1
|
Gronau L, Duecker RP, Jerkic SP, Eickmeier O, Trischler J, Chiocchetti AG, Blumchen K, Zielen S, Schubert R. Dual Role of microRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. Int J Mol Sci 2024; 25:7686. [PMID: 39062931 PMCID: PMC11276706 DOI: 10.3390/ijms25147686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
microRNA (miR)-146a emerges as a promising post-transcriptional regulator in various inflammatory diseases with different roles for the two isoforms miR-146a-5p and miR-146a-3p. The present study aimed to examine the dual role of miR-146a-5p and miR-146a 3p in the modulation of inflammation in human pulmonary epithelial and immune cells in vitro as well as their expression in patients with inflammatory lung diseases. Experimental inflammation in human A549, HL60, and THP1 via the NF-kB pathway resulted in the major upregulation of miR-146a-5p and miR-146a-3p expression, which was partly cell-specific. Modulation by transfection with miRNA mimics and inhibitors demonstrated an anti-inflammatory effect of miR-146a-5p and a pro-inflammatory effect of miR-146a-3p, respectively. A mutual interference between miR-146a-5p and miR-146a-3p was observed, with miR-146a-5p exerting a predominant influence. In vivo NGS analyses revealed an upregulation of miR-146a-3p in the blood of patients with cystic fibrosis and bronchiolitis obliterans, while miR-146a-5p levels were downregulated or unchanged compared to controls. The reverse pattern was observed in patients with SARS-CoV-2 infection. In conclusion, miR-146a-5p and miR-146a-3p are two distinct but interconnected miRNA isoforms with opposing functions in inflammation regulation. Understanding their interaction provides important insights into the progression and persistence of inflammatory lung diseases and might provide potential therapeutic options.
Collapse
Affiliation(s)
- Lucia Gronau
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Ruth P. Duecker
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Silvija-Pera Jerkic
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Olaf Eickmeier
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Jordis Trischler
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Katharina Blumchen
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| | - Stefan Zielen
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany;
| | - Ralf Schubert
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.G.); (R.P.D.); (S.-P.J.); (O.E.); (J.T.); (K.B.)
| |
Collapse
|
2
|
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
4
|
7-hydroxycoumarin modulates Nrf2/HO-1 and microRNA-34a/SIRT1 signaling and prevents cisplatin-induced oxidative stress, inflammation, and kidney injury in rats. Life Sci 2022; 310:121104. [PMID: 36270424 DOI: 10.1016/j.lfs.2022.121104] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The kidneys are vulnerable to toxicity and acute kidney injury (AKI) is the main adverse effect associated with the clinical use of the chemotherapeutic agent cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS nephrotoxicity. In this study, the effect of the antioxidant 7-hydroxycoumarin (7-HC) against CIS-induced renal intoxication was evaluated. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 14 days and CIS (7 mg/kg) at day 15, and samples were collected 3 days after CIS administration. CIS increased serum urea, creatinine and kidney injury molecule (Kim)-1, caused multiple histopathological changes and increased renal reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), NF-κB p65, iNOS, and pro-inflammatory cytokines. 7-HC dose-dependently prevented kidney dysfunction and tissue injury and suppressed ROS and inflammatory mediators. 7-HC boosted renal antioxidants and Bcl-2 while decreased Bax and caspase-3 expression in CIS-administered rats. In addition, 7-HC downregulated Keap-1 and microRNA-34a and upregulated Nrf2, NQO-1, HO-1, and SIRT1. Molecular docking revealed the binding affinity of 7-HC towards NF-κB, Keap-1, and SIRT1. In Conclusion, 7-HC prevented CIS nephrotoxicity by attenuating tissue injury, oxidative stress, inflammation, and apoptotic cell death. The protective efficacy of 7-HC was associated with inhibiting NF-κB and Keap-1, and modulating Nrf2/HO-1 and microRNA34a/Sirt1 signaling.
Collapse
|
5
|
Guo J, Jin K, Tang T, Liu HM, Xie YA. A new biomarker to enhance the radiosensitivity of hepatocellular cancer: miRNAs. Future Oncol 2022; 18:3217-3228. [PMID: 35968820 DOI: 10.2217/fon-2022-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This review summarizes findings regarding miRNAs that modulate radiation in hepatocellular carcinoma (HCC) and evaluates their potential clinical therapeutic uses. Materials & methods: We searched the relevant English-language medical databases for papers on miRNAs and radiation therapy for tumors to identify miRNAs that are linked with radiosensitivity and radioresistance, focusing on those associated with HCC radiation. Results: There were 88 papers assessed for miRNAs associated with tumor radiation, 56 of which dealt with radiosensitization, 21 with radioresistance and 11 with radiosensitization for HCC. Conclusion: Further work in this area would enable future evaluation of radiation responses and the potential use of miRNAs as therapeutic agents in HCC patients.
Collapse
Affiliation(s)
- Ju Guo
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China.,Guangxi Key Laboratory of Reproductive Health & Birth Defects Prevention, Nanning, Guangxi, 530002, PR China
| | - Kai Jin
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China
| | - Ting Tang
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China
| | - Hong-Mei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University & Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Yu-An Xie
- Graduate School of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, 530299, PR China.,Guangxi Key Laboratory of Reproductive Health & Birth Defects Prevention, Nanning, Guangxi, 530002, PR China.,Experimental Research Department, Affiliated Cancer Hospital of Guangxi Medical University & Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China.,Guangxi Zhuang Autonomous Region Women & Children Care Hospital, Nanning, Guangxi, 530002, PR China
| |
Collapse
|
6
|
Hao R, Ge J, Li F, Jiang Y, Sun-Waterhouse D, Li D. MiR-34a-5p/Sirt1 axis: A novel pathway for puerarin-mediated hepatoprotection against benzo(a)pyrene. Free Radic Biol Med 2022; 186:53-65. [PMID: 35561843 DOI: 10.1016/j.freeradbiomed.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (BaP) as a carcinogen induces oxidative stress and inflammation, causing health problems including liver damage. Puerarin (a natural flavonoid) is traditionally used to provide hepatoprotective effects. This research was established to meet the rising demand for effective therapies/treatments against hepatic diseases and investigate the mechanism underlying the protective actions of puerarin against BaP-induced liver damage. In mice, puerarin combated effectively the detrimental changes in liver weight, color and function indices caused by BaP. In HepG2 cells, puerarin alleviated BaP-induced cell death, oxidative stress and inflammation, and such effects were positively correlated with puerarin's concentration (12.5-50 μM). Mechanistic studies revealed that BaP induced low Sirt1 expression and high miR-34a-5p expression, and puerarin treatment alleviated these changes. Oxidative stress and inflammation induced by BaP were almost eliminated when miR-34a-5p was silenced. Inhibiting miR-34a-5p or overexpressing Sirt1 had a similar effect to puerain treatment. Overexpression of miR-34a-5p and inhibition of Sirt1 reduced the protective effect of puerarin. Collectively, miR-34a-5p participates in the regulation of puerarin's protective function against BaP-induced injury through targeting Sirt1. There is a novel pathway for suppressing oxidative stress and inflammation via miR-34a-5p/Sirt1 axis in puerarin-mediated hepatoprotection, which opens up a new avenue for alternative therapies.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
7
|
Li X, Ma G, Zhang C, Chen M, Huang X, Gu C. miR-34a overexpression protects against hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats through the Notch-1/NF-κB signaling pathway. Am J Transl Res 2021; 13:13452-13461. [PMID: 35035687 PMCID: PMC8748079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the protective effect of miR-34a overexpression on hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats and the underlying mechanism. METHODS A total of 48 male SD rats were divided into control group (CG, n=12), ketamine group (KG, n=12), negative control group (NCG, n=12), and intervention group (IG, n=12) by using the random number table method. Neurological function, cognitive function, pathological changes of brain tissues, inflammatory cytokines, as well as mRNA expression levels of Notch-1, NICD, RBP-JK, and Hes-1 in brain tissues were detected in the four groups. RESULTS The scores of auricular, paw withdrawal, corneal reflex, and escape reflexes of IG were higher than those of KG and NCG (P<0.05). At day 3 after intervention, the escape latency, time of staying in the quadrants of original platform, and times of crossing the quadrants of original platform of IG were lower than those of KG and NCG (P<0.05). HE staining results revealed that the morphology and structure of a few neurons and glial cells in IG were changed, and the intercellular space was increased. The brain tissues of NCG demonstrated marked neuron damage with unclear structure; these changes were less significant for KG. The levels of TNF-α, IL-1β, and IL-6 of IG were lower than those of KG and CG (P<0.05). CONCLUSIONS miR-34a overexpression exhibited a potent protective effect on hippocampal neuron damage caused by ketamine-induced anesthesia in immature rats.
