1
|
Li J, Tan Y, Lu R, Liang P, Liu H, Yao X. Artificial intelligence for RNA-ligand interaction prediction: advances and prospects. Drug Discov Today 2025; 30:104366. [PMID: 40286982 DOI: 10.1016/j.drudis.2025.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Accurate prediction of RNA-ligand interactions is vital for understanding biological processes and advancing RNA-targeted drug discovery. Given their complexity, artificial intelligence (AI) is revolutionizing the study of RNA-ligand interactions, offering insights into the complex dynamics and therapeutic potential of RNA. In this review, we highlight advances in AI-driven RNA-ligand binding site identification, structure modeling, binding mode and binding affinity prediction, and virtual screening (VS). We also discuss key challenges, such as data set scarcity and modeling RNA flexibility. Future directions emphasize integrating cutting-edge AI techniques with physics-based models and expanding experimental data sets to enhance RNA-ligand interaction predictions.
Collapse
Affiliation(s)
- Jing Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Yi Tan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Ruiqiang Lu
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Pengyu Liang
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Huanxiang Liu
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China.
| | - Xiaojun Yao
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China.
| |
Collapse
|
2
|
Bu F, Adam Y, Adamiak RW, Antczak M, de Aquino BRH, Badepally NG, Batey RT, Baulin EF, Boinski P, Boniecki MJ, Bujnicki JM, Carpenter KA, Chacon J, Chen SJ, Chiu W, Cordero P, Das NK, Das R, Dawson WK, DiMaio F, Ding F, Dock-Bregeon AC, Dokholyan NV, Dror RO, Dunin-Horkawicz S, Eismann S, Ennifar E, Esmaeeli R, Farsani MA, Ferré-D'Amaré AR, Geniesse C, Ghanim GE, Guzman HV, Hood IV, Huang L, Jain DS, Jaryani F, Jin L, Joshi A, Karelina M, Kieft JS, Kladwang W, Kmiecik S, Koirala D, Kollmann M, Kretsch RC, Kurciński M, Li J, Li S, Magnus M, Masquida B, Moafinejad SN, Mondal A, Mukherjee S, Nguyen THD, Nikolaev G, Nithin C, Nye G, Pandaranadar Jeyeram IPN, Perez A, Pham P, Piccirilli JA, Pilla SP, Pluta R, Poblete S, Ponce-Salvatierra A, Popenda M, Popenda L, Pucci F, Rangan R, Ray A, Ren A, Sarzynska J, Sha CM, Stefaniak F, Su Z, Suddala KC, Szachniuk M, Townshend R, Trachman RJ, Wang J, Wang W, Watkins A, Wirecki TK, Xiao Y, Xiong P, Xiong Y, Yang J, Yesselman JD, Zhang J, Zhang Y, Zhang Z, Zhou Y, Zok T, Zhang D, Zhang S, Żyła A, Westhof E, Miao Z. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat Methods 2025; 22:399-411. [PMID: 39623050 PMCID: PMC11810798 DOI: 10.1038/s41592-024-02543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA three-dimensional structure prediction. With agreement from structural biologists, RNA structures are predicted by modeling groups before publication of the experimental structures. We report a large-scale set of predictions by 18 groups for 23 RNA-Puzzles: 4 RNA elements, 2 Aptamers, 4 Viral elements, 5 Ribozymes and 8 Riboswitches. We describe automatic assessment protocols for comparisons between prediction and experiment. Our analyses reveal some critical steps to be overcome to achieve good accuracy in modeling RNA structures: identification of helix-forming pairs and of non-Watson-Crick modules, correct coaxial stacking between helices and avoidance of entanglements. Three of the top four modeling groups in this round also ranked among the top four in the CASP15 contest.
Collapse
Grants
- T32 GM066706 NIGMS NIH HHS
- NSFC T2225007 National Natural Science Foundation of China (National Science Foundation of China)
- R35 GM134919 NIGMS NIH HHS
- R35GM145409 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 GM145409 NIGMS NIH HHS
- 32270707 National Natural Science Foundation of China (National Science Foundation of China)
- R35 GM122579 NIGMS NIH HHS
- R35 GM134864 NIGMS NIH HHS
- T32 grant GM066706 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM121342 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21 CA219847 NCI NIH HHS
- 32171191 National Natural Science Foundation of China (National Science Foundation of China)
- P20 GM121342 NIGMS NIH HHS
- R35 GM152029 NIGMS NIH HHS
- R01 GM073850 NIGMS NIH HHS
- F32 GM112294 NIGMS NIH HHS
- ZIA DK075136 Intramural NIH HHS
- Z.M. is supported by Major Projects of Guangzhou National Laboratory, (Grant No. GZNL2023A01006, GZNL2024A01002, SRPG22-003, SRPG22-006, SRPG22-007, HWYQ23-003, YW-YFYJ0102), the National Key R&D Programs of China (2023YFF1204700, 2023YFF1204701, 2021YFF1200900, 2021YFF1200903). This work is part of the ITI 2021-2028 program and supported by IdEx Unistra (ANR-10-IDEX-0002 to E.W.), SFRI-STRAT’US project (ANR-20-SFRI-0012) and EUR IMCBio (IMCBio ANR-17-EURE-0023 to E.W.) under the framework of the French Investments for the Future Program.
- E.W. acknowledges also support from Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2024002).
- E.F.B. was additionally supported by European Molecular Biology Organization (EMBO) fellowship (ALTF 525-2022).
