource for understanding the small RNAs landscape in stem cell-mediated regeneration.
Collapse
|
17
|
Guo X, Zhang X, Yang J, Jin X, Ding J, Xiang H, Ayaz M, Luo X, Zheng Y. Suppression of nemo-like kinase by miR-71 in Echinococcus multilocularis. Exp Parasitol 2017; 183:1-5. [PMID: 29037783 DOI: 10.1016/j.exppara.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
Abstract
Echinococcus multilocularis metacestodes are a causative pathogen for alveolar echinococcosis in human beings, and have been found to express miRNAs including emu-miR-71. miR-71 is evolutionarily conserved and highly expressed across platyhelminths, but little is known about its role. Here it was shown that emu-miR-71 was differentially expressed in protoscoleces and was unlikely to be expressed in neoblasts. The results of the luciferase assay indicated that emu-miR-71 was able to bind in vitro to the 3'-UTR of emu-nlk, encoding a key regulator of cell division, causing significant downregulation of luciferase activity (p < 0.01) compared to the negative control and the construct with mutations in the binding site. Consistent with the decreased luciferase activity, transfection of emu-miR-71 mimics into protoscoleces notably repressed emu-NLK (p < 0.05). These results demonstrate the suppression of emu-nlk by emu-miR-71, potentially involved in the protoscolex development.
Collapse
Affiliation(s)
- Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xueyong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; The Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haitao Xiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Mazhar Ayaz
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
18
|
Pérez MG, Macchiaroli N, Lichtenstein G, Conti G, Asurmendi S, Milone DH, Stegmayer G, Kamenetzky L, Cucher M, Rosenzvit MC. microRNA analysis of Taenia crassiceps cysticerci under praziquantel treatment and genome-wide identification of Taenia solium miRNAs. Int J Parasitol 2017; 47:643-653. [DOI: 10.1016/j.ijpara.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
|
19
|
Bansal D, Kulkarni J, Nadahalli K, Lakshmanan V, Krishna S, Sasidharan V, Geo J, Dilipkumar S, Pasricha R, Gulyani A, Raghavan S, Palakodeti D. Cytoplasmic poly (A)-binding protein critically regulates epidermal maintenance and turnover in the planarian Schmidtea mediterranea. Development 2017; 144:3066-3079. [PMID: 28807897 PMCID: PMC5611960 DOI: 10.1242/dev.152942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2. Knockdown of smed-pabpc2 leads to defects in epidermal lineage specification, disorganization of epidermis and ECM, and deregulated wound healing, resulting in the selective failure of neoblast proliferation near the wound region. Polysome profiling suggests that epidermal lineage transcripts, including zfp-1, are translationally regulated by SMED-PABPC2. Together, our results uncover a novel role for SMED-PABPC2 in the maintenance of epidermal and ECM integrity, critical for wound healing and subsequent processes for regeneration.
Collapse
Affiliation(s)
- Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
- Manipal University, Manipal 576104, India
| | - Jahnavi Kulkarni
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Kavana Nadahalli
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
- Transdisciplinary University, Bangalore 560064, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
- Sastra University, Thanjavur 613402 India
| | - Srikar Krishna
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
- Sastra University, Thanjavur 613402 India
| | - Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
- Manipal University, Manipal 576104, India
| | - Jini Geo
- National Centre for Biological Sciences, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Shilpa Dilipkumar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Renu Pasricha
- National Centre for Biological Sciences, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Akash Gulyani
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| |
Collapse
|
20
|
Sasidharan V, Marepally S, Elliott SA, Baid S, Lakshmanan V, Nayyar N, Bansal D, Sánchez Alvarado A, Vemula PK, Palakodeti D. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 2017; 144:3211-3223. [PMID: 28807895 PMCID: PMC5612250 DOI: 10.1242/dev.144758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 08/01/2017] [Indexed: 01/15/2023]
Abstract
Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. Summary:miR-124 is required during de novo regeneration of the cephalic ganglion and visual system in planarians, as well as in slit-1 expression in the midline of anterior regenerating tissue via canonical Notch signaling.