Collapse
Affiliation(s)
- Xueyan Li
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Genshan Ma
- Tumor Hospital Affiliated to Nantong University, Nantong Tumor HospitalNantong 226001, Jiangsu, China
| | - Chun Zhang
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Mo Chen
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Xiaochen Huang
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| | - Chengyong Gu
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District)Suzhou 215000, Jiangsu, China
| |
Collapse
|
8
|
Chen L, Huang K, Yi K, Huang Y, Tian X, Kang C. Premature MicroRNA-Based Therapeutic: A "One-Two Punch" against Cancers. Cancers (Basel) 2020; 12:cancers12123831. [PMID: 33353171 PMCID: PMC7766154 DOI: 10.3390/cancers12123831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The current understanding of miRNA biology is greatly derived from studies on the guide strands and the passenger strands, also called miRNAs*, which are considered as carriers with no sense for long periods. As such, various studies alter the expression of guide strands by manipulating the expression of their primary transcripts or precursors, both of which are premature miRNAs. In this situation, the regulatory miRNA* species may interfere with the phenotypic interpretation against the target miRNA. However, such methods could manipulate the expression of two functionally synergistic miRNAs of the same precursor, leading to therapeutic potential against various diseases, including cancers. Premature miRNAs represent an underappreciated target reservoir and provide molecular targets for “one-two punch” against cancers. Examples of targetable miRNA precursors and available targeting strategies are provided in this review. Abstract Up-to-date knowledge regarding the biogenesis and functioning of microRNAs (miRNAs) has provided a much more comprehensive and concrete view of miRNA biology than anyone ever expected. Diverse genetic origins and biogenesis pathways leading to functional miRNAs converge on the synthesis of ≈21-nucleotide RNA duplex, almost all of which are processed from long premature sequences in a DICER- and/or DROSHA-dependent manner. Formerly, it was assumed that one mature strand of the duplex is preferentially selected for entry into the silencing complex, and the paired passenger strands (miRNA*) are subjected to degradation. However, given the consolidated evidence of substantial regulatory activity of miRNA* species, currently, this preconception has been overturned. Here, we see the caveat and opportunity toward exogenously manipulating the expression of premature miRNA, leading to simultaneous upregulation or downregulation of dual regulatory strands due to altered expressions. The caveat is the overlooked miRNA* interference while manipulating the expression of a target miRNA at the premature stage, wherein lies the opportunity. If the dual strands of a pre-miRNA function synergistically, the overlooked miRNA* interference may inversely optimize the therapeutic performance. Insightfully, targeting the premature miRNAs may serve as the “one-two punch” against diseases, especially cancers, and this has been discussed in detail in this review.
Collapse
Affiliation(s)
- Luyue Chen
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China;
| | - Kaikai Yi
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Yanlin Huang
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Xinhua Tian
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| |
Collapse
|
9
|
Mignot S, Cagnard N, Albaud B, Bally C, Siavellis J, Hermine O, Frenzel L. Unique inflammatory signature in haemophilic arthropathy: miRNA changes due to interaction between blood and fibroblast-like synoviocytes. J Cell Mol Med 2020; 24:14453-14466. [PMID: 33159500 PMCID: PMC7753994 DOI: 10.1111/jcmm.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
In haemophilia, the recurrence of hemarthrosis leads to irreversible arthropathy termed haemophilic arthropathy (HA). However, HA is a unique form of arthropathy in which resident cells, such as fibroblast‐like synoviocytes (FLS), come into direct contact with blood. Therefore, we hypothesized that FLS in HA could have a unique inflammatory signature as a consequence of their contact with blood. We demonstrated with ELISA and ELISPOT analyses that HA‐FLS expressed a unique profile of cytokine secretion, which differed from that of non‐HA‐FLS, mainly consisting of cytokines involved in innate immunity. We showed that unstable cytokine mRNAs were involved in this process, especially through miRNA complexes as confirmed by DICER silencing. A miRNOME analysis revealed that 30 miRNAs were expressed differently between HA and non‐HA‐FLS, with most miRNAs involved in inflammatory control pathways or described in certain inflammatory diseases, such as rheumatoid arthritis or lupus. Analysis of transcriptomic networks, impacted by these miRNAs, revealed that protein processes and inflammatory pathways were particularly targeted in LPS‐induced FLS, and in particular vascularization and osteoarticular modulation pathways in steady‐state FLS. Our study demonstrates that the presence of blood in contact with FLS may induce durable miRNA changes that likely participate in HA pathophysiology.
Collapse
Affiliation(s)
- Sandra Mignot
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France
| | | | | | - Cécile Bally
- Hematology unit care - hemophilia Center - Necker Hospital, Paris, France
| | - Justine Siavellis
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France.,Hematology unit care - hemophilia Center - Necker Hospital, Paris, France.,Faculté de médecine Paris-Descartes, Paris, France
| | - Laurent Frenzel
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France.,Hematology unit care - hemophilia Center - Necker Hospital, Paris, France.,Faculté de médecine Paris-Descartes, Paris, France
| |
Collapse
|
10
|
Inflammation Drives MicroRNAs to Limit Hepatocyte Bile Acid Transport in Murine Biliary Atresia. J Surg Res 2020; 256:663-672. [PMID: 32818799 DOI: 10.1016/j.jss.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biliary atresia (BA) is an inflammatory pediatric cholangiopathy with only surgical means for treatment. Many contributors to bile acid synthesis and transport have previously been reported to be downregulated in patients with BA; yet, the driving factors of the abnormal bile acid synthesis and transport in regard to BA have not been previously studied. MATERIALS AND METHODS Wild type or Ig-α-/- mice were injected with salt solution (control) or rotavirus on day of life 0, and analyses were performed on day of life 14. The mRNA levels of bile acid transporters/nuclear receptors and liver microRNAs (miRNAs) were compared between groups. A mouse hepatocyte cell line was used to examine the effects of innate cytokines on miRNA levels and bile acid transporter/nuclear receptor expression and miRNAs on bile acid transporter/nuclear receptor expression. RESULTS BA mice had significantly increased mRNA expression of innate cytokines and miRNAs known to bind bile acid transporters/nuclear receptors (miRNAs -22-5p, -34a-5p, and -222-3p) and decreased mRNA expression of bile acid transporters and nuclear receptors. In vitro, TNF-α and IL-1β decreased BSEP and CYP7A1 while increasing miRNA-34a-5p and miRNA 222-3p. LXR, SHP, CYP7A1, NTCP, and MRP2 were decreased by miRNA-34a-5p, whereas miRNA-222-3p decreased NTCP and MRP4. TNF-α and IL-1β increased expression of miRNAs 34a-5p and 222-3p and these miRNAs then decrease expression of multiple bile acid transporters and nuclear receptors. CONCLUSIONS Loss of bile acid transporters increases hepatotoxicity via bile acid retention. Therapeutic agents that increase bile acid transport or nuclear receptor functioning should be investigated in BA.