- Boniecki’s research was supported by the Polish National Science Center Poland (NCN) (grant 2016/23/B/ST6/03433 to Michal J. Boniecki). Predictions were performed using computational resources of the Interdisciplinary Centre for Mathematical and Computational Modelling of the University of Warsaw (ICM) (grant G66-9).
- J.M.B. is supported by the National Science Centre in Poland (NCN grants: 2017/26/A/NZ1/01083 to J.M.B., 2021/43/D/NZ1/03360 to S.M., 2020/39/B/NZ2/03127 to F.S., 2020/39/D/NZ2/02837 to T.K.W.). J.M.B. acknowledge Poland high-performance computing Infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH, PCSS, CI TASK, WCSS) for providing computer facilities and support within the computational grant PLG/2023/016080.
- S.J.C. is supported by the National Institutes of Health under Grant R35-GM134919.
- R.D. is supported by Stanford Bio-X (to R.D., R.O.D., R.C.K., and S.E.); Stanford Gerald J. Lieberman Fellowship (to R.R.); the National Institutes of Health (R21 CA219847 and R35 GM122579 to R.D.), the Howard Hughes Medical Institute (HHMI, to R.D.); Consejo Nacional de Ciencia y Tecnología CONACyT Fellowship 312765 (P.C.); the Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowships GM112294 (to J.D.Y.); National Science Foundation Graduate Research Fellowships (R.J.L.T. and R.R.); the National Library of Medicine T15 Training Grant (NLM T15007033 to K.A.C.); the U.S. Department of Energy, Office of Science Graduate Student Research program (R.J.L.T.).
- The National Institutes of Health grants 1R35 GM134864 and the Passan Foundation.
- R.O.D. is supported by the U.S. Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program (R.O.D.); Intel (R.O.D.).
- A.F.D. is supported, in part, by the intramural program of the National Heart, Lung and Blood Institute, National Institutes of Health, USA.
- Guangdong Science and Technology Department (2022A1515010328, 2023B1212060013, 2020B1212030004), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ptpy41).
- D.K. is supported by the NSF CAREER award MCB-2236996, and start-up, SURFF, and START awards from the University of Maryland Baltimore County to D.K.
- BM is supported by the Interdisciplinary Thematic Institute IMCBio, as part of the ITI 2021-2028 program at the University of Strasbourg, CNRS and Inserm, by IdEx Unistra (ANR-10-IDEX-0002), and EUR (IMCBio ANR-17-EUR-0023), under the framework of the French Investments Program for the Future.
- T.H.D.N. is supported by UKRI-Medical Research Council grant MC_UP_1201/19.
- C.N. and M.K. acknowledge funding from the National Science Centre, Poland [OPUS 2019/33/B/NZ2/02100]; S.P.P. acknowledges funding from the National Science Centre, Poland [OPUS 2020/39/B/NZ2/01301]; S.K. acknowledges funding from the National Science Centre, Poland [Sheng 2021/40/Q/NZ2/00078]; C.N. acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: PCSS, ACK Cyfronet AGH, CI TASK, WCSS) for providing computer facilities and support within the computational grants PLG/2022/016043, PLG/2022/015327 and PLG/2020/013424.
- AP is supported by an NSF-CAREER award CHE-2235785
- A.R. is supported by grants from the Natural Science Foundation of China (32325029, 32022039, 91940302, and 91640104), the National Key Research and Development Project of China (2021YFC2300300 and 2023YFC2604300).
- Marta Szachniuk are supported by the National Science Centre, Poland (2019/35/B/ST6/03074 to M.S.), the statutory funds of IBCH PAS and Poznan University of Technology.
- J.W. is supported by the Penn State College of Medicine’s Artificial Intelligence and Biomedical Informatics Program.
- J.Z. is supported by the Intramural Research Program of the NIH, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (ZIADK075136 to J.Z.), and an NIH Deputy Director for Intramural Research (DDIR) Challenge Award to J.Z.
Collapse
Affiliation(s)
- Fan Bu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yagoub Adam
- Inter-institutional Graduate Program on Bioinformatics, Department of Computer Science and Mathematics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Belisa Rebeca H de Aquino
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Pawel Boinski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Michal J Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Kristy A Carpenter
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Jose Chacon
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Pablo Cordero
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Stripe, South San Francisco, CA, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Biophysics program, Stanford University, Stanford, CA, USA
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models (LBI2M), Sorbonne University-CNRS UMR8227, Roscoff, France
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Stephan Eismann
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - George E Ghanim
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Horacio V Guzman
- Instituto de Ciencia de Materials de Barcelona, ICMAB-CSIC, Bellaterra E-08193, Spain & Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iris V Hood
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou, Guangdong, China
| | - Dharm Skandh Jain
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lei Jin
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Astha Joshi
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Masha Karelina
- Biophysics program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sebastian Kmiecik
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Markus Kollmann
- Department of Computer Science, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Mateusz Kurciński
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jun Li
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - BenoÎt Masquida
- UMR 7156, CNRS - Université de Strasbourg, IPCB, Strasbourg, France
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Grace Nye
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Iswarya P N Pandaranadar Jeyeram
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Phillip Pham
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Smita Priyadarshini Pilla
- Laboratory of Computational Biology, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Radosław Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Simón Poblete
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
- Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ramya Rangan
- Biophysics program, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Angana Ray
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
| | - Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Raphael Townshend
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Robert J Trachman
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Wenkai Wang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Andrew Watkins
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Prescient Design, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiong
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yiduo Xiong
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Joseph David Yesselman
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yi Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Yuanzhe Zhou
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Dong Zhang
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Adriana Żyła
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France.