Collapse
Affiliation(s)
- Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Sarah A Elliott
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Srishti Baid
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Nishtha Nayyar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, Kansas City, MO 64110, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK campus, Bangalore, Karnataka 560065, India
| |
Collapse
|
21
|
Leone F, Bellani L, Muccifora S, Giorgetti L, Bongioanni P, Simili M, Maserti B, Del Carratore R. Analysis of extracellular vesicles produced in the biofilm by the dimorphic yeast Pichia fermentans. J Cell Physiol 2017; 233:2759-2767. [PMID: 28256706 DOI: 10.1002/jcp.25885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
The yeast Pichia fermentans DISAABA 726 strain (P. fermentans) is a dimorphic yeast that under different environmental conditions may switch from a yeast-like to pseudohyphal morphology. We hypothesize that exosomes-like vesicles (EV) could mediate this rapid modification. EV are membrane-derived vesicles carrying lipids, proteins, mRNAs and microRNAs and have been recognized as important mediators of intercellular communication. Although it has been assumed for a long time that fungi release EV, knowledge of their functions is still limited. In this work we analyze P. fermentans EV production during growth in two different media containing urea (YCU) or methionine (YCM) where yeast-like or pseudohyphal morphology are produced. We developed a procedure to extract EV from the neighboring biofilm which is faster and more efficient as compared to the widely used ultracentrifugation method. Differences in morphology and RNA content of EV suggest that they might have an active role during dimorphic transition as response to the growth conditions. Our findings are coherent with a general state of hypoxic stress of the pseudohyphal cells.
Collapse
Affiliation(s)
| | - Lorenza Bellani
- Department of Life Sciences, Siena, Italy.,Institute of Biology and Biotechnology CNR, Pisa, Italy
| | | | | | - Paolo Bongioanni
- Neuroscience Department, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | | | | | | |
Collapse
|
22
|
Protasio AV, van Dongen S, Collins J, Quintais L, Ribeiro DM, Sessler F, Hunt M, Rinaldi G, Collins JJ, Enright AJ, Berriman M. MiR-277/4989 regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005559. [PMID: 28542189 PMCID: PMC5459504 DOI: 10.1371/journal.pntd.0005559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/05/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023] Open
Abstract
Schistosomes are parasitic helminths that cause schistosomiasis, a disease affecting circa 200 million people, primarily in underprivileged regions of the world. Schistosoma mansoni is the most experimentally tractable schistosome species due to its ease of propagation in the laboratory and the high quality of its genome assembly and annotation. Although there is growing interest in microRNAs (miRNAs) in trematodes, little is known about the role these molecules play in the context of developmental processes. We use the completely unaware "miRNA-blind" bioinformatics tool Sylamer to analyse the 3'-UTRs of transcripts differentially expressed between the juvenile and adult stages. We show that the miR-277/4989 family target sequence is the only one significantly enriched in the transition from juvenile to adult worms. Further, we describe a novel miRNA, sma-miR-4989 showing that its proximal genomic location to sma-miR-277 suggests that they form a miRNA cluster, and we propose hairpin folds for both miRNAs compatible with the miRNA pathway. In addition, we found that expression of sma-miR-277/4989 miRNAs are up-regulated in adults while their predicted targets are characterised by significant down-regulation in paired adult worms but remain largely undisturbed in immature "virgin" females. Finally, we show that sma-miR-4989 is expressed in tegumental cells located proximal to the oesophagus gland and also distributed throughout the male worms' body. Our results indicate that sma-miR-277/4989 might play a dominant role in post-transcriptional regulation during development of juvenile worms and suggest an important role in the sexual development of female schistosomes.
Collapse
Affiliation(s)
- Anna V. Protasio
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Stijn van Dongen
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Julie Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Leonor Quintais
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Diogo M. Ribeiro
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Florian Sessler
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Anton J. Enright
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
23
|
Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea. G3-GENES GENOMES GENETICS 2016; 6:3035-3048. [PMID: 27489207 PMCID: PMC5068929 DOI: 10.1534/g3.116.031120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, 3' untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3'UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3'UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3'UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration.