Collapse
|
11
|
Zhao C, Zhou Y, Ran Q, Yao Y, Zhang H, Ju J, Yang T, Zhang W, Yu X, He S. MicroRNA-381-3p Functions as a Dual Suppressor of Apoptosis and Necroptosis and Promotes Proliferation of Renal Cancer Cells. Front Cell Dev Biol 2020; 8:290. [PMID: 32411707 PMCID: PMC7198711 DOI: 10.3389/fcell.2020.00290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. It has a poor prognosis, with approximately 20-30% of patients developing recurrent and/or metastatic diseases that is relatively high resistant to conventional therapy. Resisting cell death is a hallmark of cancer cells. Apoptosis is a form of programmed cell death mediated by the activation of caspases. Necroptosis is a form of regulated necrosis that relies on the activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL), the substrate of RIPK3. Cancer cells often display apoptosis resistance via upregulation of anti-apoptotic genes and defective necroptosis due to the epigenetic silence of Ripk3. MicroRNAs (miRNAs) are non-coding small RNAs that are involved in numerous biological processes including cell proliferation, differentiation and death. In this study, we screened a set of ∼120 miRNAs for apoptosis-regulating miRNAs and identified miR-381-3p as a suppressor of TNF-induced apoptosis in various cancer cells. Ectopic expression of miR-381-3p inhibits the activation of caspase-8 and caspase-3. The expression level of miR-381-3p inversely correlates with the sensitivity of cancer cells to TNF-induced apoptosis. Moreover, we found that overexpression of miR-381-3p blocks TNF-induced necroptosis by inhibiting the activation of RIPK3 and MLKL. Of note, Kaplan-Meier Plotter analysis demonstrates that papillary RCC patients with high miR-381-3p expression have a lower overall survival than those with low expression level of miR-381-3p. Importantly, miR-381-3p overexpression promotes colony formation in human renal cancer cells. Thus, miR-381-3p acts as an oncogenic miRNA that counteracts both apoptotic and necroptotic signaling pathways. Our findings highlight miR-381-3p as a biomarker for predicting sensitivity to apoptosis and necroptosis, and as a possible therapeutic target for RCC.
Collapse
Affiliation(s)
- Cong Zhao
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yifei Zhou
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Qiao Ran
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ying Yao
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Haoran Zhang
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jie Ju
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Tao Yang
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Wei Zhang
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xiaoliang Yu
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Sudan He
- State Key Laboratory of Radiation Medicine and Protection, Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
12
|
Wu CH, Chen CY, Yeh CT, Lin KH. Radiosensitization of Hepatocellular Carcinoma through Targeting Radio-Associated MicroRNA. Int J Mol Sci 2020; 21:ijms21051859. [PMID: 32182776 PMCID: PMC7084923 DOI: 10.3390/ijms21051859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. For patients who are resistant to monotherapy, multimodal therapy is a basic oncologic principle that incorporates surgery, radiotherapy (RT), and chemotherapy providing survival benefits for patients with most types of cancer. Although liver has low tolerance for radiation, high-precision RT for local HCC minimizes the likelihood of radiation-induced liver disease (RILD) in noncancerous liver tissue. RT have several therapeutic benefits, including the down-staging of tumors to make them resectable and repression of metastasis. The DNA damage response (DDR) is a cellular response to irradiation (IR), including DNA repair of injured cells and induction of programmed cell death, thereby resulting in maintenance of cell homeostasis. Molecules that block the activity of proteins in DDR pathways have been found to enhance radiotherapeutic effects. These molecules include antibodies, kinase inhibitors, siRNAs and miRNAs. MicroRNAs (miRNAs) are short non-coding regulatory RNAs binding to the 3'-untranslated regions (3'-UTR) of the messenger RNAs (mRNAs) of target genes, regulating their translation and expression of proteins. Thus, miRNAs and their target genes constitute complicated interactive networks, which interact with other molecules during carcinogenesis. Due to their promising roles in carcinogenesis, miRNAs were shown to be the potential factors that mediated radiosensitivity and optimized outcomes of the combination of systemic therapy and radiotherapy.
Collapse
Affiliation(s)
- Cheng-Heng Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-2118263
| |
Collapse
|
13
|
Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells 2019; 8:cells8090993. [PMID: 31466320 PMCID: PMC6770916 DOI: 10.3390/cells8090993] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and the undifferentiated hiPSCs (healthy iPSK3 and Alzheimer’s-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100–250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by β-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aβ42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration.
Collapse
|
14
|
Schlösser V, Hall J. Labeling microRNA precursors for Dicer assays. Anal Biochem 2019; 579:35-37. [DOI: 10.1016/j.ab.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
|
15
|
Kadekar S, Nawale GN, Karlsson K, Ålander C, Oommen OP, Varghese OP. Synthetic Design of Asymmetric miRNA with an Engineered 3' Overhang to Improve Strand Selection. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:597-604. [PMID: 31085353 PMCID: PMC6517641 DOI: 10.1016/j.omtn.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
We developed a novel miRNA design that significantly improves strand selection within the RISC complex by engineering the 3' end by adding extra nucleotides. Addition of seven nucleotides at the 3' ends of the miR or miR* strand resulted in a thermodynamic asymmetry at either of the two ends, which resulted in selective RISC recruitment, as demonstrated by a stem-loop PCR experiment. Such selective recruitment was also corroborated at the protein level by western blot analysis. To investigate the functional effect because of selective recruitment, we performed apoptosis and metastasis studies using human colon carcinoma cells (HCT116) and human osteosarcoma cells (MG63). These experiments indicated that recruitment of the miR strand is responsible for inducing apoptosis and inhibiting the invasiveness of cancer cells. Recruitment of the miR* strand, on the other hand, had the opposite effect. To the best of our knowledge, our strand engineering strategy is the first report of improved strand selection of a desired miRNA strand by RISC without using any chemical modifications or mismatches. We believe that such structural modifications of miR34a could mitigate some of the off-target effects of miRNA therapy and would also allow a better understanding of sequence-specific gene regulation. Such a design could also be adapted to other miRNAs to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sandeep Kadekar
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Ganesh N Nawale
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Kira Karlsson
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Cecilia Ålander
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech Institute, 33720 Tampere, Finland
| | - Oommen P Varghese
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden.
| |
Collapse
|
16
|
Rossi AFT, Contiero JC, Manoel-Caetano FDS, Severino FE, Silva AE. Up-regulation of tumor necrosis factor-α pathway survival genes and of the receptor TNFR2 in gastric cancer. World J Gastrointest Oncol 2019; 11:281-294. [PMID: 31040894 PMCID: PMC6475670 DOI: 10.4251/wjgo.v11.i4.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric carcinogenesis can be induced by chronic inflammation triggered by Helicobacter pylori (H. pylori) infection. Tumor necrosis factor (TNF)-α and its receptors (TNFR1 and TNFR2) regulate important cellular processes, such as apoptosis and cell survival, and the disruption of which can lead to cancer. This signaling pathway is also modulated by microRNAs (miRNAs), altering gene expression.
AIM To evaluate the mRNA and miRNAs expression involved in the TNF-α signaling pathway in gastric cancer (GC) tissues and its relationship.
METHODS Quantitative polymerase chain reaction (qPCR) by TaqMan® assay was used to quantify the RNA transcript levels of TNF-α signaling pathway (TNF, TNFR1, TNFR2, TRADD, TRAF2, CFLIP, NFKB1, NFKB2, CASP8, CASP3) and miRNAs that targets genes from this pathway (miR-19a, miR-34a, miR-103a, miR-130a, miR-181c) in 30 GC fresh tissue samples. Molecular diagnosis of H. pylori was performed by nested PCR for gene HSP60. A miRNA:mRNA interaction network was construct using Cytoscape v3.1.1 from the in silico analysis performed using public databases.