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
3
|
Bernard C, Postic G, Ghannay S, Tahi F. Has AlphaFold3 achieved success for RNA? Acta Crystallogr D Struct Biol 2025; 81:49-62. [PMID: 39868559 PMCID: PMC11804252 DOI: 10.1107/s2059798325000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Predicting the 3D structure of RNA is a significant challenge despite ongoing advancements in the field. Although AlphaFold has successfully addressed this problem for proteins, RNA structure prediction raises difficulties due to the fundamental differences between proteins and RNA, which hinder its direct adaptation. The latest release of AlphaFold, AlphaFold3, has broadened its scope to include multiple different molecules such as DNA, ligands and RNA. While the AlphaFold3 article discussed the results for the last CASP-RNA data set, the scope of its performance and the limitations for RNA are unclear. In this article, we provide a comprehensive analysis of the performance of AlphaFold3 in the prediction of 3D structures of RNA. Through an extensive benchmark over five different test sets, we discuss the performance and limitations of AlphaFold3. We also compare its performance with ten existing state-of-the-art ab initio, template-based and deep-learning approaches. Our results are freely available on the EvryRNA platform at https://evryrna.ibisc.univ-evry.fr/evryrna/alphafold3/.
Collapse
Affiliation(s)
- Clément Bernard
- Université Paris-Saclay, Université Evry, IBISC, 91020Evry-Courcouronnes, France
- LISN – CNRS/Université Paris-Saclay, 91400Orsay, France
| | - Guillaume Postic
- Université Paris-Saclay, Université Evry, IBISC, 91020Evry-Courcouronnes, France
| | - Sahar Ghannay
- LISN – CNRS/Université Paris-Saclay, 91400Orsay, France
| | - Fariza Tahi
- Université Paris-Saclay, Université Evry, IBISC, 91020Evry-Courcouronnes, France
| |
Collapse
|
4
|
Kagaya Y, Zhang Z, Ibtehaz N, Wang X, Nakamura T, Punuru PD, Kihara D. NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation. Nat Commun 2025; 16:881. [PMID: 39837861 PMCID: PMC11751094 DOI: 10.1038/s41467-025-56261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
RNA plays a crucial role not only in information transfer as messenger RNA during gene expression but also in various biological functions as non-coding RNAs. Understanding mechanical mechanisms of function needs tertiary structure information; however, experimental determination of three-dimensional RNA structures is costly and time-consuming, leading to a substantial gap between RNA sequence and structural data. To address this challenge, we developed NuFold, a novel computational approach that leverages state-of-the-art deep learning architecture to accurately predict RNA tertiary structures. NuFold is a deep neural network trained end-to-end for the output structure from the input sequence. NuFold incorporates a nucleobase center representation, which enables flexible conformation of ribose rings. Benchmark study showed that NuFold clearly outperformed energy-based methods and demonstrated comparable results with existing state-of-the-art deep-learning-based methods. NuFold exhibited a particular advantage in building correct local geometries of RNA. Analyses of individual components in the NuFold pipeline indicated that the performance improved by utilizing metagenome sequences for multiple sequence alignment and increasing the number of recycling. NuFold is also capable of predicting multimer complex structures of RNA by linking the input sequences.
Collapse
Affiliation(s)
- Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Pranav Deep Punuru
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, Indiana, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, 47907, Indiana, USA.
- Department of Computer Science, Purdue University, West Lafayette, 47907, Indiana, USA.
| |
Collapse
|
5
|
Bernard C, Postic G, Ghannay S, Tahi F. RNA-TorsionBERT: leveraging language models for RNA 3D torsion angles prediction. Bioinformatics 2024; 41:btaf004. [PMID: 39775709 PMCID: PMC11758789 DOI: 10.1093/bioinformatics/btaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
MOTIVATION Predicting the 3D structure of RNA is an ongoing challenge that has yet to be completely addressed despite continuous advancements. RNA 3D structures rely on distances between residues and base interactions but also backbone torsional angles. Knowing the torsional angles for each residue could help reconstruct its global folding, which is what we tackle in this work. This paper presents a novel approach for directly predicting RNA torsional angles from raw sequence data. Our method draws inspiration from the successful application of language models in various domains and adapts them to RNA. RESULTS We have developed a language-based model, RNA-TorsionBERT, incorporating better sequential interactions for predicting RNA torsional and pseudo-torsional angles from the sequence only. Through extensive benchmarking, we demonstrate that our method improves the prediction of torsional angles compared to state-of-the-art methods. In addition, by using our predictive model, we have inferred a torsion angle-dependent scoring function, called TB-MCQ, that replaces the true reference angles by our model prediction. We show that it accurately evaluates the quality of near-native predicted structures, in terms of RNA backbone torsion angle values. Our work demonstrates promising results, suggesting the potential utility of language models in advancing RNA 3D structure prediction. AVAILABILITY AND IMPLEMENTATION Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/RNA-TorsionBERT.