Collapse
|
24
|
Mangel M, Bonsall MB, Aboobaker A. Feedback control in planarian stem cell systems. BMC SYSTEMS BIOLOGY 2016; 10:17. [PMID: 26873593 PMCID: PMC4752765 DOI: 10.1186/s12918-016-0261-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023]
Abstract
Background In planarian flatworms, the mechanisms underlying the activity of collectively pluripotent adult stem cells (neoblasts) and their descendants can now be studied from the level of the individual gene to the entire animal. Flatworms maintain startling developmental plasticity and regenerative capacity in response to variable nutrient conditions or injury. We develop a model for cell dynamics in such animals, assuming that fully differentiated cells exert feedback control on neoblast activity. Results Our model predicts a number of whole organism level and general cell biological and behaviours, some of which have been empirically observed or inferred in planarians and others that have not. As previously observed empirically we find: 1) a curvilinear relationship between external food and planarian steady state size; 2) the fraction of neoblasts in the steady state is constant regardless of planarian size; 3) a burst of controlled apoptosis during regeneration after amputation as the number of differentiated cells are adjusted towards their homeostatic/steady state level. In addition our model describes the following properties that can inform and be tested by future experiments: 4) the strength of feedback control from differentiated cells to neoblasts (i.e. the activity of the signalling system) and from neoblasts on themselves in relation to absolute number depends upon the level of food in the environment; 5) planarians adjust size when food level reduces initially through increased apoptosis and then through a reduction in neoblast self-renewal activity; 6) following wounding or excision of differentiated cells, different time scales characterize both recovery of size and the two feedback functions; 7) the temporal pattern of feedback controls differs noticeably during recovery from a removal or neoblasts or a removal of differentiated cells; 8) the signaling strength for apoptosis of differentiated cells depends upon both the absolute and relative deviations of the number of differentiated cells from their homeostatic level; and 9) planaria prioritize resource use for cell divisions. Conclusions We offer the first analytical framework for organizing experiments on planarian flatworm stem cell dynamics in a form that allows models to be compared with quantitative cell data based on underlying molecular mechanisms and thus facilitate the interplay between empirical studies and modeling. This framework is the foundation for studying cell migration during wound repair, the determination of homeostatic levels of differentiated cells by natural selection, and stochastic effects. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0261-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Mangel
- Department of Applied Mathematics and Statistics, University of California, Santa Cruz, 95064, CA, USA. .,Department of Biology, University of Bergen, Bergen, 9020, Norway.
| | | | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Ovchinnikov VY, Afonnikov DA, Vasiliev GV, Kashina EV, Sripa B, Mordvinov VA, Katokhin AV. Identification of microRNA genes in three opisthorchiids. PLoS Negl Trop Dis 2015; 9:e0003680. [PMID: 25898350 PMCID: PMC4405270 DOI: 10.1371/journal.pntd.0003680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Opisthorchis felineus, O. viverrini, and Clonorchis sinensis (family Opisthorchiidae) are parasitic flatworms that pose a serious threat to humans in some countries and cause opisthorchiasis/clonorchiasis. Chronic disease may lead to a risk of carcinogenesis in the biliary ducts. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression at post-transcriptional level and are implicated in the regulation of various cellular processes during the parasite- host interplay. However, to date, the miRNAs of opisthorchiid flukes, in particular those essential for maintaining their complex biology and parasitic mode of existence, have not been satisfactorily described. Methodology/Principal Findings Using a SOLiD deep sequencing-bioinformatic approach, we identified 43 novel and 18 conserved miRNAs for O. felineus (miracidia, metacercariae and adult worms), 20 novel and 16 conserved miRNAs for O. viverrini (adult worms), and 33 novel and 18 conserved miRNAs for C. sinensis (adult worms). The analysis of the data revealed differences in the expression level of conserved miRNAs among the three species and among three the developmental stages of O. felineus. Analysis of miRNA genes revealed two gene clusters, one cluster-like region and one intronic miRNA in the genome. The presence and structure of the two gene clusters were validated using a PCR-based approach in the three flukes. Conclusions This study represents a comprehensive description of miRNAs in three members of the family Opistorchiidae, significantly expands our knowledge of miRNAs in multicellular parasites and provides a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites. Results of this study also provides novel resources for deeper understanding the complex parasite biology, for further research on the pathogenesis and molecular events of disease induced by the liver flukes. The present data may also facilitate the development of novel approaches for the prevention and treatment of opisthorchiasis/clonorchiasis. Liver flukes of the family Opisthorchiidae cause diseases of the hepatobiliary system, known as opisthorchiasis/clonorchiasis. The chronic forms of these diseases greatly increase the risk of cancer developing in the biliary ducts. Much has been elucidated regarding the developmental biology of opisthorchiid flukes and the molecular pathological effects on the definitive host; however, the role of microRNAs (short non-coding RNAs) capable of influencing the pathogenic process and host-parasite interactions have not yet been comprehensively studied. The aim of the present work was to identify the miRNA genes of the liver flukes and provide a basis for further investigating the roles of these miRNAs in the complex opisthorchiidae life cycle and the pathogenesis of disease.