RESULTS Up-regulation of cellular survival genes as TNF, TNFR2, TRADD, TRAF2, CFLIP, and NFKB2, besides CASP8 and miR-34a was observed in GC tissues, whereas mediators of apoptosis such as TNFR1 and CASP3 were down-regulated. When the samples were stratified by histological type, the expression of miR-103a and miR-130a was significantly increased in the diffuse-type of GC compared to the intestinal-type. However, no influence of H. pylori infection was observed on the expression levels of mRNA and miRNAs analyzed. Moreover, the miRNA:mRNA interaction network showed several interrelations between the miRNAs and their target genes, highlighting miR-19a and miR-103a, which has as predicted or validated target a large number of genes in the TNF-α pathway, including TNF, TNFR1, TNFR2, CFLIP, TRADD, CASP3 and CASP8.
CONCLUSION Our findings show that cell survival genes mediated by TNF/TNFR2 binding is up-regulated in GC favoring its pro-tumoral effect, while pro-apoptotic genes as CASP3 and TNFR1 are down-regulated, indicating disbalance between apoptosis and cell proliferation processes in this neoplasm. This process can also be influenced by an intricate regulatory network of miRNA:mRNA.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- Department of Biology, São Paulo State University – UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | - Júlia Cocenzo Contiero
- Department of Biology, São Paulo State University – UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | | | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University – UNESP, Botucatu, SP 18618-687, Brazil
| | - Ana Elizabete Silva
- Department of Biology, São Paulo State University – UNESP, São José do Rio Preto, SP 15054-000, Brazil
| |
Collapse
|
17
|
Brzóska K, Grądzka I, Kruszewski M. Silver, Gold, and Iron Oxide Nanoparticles Alter miRNA Expression but Do Not Affect DNA Methylation in HepG2 Cells. MATERIALS 2019; 12:ma12071038. [PMID: 30934809 PMCID: PMC6479689 DOI: 10.3390/ma12071038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
The increasing use of nanoparticles (NPs) in various applications entails the need for reliable assessment of their potential toxicity for humans. Originally, studies concerning the toxicity of NPs focused on cytotoxic and genotoxic effects, but more recently, attention has been paid to epigenetic changes induced by nanoparticles. In the present research, we analysed the DNA methylation status of genes related to inflammation and apoptosis as well as the expression of miRNAs related to these processes in response to silver (AgNPs), gold (AuNPs), and superparamagnetic iron oxide nanoparticles (SPIONs) at low cytotoxic doses in HepG2 cells. There were no significant differences between treated and control cells in the DNA methylation status. We identified nine miRNAs, the expression of which was significantly altered by treatment with nanoparticles. The highest number of changes was induced by AgNPs (six miRNAs), followed by AuNPs (four miRNAs) and SPIONs (two miRNAs). Among others, AgNPs suppressed miR-34a expression, which is of particular interest since it may be responsible for the previously observed AgNPs-mediated HepG2 cells sensitisation to tumour necrosis factor (TNF). Most of the miRNAs affected by NP treatment in the present study have been previously shown to inhibit cell proliferation and tumourigenesis. However, based on the observed changes in miRNA expression we cannot draw definite conclusions regarding the pro- or anti-tumour nature of the NPs under study. Further research is needed to fully elucidate the relation between observed changes in miRNA expression and the effect of NPs observed at the cellular level. The results of the present study support the idea of including epigenetic testing during the toxicological assessment of the biological interaction of nanomaterials.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Iwona Grądzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
- University of Information Technology and Management, Faculty of Medicine, Department of Medical Biology and Translational Research, Sucharskiego 2, 35-225 Rzeszów, Poland.
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland.
| |
Collapse
|
18
|
Roles of microRNA in the immature immune system of neonates. Cancer Lett 2018; 433:99-106. [DOI: 10.1016/j.canlet.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
|
19
|
Huang C, Huang S, Li H, Li X, Li B, Zhong L, Wang J, Zou M, He X, Zheng H, Si X, Liao W, Liao Y, Yang L, Bin J. The effects of ultrasound exposure on P-glycoprotein-mediated multidrug resistance in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:232. [PMID: 30231924 PMCID: PMC6149229 DOI: 10.1186/s13046-018-0900-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Background Multidrug resistance (MDR) is often responsible for the failure of chemotherapy treatment, and current strategies for cancer MDR are not adequately satisfying as to their efficacy and safety. In this study, we sought to determine the anti-MDR effects of ultrasound (US) irradiation and its underlying mechanisms against drug-resistance. Methods MDR variant MCF-7/ADR cell lines and endothelial cell lines were used to determine the appropriate ultrasound intensity for in vitro experiments. MCF-7/ADR cell and HEPG2/ADM cells were used to assess the anti-MDR effect of US irradiation. Intracellular adriamycin (ADM) accumulation, Cell viability, cell proliferation and cell apoptosis were evaluated after ADM + US treatment or ADM treatment alone. MCF-7/ADR xenograft mice were used to investigate the appropriate ultrasound intensity for in vivo experiments and its effect on the long-term prognosis. Underlining mechanisms by which ultrasound exposure reversing MDR phenotype were investigated both in vitro and in vivo. Results Combination of ADM and 0.74 W/cm2 US irradiation enhanced ADM intracellular concentration and nuclear accumulation in MCF-7/ADR and HEPG2/ADM cells, compared to those treated with ADM alone. Enhanced cellular ADM uptake and nuclei localization was associated with increased cytotoxicity of ADM to ADM-resistant cells, lower ADM-resistant cell viability and proliferative cell ratio, and higher apoptotic cell ratio. More importantly, US exposure increased the effectiveness of ADM to inhibit tumor growth in MCF-7/ADR xenograft mice. Mechanistically, US exposure promoted ADM accumulation in MDR cells mainly through down-regulation of P-glycoprotein (P-gp), which is dependent on US-induced intracellular reactive oxygen species (ROS) production. US-induced oxidative stress promoted miR-200c-3p and miR-34a-3p expression by forming miR-200c/34a/ZEB1 double-negative feedback loop. Finally, US-induced miR-200c/34a overexpression decreased P-gp expression and reversed MDR phenotype. Conclusion US irradiation could reverse MDR phenotype by activating ROS-ZEB1-miR200c/34a-P-gp signal pathway. Our findings offer a new and promising strategy for sensitizing cells to combat MDR and to improve the therapeutic index of chemotherapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0900-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chixiong Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | | | - Hairui Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinzhong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Bing Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lintao Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Junfeng Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meishen Zou
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiang He
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hao Zheng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoyun Si
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Li Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Lightfoot HL, Hagen T, Cléry A, Allain FHT, Hall J. Control of the polyamine biosynthesis pathway by G 2-quadruplexes. eLife 2018; 7:e36362. [PMID: 30063205 PMCID: PMC6067879 DOI: 10.7554/elife.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.