Collapse
Affiliation(s)
- Clément Bernard
- Université Paris Saclay, Univ Evry, IBISC, Evry-Courcouronnes 91020, France
- LISN—CNRS/Université Paris-Saclay, Orsay 91400, France
| | - Guillaume Postic
- Université Paris Saclay, Univ Evry, IBISC, Evry-Courcouronnes 91020, France
| | - Sahar Ghannay
- LISN—CNRS/Université Paris-Saclay, Orsay 91400, France
| | - Fariza Tahi
- Université Paris Saclay, Univ Evry, IBISC, Evry-Courcouronnes 91020, France
| |
Collapse
|
6
|
Shen T, Hu Z, Sun S, Liu D, Wong F, Wang J, Chen J, Wang Y, Hong L, Xiao J, Zheng L, Krishnamoorthi T, King I, Wang S, Yin P, Collins JJ, Li Y. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 2024; 21:2287-2298. [PMID: 39572716 PMCID: PMC11621015 DOI: 10.1038/s41592-024-02487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Collapse
Affiliation(s)
- Tao Shen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Felix Wong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd, Hong Kong SAR, China
| | - Jiayang Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Xiao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tejas Krishnamoorthi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China.
- Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Bahai A, Kwoh CK, Mu Y, Li Y. Systematic benchmarking of deep-learning methods for tertiary RNA structure prediction. PLoS Comput Biol 2024; 20:e1012715. [PMID: 39775239 PMCID: PMC11723642 DOI: 10.1371/journal.pcbi.1012715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The 3D structure of RNA critically influences its functionality, and understanding this structure is vital for deciphering RNA biology. Experimental methods for determining RNA structures are labour-intensive, expensive, and time-consuming. Computational approaches have emerged as valuable tools, leveraging physics-based-principles and machine learning to predict RNA structures rapidly. Despite advancements, the accuracy of computational methods remains modest, especially when compared to protein structure prediction. Deep learning methods, while successful in protein structure prediction, have shown some promise for RNA structure prediction as well, but face unique challenges. This study systematically benchmarks state-of-the-art deep learning methods for RNA structure prediction across diverse datasets. Our aim is to identify factors influencing performance variation, such as RNA family diversity, sequence length, RNA type, multiple sequence alignment (MSA) quality, and deep learning model architecture. We show that generally ML-based methods perform much better than non-ML methods on most RNA targets, although the performance difference isn't substantial when working with unseen novel or synthetic RNAs. The quality of the MSA and secondary structure prediction both play an important role and most methods aren't able to predict non-Watson-Crick pairs in the RNAs. Overall among the automated 3D RNA structure prediction methods, DeepFoldRNA has the best prediction results followed by DRFold as the second best method. Finally, we also suggest possible mitigations to improve the quality of the prediction for future method development.
Collapse
Affiliation(s)
- Akash Bahai
- School of Biological Sciences (SBS), Nanyang Technological University, Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences (SBS), Nanyang Technological University, Singapore, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
9
|
Mackowiak M, Adamczyk B, Szachniuk M, Zok T. RNAtango: Analysing and comparing RNA 3D structures via torsional angles. PLoS Comput Biol 2024; 20:e1012500. [PMID: 39374268 PMCID: PMC11486365 DOI: 10.1371/journal.pcbi.1012500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
RNA molecules, essential for viruses and living organisms, derive their pivotal functions from intricate 3D structures. To understand these structures, one can analyze torsion and pseudo-torsion angles, which describe rotations around bonds, whether real or virtual, thus capturing the RNA conformational flexibility. Such an analysis has been made possible by RNAtango, a web server introduced in this paper, that provides a trigonometric perspective on RNA 3D structures, giving insights into the variability of examined models and their alignment with reference targets. RNAtango offers comprehensive tools for calculating torsion and pseudo-torsion angles, generating angle statistics, comparing RNA structures based on backbone torsions, and assessing local and global structural similarities using trigonometric functions and angle measures. The system operates in three scenarios: single model analysis, model-versus-target comparison, and model-versus-model comparison, with results output in text and graphical formats. Compatible with all modern web browsers, RNAtango is accessible freely along with the source code. It supports researchers in accurately assessing structural similarities, which contributes to the precision and efficiency of RNA modeling.
Collapse
Affiliation(s)
- Marta Mackowiak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Bartosz Adamczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
10
|
Sha CM, Wang J, Dokholyan NV. Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks. Biophys J 2024; 123:2671-2681. [PMID: 37838833 PMCID: PMC11393712 DOI: 10.1016/j.bpj.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Fast and accurate 3D RNA structure prediction remains a major challenge in structural biology, mostly due to the size and flexibility of RNA molecules, as well as the lack of diverse experimentally determined structures of RNA molecules. Unlike DNA structure, RNA structure is far less constrained by basepair hydrogen bonding, resulting in an explosion of potential stable states. Here, we propose a convolutional neural network that predicts all pairwise distances between residues in an RNA, using a recently described smooth parametrization of Euclidean distance matrices. We achieve high-accuracy predictions on RNAs up to 100 nt in length in fractions of a second, a factor of 107 faster than existing molecular dynamics-based methods. We also convert our coarse-grained machine learning output into an all-atom model using discrete molecular dynamics with constraints. Our proposed computational pipeline predicts all-atom RNA models solely from the nucleotide sequence. However, this method suffers from the same limitation as nucleic acid molecular dynamics: the scarcity of available RNA crystal structures for training.