Collapse
Affiliation(s)
- Vladimir Y Ovchinnikov
- Department of Human and Animal Genetics, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Dmitry A Afonnikov
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk, Russian Federation; Department of Natural Science, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Gennady V Vasiliev
- Sector of Genomic Investigation, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Elena V Kashina
- Department of Human and Animal Genetics, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Viacheslav A Mordvinov
- Department of Human and Animal Genetics, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Alexey V Katokhin
- Department of Human and Animal Genetics, Institute of Cytology and Genetics, Novosibirsk, Russian Federation; Department of Natural Science, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
26
|
Natarajan N, Ramakrishnan P, Lakshmanan V, Palakodeti D, Rangiah K. A quantitative metabolomics peek into planarian regeneration. Analyst 2015; 140:3445-64. [PMID: 25815385 DOI: 10.1039/c4an02037e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.
Collapse
Affiliation(s)
- Nivedita Natarajan
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, GKVK, Bellary Road, Bangalore-560065, India.
| | | | | | | | | |
Collapse
|
27
|
Cucher M, Macchiaroli N, Kamenetzky L, Maldonado L, Brehm K, Rosenzvit MC. High-throughput characterization of Echinococcus spp. metacestode miRNomes. Int J Parasitol 2015; 45:253-67. [PMID: 25659494 DOI: 10.1016/j.ijpara.2014.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023]
Abstract
Echinococcosis is a worldwide zoonosis of great public health concern, considered a neglected disease by the World Health Organisation. The cestode parasites Echinococcus granulosus sensu lato (s. l.) and Echinococcus multilocularis are the main aetiological agents. In the intermediate host, these parasites display particular developmental traits that lead to different patterns of disease progression. In an attempt to understand the causes of these differences, we focused on the analysis of microRNAs (miRNAs), small non-coding regulatory RNAs with major roles in development of animals and plants. In this work, we analysed the small RNA expression pattern of the metacestode, the stage of sanitary relevance, and provide a detailed description of Echinococcus miRNAs. Using high-throughput small RNA sequencing, we believe that we have carried out the first experimental identification of miRNAs in E. multilocularis and have expanded the Echinococcus miRNA catalogue to 38 miRNA genes, including one miRNA only present in E. granulosus s. l. Our findings show that although both species share the top five highest expressed miRNAs, 13 are differentially expressed, which could be related to developmental differences. We also provide evidence that uridylation is the main miRNA processing mechanism in Echinococcus spp. These results provide detailed information on Echinococcus miRNAs, which is the first step in understanding their role in parasite biology and disease establishment and/or progression, and their future potential use as drug or diagnostic targets.
Collapse
Affiliation(s)
- Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| | - Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Lucas Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
28
|
|
29
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
30
|
Frith JE, Porrello ER, Cooper-White JJ. Concise review: new frontiers in microRNA-based tissue regeneration. Stem Cells Transl Med 2014; 3:969-76. [PMID: 24873861 PMCID: PMC4116250 DOI: 10.5966/sctm.2014-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
In recent years, the role of miRNAs in post-transcriptional gene regulation has come to the fore with strong evidence to indicate an important role for microRNAs (miRNAs) in the regulation of a wide range of fundamental biological processes. Notably, this includes the regulation of both endogenous tissue repair mechanisms and the growth and differentiation of stem cells (both adult and pluripotent). As a result, manipulation of miRNA signaling holds great promise for regenerative medicine, which aims to harness either endogenous or implanted cells to promote tissue repair. However, to fully realize this potential, it will be necessary to combine advances in our biological understanding with new technologies that allow precise spatiotemporal modulation of specific miRNA candidates. In this review, we highlight the role of miRNAs in tissue regeneration, discuss key challenges in translating this knowledge to the clinic, and outline recent technological advances that aim to address these issues. By combining a comprehensive knowledge of miRNA biology with cutting-edge delivery technologies, it is clear that miRNAs hold significant promise for tissue regenerative therapies in the future.
Collapse
Affiliation(s)
- Jessica E Frith
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, School of Biomedical Sciences, and School of Chemical Engineering, University of Queensland, St. Lucia, Queensland, Australia; Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - Enzo R Porrello
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, School of Biomedical Sciences, and School of Chemical Engineering, University of Queensland, St. Lucia, Queensland, Australia; Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, School of Biomedical Sciences, and School of Chemical Engineering, University of Queensland, St. Lucia, Queensland, Australia; Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| |
Collapse
|