Collapse
Affiliation(s)
- Helen Louise Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
- Biomolecular NMR spectroscopy platformETH ZurichZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
21
|
Zhang Z, Wu S, Muhammad S, Ren Q, Sun C. miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/β-catenin/ATF6 pathway in preadipocytes. J Lipid Res 2018; 59:843-853. [PMID: 29483204 DOI: 10.1194/jlr.m082602] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
Both miR-103 and miR-107 have been demonstrated to restrain cell proliferation and regulate lipid metabolism and inflammation. However, the effects of miR-103/107 on preadipocyte apoptosis remain unknown. In the present research, we have investigated how miR-103/107 regulated preadipocyte apoptosis. We found that miR-103/107 aggravated endoplasmic reticulum (ER) stress-mediated apoptosis in preadipocytes. We confirmed that miR-103/107 targeted WNT family member 3a (Wnt3a) in preadipocytes. It was found that overexpressing Wnt3a resulted in suppression of ER stress-mediated apoptosis, while restoration of miR-103/107 counteracted the effects of Wnt3a in preadipocytes. Moreover, bioinformatics and luciferase assays indicated that activating transcription factor (ATF)6 is a key player linking miR-103/107-induced ER stress to apoptosis. ATF6 is regulated by lymphoid enhancer-binding factor 1, a transcription factor downstream of the Wnt3a/β-catenin signaling pathway, and ATF6 binds to the B-cell lymphoma 2 (Bcl2) promoter to regulate apoptosis further. In conclusion, miR-103/107 promoted ER stress-mediated apoptosis by targeting the Wnt3a/β-catenin/ATF6 signaling pathway in preadipocytes. This study revealed that the miR-103/107-Wnt3a/β-catenin-ATF6 pathway is critical to the progression of apoptosis in preadipocytes, which suggested that approaches to activate miR-103/107 could potentially be useful as new therapies for treating obesity and metabolic syndrome-related disorders.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Song Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Saeed Muhammad
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Hearn J, Chow FWN, Barton H, Tung M, Wilson PJ, Blaxter M, Buck A, Little TJ. Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 2018; 27:1402-1412. [PMID: 29420841 DOI: 10.1111/mec.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Maternal effects, where the performance of offspring is determined by the condition of their mother, are widespread and may in some cases be adaptive. The crustacean Daphnia magna shows strong maternal effects: offspring size at birth and other proxies for fitness are altered when their mothers are older or when mothers have experienced dietary restriction. The mechanisms for this transgenerational transmission of maternal experience are unknown, but could include changes in epigenetic patterning. MicroRNAs (miRNAs) are regulators of gene expression that have been shown to play roles in intergenerational information transfer, and here, we test whether miRNAs are involved in D. magna maternal effects. We found that miRNAs were differentially expressed in mothers of different ages or nutritional state. We then examined miRNA expression in their eggs, their adult daughters and great granddaughters, which did not experience any treatments. The maternal (treatment) generation exhibited differential expression of miRNAs, as did their eggs, but this was reduced in adult daughters and lost by great granddaughters. Thus, miRNAs are a component of maternal provisioning, but do not appear to be the cause of transgenerational responses under these experimental conditions. MicroRNAs may act in tandem with egg provisioning (e.g., with carbohydrates or fats), and possibly other small RNAs or epigenetic modifications.
Collapse
Affiliation(s)
- Jack Hearn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harriet Barton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew Tung
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Moghal ETB, Venkatesh K, Sen D. The delta opioid peptide D-Alanine 2, Leucine 5 Enkephaline (DADLE)-induces neuroprotection through cross-talk between the UPR and pro-survival MAPK-NGF-Bcl2 signaling pathways via modulation of several micro-RNAs in SH-SY5Y cells subjected to ER stress. Cell Biol Int 2018; 42:543-569. [DOI: 10.1002/cbin.10923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Katari Venkatesh
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| |
Collapse
|
24
|
MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany NY) 2017; 9:932-954. [PMID: 28340489 PMCID: PMC5391240 DOI: 10.18632/aging.101201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas.
Collapse
|
25
|
Gothelf Y, Kaspi H, Abramov N, Aricha R. miRNA profiling of NurOwn®: mesenchymal stem cells secreting neurotrophic factors. Stem Cell Res Ther 2017; 8:249. [PMID: 29116031 PMCID: PMC5678806 DOI: 10.1186/s13287-017-0692-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND MSC-NTF cells are Mesenchymal Stromal Cells (MSC) induced to express high levels of neurotrophic factors (NTFs) using a culture-medium based approach. MSC-NTF cells have been successfully studied in clinical trials for Amyotrophic Lateral Sclerosis (ALS) patients. MicroRNAs (miRNA) are short non-coding RNA molecules that coordinate post-transcriptional regulation of multiple gene targets. The purpose of this study was to determine whether the miRNA profile could provide a tool for MSC-NTF cell characterization and to distinguish them from the matched MSC from which they are derived. METHODS NTF secretion in the culture supernatant of MSC-NTF cells was evaluated by ELISA assays. The Agilent microarray miRNA platform was used for pairwise comparisons of MSC-NTF cells to MSC. The differentially expressed miRNAs and putative mRNA targets were validated using qPCR analyses. RESULTS Principal component analysis revealed two distinct clusters based on cell type (MSC and MSC-NTFs). Nineteen miRNAs were found to be upregulated and 22 miRNAs were downregulated in MSC-NTF cells relative to the MSC cells of origin. Further validation of differentially expressed miRNAs confirmed that miR-3663 and miR-132 were increased 18.5- and 4.06-fold, respectively while hsa-miR-503 was reduced more than 15-fold, suggesting that miRNAs could form the basis of an MSC-NTF cell characterization assay. In an analysis of the miRNA mRNA targets, three mRNA targets of hsa-miR-132-3p (HN-1, RASA1 and KLH-L11) were found to be significantly downregulated. CONCLUSIONS We have demonstrated that MSC-NTF cells can be distinguished from their MSCs of origin by a unique miRNA expression profile. TRIAL REGISTRATION Clinicaltrial.gov identifier NCT01777646 . Registered 12 December 2012.
Collapse
Affiliation(s)
- Yael Gothelf
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel.
| | - Haggai Kaspi
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| | - Natalie Abramov
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| | - Revital Aricha
- BrainStorm Cell Therapeutics Ltd., 12 Bazel St., POB 10019, Kiryat Arieh, Petach-Tikva, 4900101, Israel
| |
Collapse
|
26
|
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2017; 8:603-19. [PMID: 27019364 PMCID: PMC4925817 DOI: 10.18632/aging.100934] [Citation(s) in RCA: 1093] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
Collapse
Affiliation(s)
- Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
27
|
Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis 2017; 8:e3100. [PMID: 29022903 PMCID: PMC5682661 DOI: 10.1038/cddis.2017.495] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
MicroRNA miR-34a is recognized as a master regulator of tumor suppression. The strategy of miR-34a replacement has been investigated in clinical trials as the first attempt of miRNA application in cancer treatment. However, emerging outcomes promote the re-evaluation of existing knowledge and urge the need for better understanding the complex biological role of miR-34a. The targets of miR-34a encompass numerous regulators of cancer cell proliferation, survival and resistance to therapy. MiR-34a expression is transcriptionally controlled by p53, a crucial tumor suppressor pathway, often disrupted in cancer. Moreover, miR-34a abundance is fine-tuned by context-dependent feedback loops. The function and effects of exogenously delivered or re-expressed miR-34a on the background of defective p53 therefore remain prominent issues in miR-34a based therapy. In this work, we review p53-independent mechanisms regulating the expression of miR-34a. Aside from molecules directly interacting with MIR34A promoter, processes affecting epigenetic regulation and miRNA maturation are discussed. Multiple mechanisms operate in the context of cancer-associated phenomena, such as aberrant oncogene signaling, EMT or inflammation. Since p53-dependent tumor-suppressive mechanisms are disturbed in a substantial proportion of malignancies, we summarize the effects of miR-34a modulation in cell and animal models in the clinically relevant context of disrupted or insufficient p53 function.