Collapse
Affiliation(s)
- Congzhou M Sha
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Nikolay V Dokholyan
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Chemistry, Penn State University, State College, Pennsylvania; Department of Biomedical Engineering, Penn State University, State College, Pennsylvania.
| |
Collapse
|
11
|
Zhang S, Li J, Chen SJ. Machine learning in RNA structure prediction: Advances and challenges. Biophys J 2024; 123:2647-2657. [PMID: 38297836 PMCID: PMC11393687 DOI: 10.1016/j.bpj.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
RNA molecules play a crucial role in various biological processes, with their functionality closely tied to their structures. The remarkable advancements in machine learning techniques for protein structure prediction have shown promise in the field of RNA structure prediction. In this perspective, we discuss the advances and challenges encountered in constructing machine learning-based models for RNA structure prediction. We explore topics including model building strategies, specific challenges involved in predicting RNA secondary (2D) and tertiary (3D) structures, and approaches to these challenges. In addition, we highlight the advantages and challenges of constructing RNA language models. Given the rapid advances of machine learning techniques, we anticipate that machine learning-based models will serve as important tools for predicting RNA structures, thereby enriching our understanding of RNA structures and their corresponding functions.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Jun Li
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri; Department of Biochemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
12
|
Nithin C, Kmiecik S, Błaszczyk R, Nowicka J, Tuszyńska I. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA-ligand interactions. Nucleic Acids Res 2024; 52:7465-7486. [PMID: 38917327 PMCID: PMC11260495 DOI: 10.1093/nar/gkae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Accurate RNA structure models are crucial for designing small molecule ligands that modulate their functions. This study assesses six standalone RNA 3D structure prediction methods-DeepFoldRNA, RhoFold, BRiQ, FARFAR2, SimRNA and Vfold2, excluding web-based tools due to intellectual property concerns. We focus on reproducing the RNA structure existing in RNA-small molecule complexes, particularly on the ability to model ligand binding sites. Using a comprehensive set of RNA structures from the PDB, which includes diverse structural elements, we found that machine learning (ML)-based methods effectively predict global RNA folds but are less accurate with local interactions. Conversely, non-ML-based methods demonstrate higher precision in modeling intramolecular interactions, particularly with secondary structure restraints. Importantly, ligand-binding site accuracy can remain sufficiently high for practical use, even if the overall model quality is not optimal. With the recent release of AlphaFold 3, we included this advanced method in our tests. Benchmark subsets containing new structures, not used in the training of the tested ML methods, show that AlphaFold 3's performance was comparable to other ML-based methods, albeit with some challenges in accurately modeling ligand binding sites. This study underscores the importance of enhancing binding site prediction accuracy and the challenges in modeling RNA-ligand interactions accurately.
Collapse
Affiliation(s)
- Chandran Nithin
- Molecure SA, 02-089 Warsaw, Poland
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Sebastian Kmiecik
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
He S, Huang R, Townley J, Kretsch RC, Karagianes TG, Cox DBT, Blair H, Penzar D, Vyaltsev V, Aristova E, Zinkevich A, Bakulin A, Sohn H, Krstevski D, Fukui T, Tatematsu F, Uchida Y, Jang D, Lee JS, Shieh R, Ma T, Martynov E, Shugaev MV, Bukhari HST, Fujikawa K, Onodera K, Henkel C, Ron S, Romano J, Nicol JJ, Nye GP, Wu Y, Choe C, Reade W, Das R. Ribonanza: deep learning of RNA structure through dual crowdsourcing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581671. [PMID: 38464325 PMCID: PMC10925082 DOI: 10.1101/2024.02.24.581671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Prediction of RNA structure from sequence remains an unsolved problem, and progress has been slowed by a paucity of experimental data. Here, we present Ribonanza, a dataset of chemical mapping measurements on two million diverse RNA sequences collected through Eterna and other crowdsourced initiatives. Ribonanza measurements enabled solicitation, training, and prospective evaluation of diverse deep neural networks through a Kaggle challenge, followed by distillation into a single, self-contained model called RibonanzaNet. When fine tuned on auxiliary datasets, RibonanzaNet achieves state-of-the-art performance in modeling experimental sequence dropout, RNA hydrolytic degradation, and RNA secondary structure, with implications for modeling RNA tertiary structure.
Collapse
Affiliation(s)
- Shujun He
- Department of Chemical Engineering, Texas A&M University, TX, USA
| | - Rui Huang
- Department of Biochemistry, Stanford CA, USA
| | | | | | | | - David B T Cox
- Department of Biochemistry, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
| | | | - Dmitry Penzar
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Valeriy Vyaltsev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Elizaveta Aristova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Arsenii Zinkevich
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Hoyeol Sohn
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Daniel Krstevski
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | | | | | | | - Donghoon Jang
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
| | | | - Roger Shieh
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Tom Ma
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Eduard Martynov
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
| | - Maxim V Shugaev
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
| | | | | | | | | | - Shlomo Ron
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Jonathan Romano
- Eterna Massive Open Laboratory
- Howard Hughes Medical Institute
| | | | - Grace P Nye
- Department of Biochemistry, Stanford CA, USA
| | - Yuan Wu
- Department of Biochemistry, Stanford CA, USA
- Howard Hughes Medical Institute
| | | | | | - Rhiju Das
- Department of Biochemistry, Stanford CA, USA
- Biophysics Program, Stanford CA, USA
- Howard Hughes Medical Institute
| |
Collapse
|
14
|
Bernard C, Postic G, Ghannay S, Tahi F. State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction. NAR Genom Bioinform 2024; 6:lqae048. [PMID: 38745991 PMCID: PMC11091930 DOI: 10.1093/nargab/lqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences. These computational methods have been widely used and are usually categorised as either ab initio or template-based. The performances remain to be improved. Recently, the rise of deep learning has changed the sight of novel approaches. Deep learning methods are promising, but their adaptation to RNA 3D structure prediction remains difficult. In this paper, we give a brief review of the ab initio, template-based and novel deep learning approaches. We highlight the different available tools and provide a benchmark on nine methods using the RNA-Puzzles dataset. We provide an online dashboard that shows the predictions made by benchmarked methods, freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/.
Collapse
Affiliation(s)
- Clément Bernard
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
- LISN - CNRS/Université Paris-Saclay, 91400 Orsay, France
| | - Guillaume Postic
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
| | - Sahar Ghannay
- LISN - CNRS/Université Paris-Saclay, 91400 Orsay, France
| | - Fariza Tahi
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
| |
Collapse
|
15
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 2023; 91:1747-1770. [PMID: 37876231 PMCID: PMC10841292 DOI: 10.1002/prot.26602] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
16
|
Li J, Zhang S, Chen SJ. Advancing RNA 3D structure prediction: Exploring hierarchical and hybrid approaches in CASP15. Proteins 2023; 91:1779-1789. [PMID: 37615235 PMCID: PMC10841231 DOI: 10.1002/prot.26583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
In CASP15, we used an integrated hierarchical and hybrid approach to predict RNA structures. The approach involves three steps. First, with the use of physics-based methods, Vfold2D-MC and VfoldMCPX, we predict the 2D structures from the sequence. Second, we employ template-based methods, Vfold3D and VfoldLA, to build 3D scaffolds for the predicted 2D structures. Third, using the 3D scaffolds as initial structures and the predicted 2D structures as constraints, we predict the 3D structure from coarse-grained molecular dynamics simulations, IsRNA and RNAJP. Our approach was evaluated on 12 RNA targets in CASP15 and ranked second among all the 34 participating teams. The result demonstrated the reliability of our method in predicting RNA 2D structures with high accuracy and RNA 3D structures with moderate accuracy. Further improvements in RNA structure prediction for the next round of CASP may come from the incorporation of the physics-based method with machine learning techniques.
Collapse
Affiliation(s)
- Jun Li
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
17
|
Sarzynska J, Popenda M, Antczak M, Szachniuk M. RNA tertiary structure prediction using RNAComposer in CASP15. Proteins 2023; 91:1790-1799. [PMID: 37615316 DOI: 10.1002/prot.26578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
As CASP15 participants, in the new category of 3D RNA structure prediction, we applied expert modeling with the support of our proprietary system RNAComposer. Although RNAComposer is primarily known as an automated web server, its features allow it to be used interactively, for example, for homology-based modeling or assembling models from user-provided structural elements. In the paper, we present various scenarios of applying the system to predict the 3D RNA structures that we employed. Their combination with expert input, comparative analysis of models, and routines to select representative resultant structures form a ready-for-reuse workflow. With selected examples, we demonstrate its application for the in silico modeling of natural and synthetic RNA molecules targeted in CASP15.
Collapse
Affiliation(s)
- Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
18
|
Kretsch RC, Andersen ES, Bujnicki JM, Chiu W, Das R, Luo B, Masquida B, McRae EK, Schroeder GM, Su Z, Wedekind JE, Xu L, Zhang K, Zheludev IN, Moult J, Kryshtafovych A. RNA target highlights in CASP15: Evaluation of predicted models by structure providers. Proteins 2023; 91:1600-1615. [PMID: 37466021 PMCID: PMC10792523 DOI: 10.1002/prot.26550] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.
Collapse
Affiliation(s)
- Rachael C. Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Benoît Masquida
- UMR 7156, CNRS – Universite de Strasbourg, Strasbourg, France
| | - Ewan K.S. McRae
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Griffin M. Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | | |
Collapse
|
19
|
Baulin EF, Mukherjee S, Moafinejad SN, Wirecki TK, Badepally NG, Jaryani F, Stefaniak F, Amiri Farsani M, Ray A, Rocha de Moura T, Bujnicki JM. RNA tertiary structure prediction in CASP15 by the GeneSilico group: Folding simulations based on statistical potentials and spatial restraints. Proteins 2023; 91:1800-1810. [PMID: 37622458 DOI: 10.1002/prot.26575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.
Collapse
Affiliation(s)
- Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Angana Ray
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538330. [PMID: 37162955 PMCID: PMC10168427 DOI: 10.1101/2023.04.25.538330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and X-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as non-canonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
21
|
Kagaya Y, Zhang Z, Ibtehaz N, Wang X, Nakamura T, Huang D, Kihara D. NuFold: A Novel Tertiary RNA Structure Prediction Method Using Deep Learning with Flexible Nucleobase Center Representation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558715. [PMID: 37790488 PMCID: PMC10542152 DOI: 10.1101/2023.09.20.558715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
RNA is not only playing a core role in the central dogma as mRNA between DNA and protein, but also many non-coding RNAs have been discovered to have unique and diverse biological functions. As genome sequences become increasingly available and our knowledge of RNA sequences grows, the study of RNA's structure and function has become more demanding. However, experimental determination of three-dimensional RNA structures is both costly and time-consuming, resulting in a substantial disparity between RNA sequence data and structural insights. In response to this challenge, we propose a novel computational approach that harnesses state-of-the-art deep learning architecture NuFold to accurately predict RNA tertiary structures. This approach aims to offer a cost-effective and efficient means of bridging the gap between RNA sequence information and structural comprehension. NuFold implements a nucleobase center representation, which allows it to reproduce all possible nucleotide conformations accurately.