Collapse
|
28
|
Zhang Y, Tao X, Yin L, Xu L, Xu Y, Qi Y, Han X, Song S, Zhao Y, Lin Y, Liu K, Peng J. Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. Br J Pharmacol 2017; 174:2512-2527. [PMID: 28514495 PMCID: PMC5513863 DOI: 10.1111/bph.13862] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Dioscin exhibits a range of pharmacological actions but little is known of its effects on cisplatin (CDDP)-induced nephrotoxicity. Here, we have assessed the effects and the possible mechanisms of dioscin against CDDP-induced nephrotoxicity. EXPERIMENTAL APPROACH We used an in vivo model of CDDP-induced nephrotoxicity in rats and mice and, in vitro, cultures of NRK-52E and HK-2 cells. The dual luciferase reporter assay was used to demonstrate modulation, by dioscin, of the targeting of sirtuin 1 (Sirt1) by microRNA (miR)-34a. Molecular docking assays were used to analyse the effects of dioscin with Sirt1, Keap1 and NF-κB. KEY RESULTS Dioscin attenuated cell damage in vitro and decreased renal injury in rats and mice, treated with CDDP. In terms of mechanisms, dioscin reversed CDDP-induced up-regulation of miR-34a and thus up-regulated Sirt1 levels. In addition, dioscin altered levels of haem oxygenase 1, glutathione-cysteine ligase subunits (GCLC, GCLM) and Keap1, along with increased nuclear translocation of Nrf2, thus decreasing oxidative stress. Also, dioscin affected levels of AP-1, COX-2, HMGB1, IκB-α, IL-1β, IL-6 and TNF-α and decreased the ratio of acetylated NF-κB and normal NF-κB, to suppress inflammation. From molecular docking assays, dioscin directly bound to Sirt1, Keap1 and NF-κBp65 by hydrogen bonding and/or hydrophobic interactions. CONCLUSIONS AND IMPLICATIONS Our results have linked CDDP-induced nephrotoxicity and the miR-34a/Sirt1 signalling pathway, which was modulated by dioscin. This natural product could be developed as a new candidate to alleviate CDDP-induced renal injury.
Collapse
Affiliation(s)
- Yimeng Zhang
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xufeng Tao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lianhong Yin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lina Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Youwei Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yan Qi
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xu Han
- College of PharmacyDalian Medical UniversityDalianChina
| | - Shasha Song
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yanyan Zhao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yuan Lin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Kexin Liu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Jinyong Peng
- College of PharmacyDalian Medical UniversityDalianChina
| |
Collapse
|
29
|
Wen J, Zhao YK, Liu Y, Zhao JF. MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol 2017. [PMID: 28635396 DOI: 10.1177/1010428317705761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor that occurs mainly in children and adolescents. Recent evidence has demonstrated that miR-34a is involved in the invasion and metastasis of osteosarcoma. This study aims to explore the effect of biological behavior of miR-34a on osteosarcoma. First, we collect osteosarcoma and adjacent specimens, and the relative expression of miR-34a and C-IAP2 messenger RNA was quantitated by real-time polymerase chain reaction. Furthermore, miR-34a stimulant is synthesized and transfected onto osteosarcoma MG-63 cells. The effect of overexpression of miR-34a on osteosarcoma was detected by colony-forming assay, Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit I, Transwell assay, and animal experiment in vivo. Finally, the relative levels of C-IAP2 and Bcl-2 protein were checked by western blot, and the activity of caspase-3 and caspase-9 was tested by spectrophotometry assay. In conclusion, miR-34a was downregulated in osteosarcoma cells. And the expression of C-IAP2 and Bcl-2 protein was drastically inhibited, and the activities of caspase-3 and caspase-9 were significantly increased after transfecting miR-34a onto osteosarcoma MG-63 cells. And the overexpression of miR-34a can inhibit cell invasion and metastasis, promote cell apoptosis, and arrest cells in G0/G1 period. And the animal experiment in vivo demonstrated that the overexpression of miR-34a could significantly inhibit the growth of osteosarcoma in animal skin. Taken together, we indicated that miR-34a can inhibit tumor invasion and metastasis in osteosarcoma, and its mechanism may be partly related to downregulating the expression of C-IAP2 and Bcl-2 protein directly or indirectly.
Collapse
Affiliation(s)
- Jie Wen
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Yan-Kun Zhao
- 3 Department of Orthopedics, Jiu-yuan District Hospital, Baotou, China
| | - Yan Liu
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Jin-Feng Zhao
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
31
|
Chi Y, Cui J, Wang Y, Du W, Chen F, Li Z, Ma F, Song B, Xu F, Zhao Q, Han Z, Han Z. Interferon‑γ alters the microRNA profile of umbilical cord‑derived mesenchymal stem cells. Mol Med Rep 2016; 14:4187-4197. [PMID: 27667024 PMCID: PMC5101919 DOI: 10.3892/mmr.2016.5748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/22/2016] [Indexed: 01/28/2023] Open
Abstract
Numerous studies have demonstrated that interferon-γ (IFN-γ) is an important inflammatory cytokine, which may activate the immunomodulatory abilities of mesenchymal stem cells (MSCs), and may influence certain other functions of these cells. MicroRNAs are small non-coding RNAs that regulate the majority of the biological functions of cells and are important in a variety of biological processes. However, few studies have been performed to investigate whether IFN-γ affects the microRNA profile of MSCs. The aim of the present study was to analyze the microRNA profile of MSCs derived from the umbilical cord (UC-MSCs) cultured in the presence or absence of IFN-γ (IFN-UC-MSCs). An array that detects 754 microRNAs was used to determine the expression profiles. Statistical analysis of the array data revealed that 8 microRNAs were significantly differentially expressed in UC-MSCs and IFN-UC-MSCs. Reverse transcription-quantitative polymerase chain reaction validated the differential expression of the 8 identified microRNAs. The target genes of the 8 microRNAs were predicted through two online databases, TargetScan and miRanda, and the predicted results were screened by bioinformatics analysis. The majority of the target genes were involved in the regulation of transcription, signal transduction, proliferation, differentiation and migration. These results may provide insight into the mechanism underlying the regulation of the biological functions of MSCs by IFN-γ, in particular the immunomodulatory activity.
Collapse
Affiliation(s)
- Ying Chi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Junjie Cui
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Youwei Wang
- National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Wenjing Du
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Fang Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Zongjin Li
- Department of Pathophysiology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Baoquan Song
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Fangyun Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Qingjun Zhao
- National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, P.R. China
| |
Collapse
|
32
|
Leite DJ, Ninova M, Hilbrant M, Arif S, Griffiths-Jones S, Ronshaugen M, McGregor AP. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2133-44. [PMID: 27324919 PMCID: PMC4987109 DOI: 10.1093/gbe/evw143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | | | | | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
33
|
Krattinger R, Boström A, Schiöth HB, Thasler WE, Mwinyi J, Kullak-Ublick GA. microRNA-192 suppresses the expression of the farnesoid X receptor. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1044-51. [PMID: 27079614 DOI: 10.1152/ajpgi.00297.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/07/2016] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) plays an important role in the regulation of bile acid homeostasis in liver and intestine and may exert protective effects against certain forms of cancer such as colon carcinoma. However, the role of FXR in cell growth regulation, apoptosis, and carcinogenesis is still controversial. Similar to FXR, microRNA-192 (miR-192) is mainly expressed in the liver and colon and plays an important role in the pathogenesis of colon carcinoma. In this study, we investigated the extent to which FXR is regulated by miR-192. Two in silico-predicted binding sites for miR-192-3p within the NR1H4-3' untranslated region (UTR) were examined in vitro by luciferase reporter assays. Wild-type and mutated forms of the NR1H4-3'UTR were subcloned into a pmirGLO vector and cotransfected into Huh-7 cells with miR-192-3p. To study the effects of miR-192 on the expression of FXR, FXR target genes and cell proliferation, Huh-7 and Caco-2 cells were transfected with miR-192-5p and -3p mimics or antagomirs. In addition, the correlation between FXR and miR-192 expression was studied by linear regression analyses in colonic adenocarcinoma tissue from 27 patients. MiR-192-3p bound specifically to the NR1H4-3'UTR and significantly decreased luciferase activity. Transfection with miR-192 led to significant decreases in NR1H4 mRNA and protein levels as well as the mRNA levels of the FXR-inducible bile acid transporters OSTα-OSTβ and OATP1B3. Significant inverse correlations were detected in colonic adenocarcinoma between NR1H4 mRNA and miR-192-3p expression. In summary, microRNA-192 suppresses the expression of FXR and FXR target genes in vitro and in vivo.