Collapse
Affiliation(s)
- Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - David Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
22
|
Lazzeri G, Micheletti C, Pasquali S, Faccioli P. RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias. Biophys J 2023; 122:3089-3098. [PMID: 37355771 PMCID: PMC10432211 DOI: 10.1016/j.bpj.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Atomically detailed simulations of RNA folding have proven very challenging in view of the difficulties of developing realistic force fields and the intrinsic computational complexity of sampling rare conformational transitions. As a step forward in tackling these issues, we extend to RNA an enhanced path-sampling method previously successfully applied to proteins. In this scheme, the information about the RNA's native structure is harnessed by a soft history-dependent biasing force promoting the generation of productive folding trajectories in an all-atom force field with explicit solvent. A rigorous variational principle is then applied to minimize the effect of the bias. Here, we report on an application of this method to RNA molecules from 20 to 47 nucleotides long and increasing topological complexity. By comparison with analog simulations performed on small proteins with similar size and architecture, we show that the RNA folding landscape is significantly more frustrated, even for relatively small chains with a simple topology. The predicted RNA folding mechanisms are found to be consistent with the available experiments and some of the existing coarse-grained models. Due to its computational performance, this scheme provides a promising platform to efficiently gather atomistic RNA folding trajectories, thus retain the information about the chemical composition of the sequence.
Collapse
Affiliation(s)
- Gianmarco Lazzeri
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Physics Department of Trento University, Povo (Trento), Italy
| | | | - Samuela Pasquali
- Laboratoire Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, Paris, France; Laboratoire Biologie Fonctionnelle et Adaptative, Université Paris Cité, Paris, France.
| | - Pietro Faccioli
- Physics Department of Trento University, Povo (Trento), Italy; INFN-TIFPA, Povo (Trento), Italy.
| |
Collapse
|
23
|
Wang X, Yu S, Lou E, Tan YL, Tan ZJ. RNA 3D Structure Prediction: Progress and Perspective. Molecules 2023; 28:5532. [PMID: 37513407 PMCID: PMC10386116 DOI: 10.3390/molecules28145532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - En Lou
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Zhi-Jie Tan
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Wang J, Sha CM, Dokholyan NV. Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology. Methods Mol Biol 2023; 2709:51-64. [PMID: 37572272 PMCID: PMC10680996 DOI: 10.1007/978-1-0716-3417-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Precise RNA tertiary structure prediction can aid in the design of RNA nanoparticles. However, most existing RNA tertiary structure prediction methods are limited to small RNAs with relatively simple secondary structures. Large RNA molecules usually have complex secondary structures, including multibranched loops and pseudoknots, allowing for highly flexible RNA geometries and multiple stable states. Various experiments and bioinformatics analyses can often provide information about the distance between atoms (or residues) in RNA, which can be used to guide the prediction of RNA tertiary structure. In this chapter, we will introduce a platform, iFoldNMR, that can incorporate non-exchangeable imino protons resonance data from NMR as restraints for RNA 3D structure prediction. We also introduce an algorithm, DVASS, which optimizes distance restraints for better RNA 3D structure prediction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Congzhou M Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State University, State College, PA, USA.
- Department of Biomedical Engineering, Penn State University, State College, PA, USA.
| |
Collapse
|
25
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
26
|
Yan S, Ilgu M, Nilsen-Hamilton M, Lamm MH. Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State. J Phys Chem B 2022; 126:7114-7125. [PMID: 36097649 PMCID: PMC9512008 DOI: 10.1021/acs.jpcb.2c04649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
RNA aptamers are single-stranded oligonucleotides that bind to specific molecular targets with high affinity and specificity. To design aptamers for new applications, it is critical to understand the ligand binding mechanism in terms of the structure and dynamics of the ligand-bound and apo states. The problem is that most of the NMR or X-ray crystal structures available for RNA aptamers are for ligand-bound states. Available apo state structures, mostly characterized by crystallization under nonphysiological conditions or probed by low resolution techniques, might fail to represent the diverse structural variations of the apo state in solution. Here, we develop an approach to obtain a representative ensemble of apo structures that are based on in silico RNA 3D structure prediction and in vitro experiments that characterize base stacking. Using the neomycin-B aptamer as a case study, an ensemble of structures for the aptamer in the apo (unbound) state are validated and then used to investigate the ligand-binding mechanism for the aptamer in complex with neomycin-B.