Collapse
Affiliation(s)
- Regina Krattinger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adrian Boström
- Department of Neuroscience, Division of Functional Pharmacology, University of Uppsala, Uppsala, Sweden; and
| | - Helgi B Schiöth
- Department of Neuroscience, Division of Functional Pharmacology, University of Uppsala, Uppsala, Sweden; and
| | - Wolfgang E Thasler
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroscience, Division of Functional Pharmacology, University of Uppsala, Uppsala, Sweden; and
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
34
|
Ma H, Wu Y, Yang H, Liu J, Dan H, Zeng X, Zhou Y, Jiang L, Chen Q. MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: a review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:164-73. [PMID: 27282956 DOI: 10.1016/j.oooo.2016.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/20/2016] [Accepted: 03/17/2016] [Indexed: 02/05/2023]
Abstract
Oral lichen planus (OLP) is a potentially premalignant condition with unknown pathogenesis. Immune and inflammatory factors are thought to play important roles in the development of OLP, and cytokines, such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α, can act as critical players in the immunopathogenesis of OLP. MicroRNAs (miRNAs) are closely correlated with cytokines in various inflammation-related diseases. In patients with OLP, miRNA-146a and miRNA-155 are increased in peripheral blood mononuclear cells, and numerous miRNAs have been shown to exhibit altered expression profiles in lesions. Although the microRNA-messenger RNA (miRNA-mRNA) network is thought to be involved in the development of OLP, in-depth studies are lacking. Here, we summarize current data on the mechanisms of action of miRNAs regulating typical cytokines in OLP, including interleukin (IL)-10, IL-17, IL-22, IFN-γ, and TNF-α, to study the genetic basis of the pathogenesis of OLP and to provide prospects of therapy.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanqin Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huamei Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2016; 6:8474-90. [PMID: 25893379 PMCID: PMC4496162 DOI: 10.18632/oncotarget.3523] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China.,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
36
|
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, Javed Z, Jabeen S, Yaylim I, Gasparri ML, Panici PB. Is miR-34a a Well-equipped Swordsman to Conquer Temple of Molecular Oncology? Chem Biol Drug Des 2016; 87:321-34. [PMID: 26259537 DOI: 10.1111/cbdd.12634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overwhelmingly increasing advancements in miRNA biology have opened new avenues for pharmaceutical companies to initiate studies on designing effective, safe, and therapeutically active candidates using miRNA mimetics and miRNA inhibitors. In accordance with this approach, development of miravirsen and SPC3649, an LNA-based (locked nucleic acid) antisense molecule against miR-122, to treat hepatitis C has sparked interest in identifying most efficient microRNAs for journey from bench-top toward pharmaceutical industry and breakthroughs in delivery technology will pave the way to 'final frontier'. MRX34, a liposome-formulated mimic of miR-34 for treatment of metastatic cancer with liver involvement and unresectable primary liver cancer, has also entered in clinical trial. There is a successive increase in the research work related to miR-34 biology and miRNA regulation of modulators of intracellular signaling cascades. We partition this review into how miR-34a is regulated by different proteins and how Wnt- and TGF-induced intracellular signaling cascades are modulated by miR-34a. In this review, we bring to limelight how miR-34a regulates its target genes to induce apoptosis and inhibit cell proliferation as evidenced by in vitro and in vivo analysis. We also discuss miR-34 regulation of PDGFR and c-MET and recent advancements in nanotechnologically delivered miR-34a. Spotlight is also set on modulation of chemotherapeutic sensitivity by miR-34a in cancer cells using reconstruction studies. Clinical trial of miR-34 is indicative of its tremendous potential, and continuous cutting research will prove to be effective in efficiently translating laboratory findings into clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Iryna Shatynska-Mytsyk
- Diagnostic Imaging and Radiation Therapy Department, Lviv National Medical University, Lviv, Ukraine
| | | | - Saima Jabeen
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ilhan Yaylim
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
37
|
Jin YY, Andrade J, Wickstrom E. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity. PLoS One 2015; 10:e0142574. [PMID: 26629823 PMCID: PMC4667903 DOI: 10.1371/journal.pone.0142574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/24/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.
Collapse
Affiliation(s)
- Yuan-Yuan Jin
- Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jade Andrade
- Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Eric Wickstrom
- Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
Zagalak JA, Menzi M, Schmich F, Jahns H, Dogar AM, Wullschleger F, Towbin H, Hall J. Properties of short double-stranded RNAs carrying randomized base pairs: toward better controls for RNAi experiments. RNA (NEW YORK, N.Y.) 2015; 21:2132-2142. [PMID: 26516083 PMCID: PMC4647466 DOI: 10.1261/rna.053637.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Short interfering RNAs (siRNAs) are mediators of RNA interference (RNAi), a commonly used technique for selective down-regulation of target gene expression. Using an equimolar mixture of A, G, C, and U phosphoramidites during solid-phase synthesis, we introduced degenerate positions into RNA guide and passenger strands so that, when annealed, a large pool of distinct siRNA duplexes with randomized base pairs at defined sites was created. We assessed the randomization efficiency by deep sequencing one of the RNAs. All possible individual sequences were present in the pool with generally an excellent distribution of bases. Melting temperature analyses suggested that pools of randomized guide and passenger strands RNAs with up to eight degenerate positions annealed so that mismatched base-pairing was minimized. Transfections of randomized siRNAs (rnd-siRNAs) into cells led to inhibition of luciferase reporters by a miRNA-like mechanism when the seed regions of rnd-siRNA guide strands were devoid of degenerate positions. Furthermore, the mRNA levels of a select set of genes associated with siRNA off-target effects were measured and indicated that rnd-siRNAs with degenerate positions in the seed likely show typical non-sequence-specific effects, but not miRNA-like off-target effects. In the wake of recent reports showing the preponderance of miRNA-like off-target effects of siRNAs, our findings are of value for the design of a novel class of easily prepared and universally applicable negative siRNA controls.
Collapse
Affiliation(s)
- Julian A Zagalak
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mirjam Menzi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Fabian Schmich
- Computational Biology Group (CBG), Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Hartmut Jahns
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Afzal M Dogar
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Florian Wullschleger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Harry Towbin
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
39
|
Chen L, Kang C. miRNA interventions serve as 'magic bullets' in the reversal of glioblastoma hallmarks. Oncotarget 2015; 6:38628-42. [PMID: 26439688 PMCID: PMC4770725 DOI: 10.18632/oncotarget.5926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/06/2015] [Indexed: 01/04/2023] Open
Abstract
microRNAs (miRNAs) are no longer deemed small pieces of RNA "trash" in the human transcriptome but are considered to be master regulators of gene expression that are critical in maintaining cellular homeostasis post-transcriptionally. The concept triggers great interest in studying miRNA dysregulations in human diseases, especially in cancers. Glioblastoma (GBM) has long been the leading cause of the high mortality and morbidity of CNS tumors in adults, which is a consequence of the lack of strategies to reverse the hallmark features of GBM (e.g., borderless expansion and diffuse infiltration). In the past decade, dissecting the molecular architecture of GBM has led to a better understanding of the molecular basis of the hallmarks, generating many promising pharmacological protein targets. However, few clinical responses have been highlighted, suggesting the demand for new therapeutic strategies and targets. In this review, we systemically summarize the context-dependently validated miRNAs with one or more functional targets in the development of GBM hallmarks and review the current miRNA-targeting strategies. We note that only a few miRNA-based therapeutics are trialed for clinical significance, and none of them is tailored to GBM, thereby urging us to bring miRNA therapeutics to the front line either alone or in combination.
Collapse
Affiliation(s)
- Luyue Chen
- Laboratory of Neuro-Oncology, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
40
|
Zhao G, Xu L, Hui L, Zhao J. Level of circulated microRNA-421 in gastric carcinoma and related mechanisms. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14252-14256. [PMID: 26823741 PMCID: PMC4713527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
As one of the most popular and deadly malignant tumors, gastric cancer still has difficulty in early-diagnosis. Recently the level of circulated DNA related with tumors can be used for diagnosis. MicroRNA-421 (miR-421) has been found to be up-regulated in tumor cells. Whether peripheral miR-421 can be used as a marker for diagnosis of gastric carcinoma, however, remains unclear. The expression level of miR-421 in both gastric cancer and normal people were firstly quantified. We then performed in vitro transfection of gastric carcinoma cell line to potentiate or silence miR-421 level. Cell apoptosis and apoptotic protein levels were quantified by flow cytometry and Western blotting, respectively. MiR-421 level in the peripheral blood of gastric cancer patients was significantly elevated. In gastric cancer cell line, the up-regulation of miR-421 significantly inhibited cell apoptosis. The silencing of miR-421 promoted cell apoptosis. Such anti-apoptotic role of miR-421 was accomplished by inhibiting caspase 3, up-regulating Bcl-2 and inhibiting Bax. MiR-421 was up-regulated in both tumor tissue and peripheral blood, and can modulate cell apoptosis. Circulated miR-421 can work as a serological marker for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Guodong Zhao
- Department of General Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| | - Liang Xu
- Department of General Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| | - Limei Hui
- Department of Obstetrics, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| | - Jianjun Zhao
- Department of Urology, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| |
Collapse
|
41
|
Jahns H, Roos M, Imig J, Baumann F, Wang Y, Gilmour R, Hall J. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat Commun 2015; 6:6317. [PMID: 25744034 PMCID: PMC4366519 DOI: 10.1038/ncomms7317] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
An established means of improving the pharmacokinetics properties of oligoribonucleotides (ORNs) is to exchange their phosphodiester linkages for phosphorothioates (PSs). However, this strategy has not been pursued for small interfering RNAs (siRNAs), possibly because of sporadic reports that PS siRNAs show reduced inhibitory activity. The PS group is chiral at phosphorous (Rp/Sp centres), and conventional solid-phase synthesis of PS ORNs produces a population of diastereoisomers. Here we show that the choice of the activating agent for the synthesis of a PS ORN influences the Rp/Sp ratio of PS linkages throughout the strand. Furthermore, PS siRNAs composed of ORNs with a higher fraction of Rp centres show greater resistance to nucleases in serum and are more effective inhibitors in cells than their Sp counterparts. The finding that a stereochemically biased population of ORN diastereoisomers can be synthesized and exploited pharmacologically is important because uniform PS modification of siRNAs may provide a useful compromise of their pharmacokinetics and pharmacodynamics properties in RNAi therapeutics. Therapeutic oligonucleotides can be made more stable by substituting their achiral phosphodiester groups for chiral phosphorothioate linkages. Here, the authors present a synthesis of phosphorothioated RNAs, where the activator controls strand stereochemistry, and also the activity of assembled siRNAs.
Collapse
Affiliation(s)
- Hartmut Jahns
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Martina Roos
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Jochen Imig
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Fabienne Baumann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| |
Collapse
|
42
|
miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 2014; 11:107-14. [PMID: 25531890 DOI: 10.1038/nchembio.1713] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
Abstract
Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.
Collapse
|
43
|
Roos M, Rebhan MAE, Lucic M, Pavlicek D, Pradere U, Towbin H, Civenni G, Catapano CV, Hall J. Short loop-targeting oligoribonucleotides antagonize Lin28 and enable pre-let-7 processing and suppression of cell growth in let-7-deficient cancer cells. Nucleic Acids Res 2014; 43:e9. [PMID: 25378324 PMCID: PMC4333367 DOI: 10.1093/nar/gku1090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) originate from stem-loop-containing precursors (pre-miRNAs, pri-miRNAs) and mature by means of the Drosha and Dicer endonucleases and their associated factors. The let-7 miRNAs have prominent roles in developmental differentiation and in regulating cell proliferation. In cancer, the tumor suppressor function of let-7 is abrogated by overexpression of Lin28, one of several RNA-binding proteins that regulate let-7 biogenesis by interacting with conserved motifs in let-7 precursors close to the Dicer cleavage site. Using in vitro assays, we have identified a binding site for short modified oligoribonucleotides ('looptomirs') overlapping that of Lin28 in pre-let-7a-2. These looptomirs selectively antagonize the docking of Lin28, but still permit processing of pre-let-7a-2 by Dicer. Looptomirs restored synthesis of mature let-7 and inhibited growth and clonogenic potential in Lin28 overexpressing hepatocarcinoma cells, thereby demonstrating a promising new means to rescue defective miRNA biogenesis in Lin28-dependent cancers.
Collapse
Affiliation(s)
- Martina Roos
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mario A E Rebhan
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matije Lucic
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - David Pavlicek
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ugo Pradere
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Harry Towbin
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research, Via Vela 6, Bellinzona CH-6500, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research, Via Vela 6, Bellinzona CH-6500, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Augmented miR-150 expression associated with depressed SOCS1 expression involved in dengue haemorrhagic fever. J Infect 2014; 69:366-74. [PMID: 24907421 DOI: 10.1016/j.jinf.2014.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Suppressors of cytokine signalling (SOCS) proteins regulate cytokine responses and control immune balance. The objective of our study was to determine whether the expression of SOCS1 and its potential regulatory microRNAs (miRNAs) in leukocytes is correlated to the development of dengue haemorrhagic fever (DHF). METHODS We performed a case-control study to investigate the SOCS1 and miRNA expression in leukocytes for patients with DF and DHF in a DENV-2 outbreak that occurred in Taiwan between 2002 and 2003. We performed reverse transcription polymerase chain reaction to evaluate the expression of SOCS1 and its regulatory miRNAs in mononuclear leukocytes obtained from patients with or without DHF. The reciprocal relationship between SOCS1 and miR-150 expression was validated in DENV-2-infected peripheral mononuclear cells (PBMCs). RESULTS SOCS1 expression and lower IFN-γ level were significantly reduced in DHF patients, but not in patients with DF. Elevated SOCS1 and reduced miR-150 levels were detected 24 h after DENV-2 infection in PBMCs. Transfection of a miR-150 mimic into CD14(+) cells infected with DENV-2 suppressed the induction of SOCS1 expression in a dose-dependent manner. CONCLUSION We demonstrate for the first time that augmented miR-150 expression with depressed SOCS1 expression in CD14(+) cells are associated with the pathogenesis of DHF.
Collapse
|
45
|
Dogar AM, Semplicio G, Guennewig B, Hall J. Multiple microRNAs derived from chemically synthesized precursors regulate thrombospondin 1 expression. Nucleic Acid Ther 2014; 24:149-59. [PMID: 24444023 DOI: 10.1089/nat.2013.0467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin 1 (THBS1) is a secreted protein with a variety of biological functions, including a potent anti-angiogenic activity and activation of latent transforming growth factor beta (TGF-β). In many human cancers it is expressed at low levels, although mutations in the THBS1 gene have been rarely reported. Instead, the loss of THBS1 expression has been proposed to be due to transcriptional and post-transcriptional deregulations. In a systematic screen of predicted microRNA (miRNA) binding sites in the THBS1 3' untranslated region (UTR) we employed chemically synthesized pre-miRNAs-a new class of pre-miRNA mimics-to show that several miRNAs (let-7a, miR-18a, miR-29b, miR-194, and miR-221) can modulate THBS1 expression at the post-transcriptional level. Sequence-specific downregulation of THBS1 by let-7a, miR-18a or by a small interfering RNA induced TGF-β1 and SMAD4 transcript levels. Ectopic expression of latent TGF-β1 reduced THBS1 protein expression and was associated with increased expression of let-7a, let-7-b, and miR-18a in cells. These data suggest an inverse correlation of THBS1 and latent TGF-β1 expression levels possibly involving miRNAs.
Collapse
Affiliation(s)
- Afzal M Dogar
- Institute of Pharmaceutical Sciences , Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
46
|
Guennewig B, Cooper AA. The Central Role of Noncoding RNA in the Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:153-94. [DOI: 10.1016/b978-0-12-801105-8.00007-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|