Collapse
Affiliation(s)
- Shuting Yan
- Iowa
State University, Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | - Marit Nilsen-Hamilton
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | | |
Collapse
|
27
|
Matarrese MAG, Loppini A, Nicoletti M, Filippi S, Chiodo L. Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective. J Biomol Struct Dyn 2022:1-20. [DOI: 10.1080/07391102.2022.2116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Margherita A. G. Matarrese
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Alessandro Loppini
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Martina Nicoletti
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Letizia Chiodo
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
28
|
Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ 1-Riboswitch. J Chem Inf Model 2022; 62:4134-4148. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 μM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Simon Schneider
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Maike Grimm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| |
Collapse
|
29
|
Wiedemann J, Kaczor J, Milostan M, Zok T, Blazewicz J, Szachniuk M, Antczak M. RNAloops: a database of RNA multiloops. Bioinformatics 2022; 38:4200-4205. [PMID: 35809063 PMCID: PMC9438955 DOI: 10.1093/bioinformatics/btac484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jakub Wiedemann
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jacek Kaczor
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Milostan
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | |
Collapse
|
30
|
Singh J, Paliwal K, Litfin T, Singh J, Zhou Y. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics 2022; 38:3900-3910. [PMID: 35751593 PMCID: PMC9364379 DOI: 10.1093/bioinformatics/btac421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins. RESULTS Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction. AVAILABILITY AND IMPLEMENTATION SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
31
|
Magnus M. rna-tools.online: a Swiss army knife for RNA 3D structure modeling workflow. Nucleic Acids Res 2022; 50:W657-W662. [PMID: 35580057 PMCID: PMC9252763 DOI: 10.1093/nar/gkac372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Significant improvements have been made in the efficiency and accuracy of RNA 3D structure prediction methods in recent years; however, many tools developed in the field stay exclusive to only a few bioinformatic groups. To perform a complete RNA 3D structure modeling analysis as proposed by the RNA-Puzzles community, researchers must familiarize themselves with a quite complex set of tools. In order to facilitate the processing of RNA sequences and structures, we previously developed the rna-tools package. However, using rna-tools requires the installation of a mixture of libraries and tools, basic knowledge of the command line and the Python programming language. To provide an opportunity for the broader community of biologists to take advantage of the new developments in RNA structural biology, we developed rna-tools.online. The web server provides a user-friendly platform to perform many standard analyses required for the typical modeling workflow: 3D structure manipulation and editing, structure minimization, structure analysis, quality assessment, and comparison. rna-tools.online supports biologists to start benefiting from the maturing field of RNA 3D structural bioinformatics and can be used for educational purposes. The web server is available at https://rna-tools.online.
Collapse
Affiliation(s)
- Marcin Magnus
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Przanowska RK, Weidmann CA, Saha S, Cichewicz MA, Jensen KN, Przanowski P, Irving PS, Janes KA, Guertin MJ, Weeks KM, Dutta A. Distinct MUNC lncRNA structural domains regulate transcription of different promyogenic factors. Cell Rep 2022; 38:110361. [PMID: 35172143 PMCID: PMC8937029 DOI: 10.1016/j.celrep.2022.110361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Many lncRNAs have been discovered using transcriptomic data; however, it is unclear what fraction of lncRNAs is functional and what structural properties affect their phenotype. MUNC lncRNA (also known as DRReRNA) acts as an enhancer RNA for the Myod1 gene in cis and stimulates the expression of other promyogenic genes in trans by recruiting the cohesin complex. Here, experimental probing of the RNA structure revealed that MUNC contains multiple structural domains not detected by prediction algorithms in the absence of experimental information. We show that these specific and structurally distinct domains are required for induction of promyogenic genes, for binding genomic sites and gene expression regulation, and for binding the cohesin complex. Myod1 induction and cohesin interaction comprise only a subset of MUNC phenotype. Our study reveals unexpectedly complex, structure-driven functions for the MUNC lncRNA and emphasizes the importance of experimentally determined structures for understanding structure-function relationships in lncRNAs.
Collapse
Affiliation(s)
- Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biological Chemistry and Center for RNA Biomedicine, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Magdalena A Cichewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kate N Jensen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin A Janes
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT 06030, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Genetics, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
33
|
Carrascoza F, Antczak M, Miao Z, Westhof E, Szachniuk M. Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions. RNA (NEW YORK, N.Y.) 2022; 28:250-262. [PMID: 34819324 PMCID: PMC8906551 DOI: 10.1261/rna.078685.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.
Collapse
Affiliation(s)
- Francisco Carrascoza
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire CNRS, Architecture et Réactivité de l'ARN, 67084 Strasbourg, France
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
34
|
Zerihun MB, Pucci F, Schug A. CoCoNet-boosting RNA contact prediction by convolutional neural networks. Nucleic Acids Res 2021; 49:12661-12672. [PMID: 34871451 PMCID: PMC8682773 DOI: 10.1093/nar/gkab1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.
Collapse
Affiliation(s)
- Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Computational Biology and Bioinformatics, Université Libre de Bruxelles 1050, Brussels, Belgium
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
35
|
De Bisschop G, Allouche D, Frezza E, Masquida B, Ponty Y, Will S, Sargueil B. Progress toward SHAPE Constrained Computational Prediction of Tertiary Interactions in RNA Structure. Noncoding RNA 2021; 7:71. [PMID: 34842779 PMCID: PMC8628965 DOI: 10.3390/ncrna7040071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.
Collapse
Affiliation(s)
- Grégoire De Bisschop
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Delphine Allouche
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut Necker-Enfants Malades (INEM), Inserm U1151, 156 rue de Vaugirard, CEDEX 15, 75015 Paris, France
| | - Elisa Frezza
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| | - Benoît Masquida
- Université de Strasbourg, CNRS UMR7156 GMGM, 67084 Strasbourg, France;
| | - Yann Ponty
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Sebastian Will
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Bruno Sargueil
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| |
Collapse
|
36
|
Zhang D, Chen SJ, Zhou R. Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model. J Phys Chem B 2021; 125:11907-11915. [PMID: 34694128 DOI: 10.1021/acs.jpcb.1c07288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncanonical base pairs contribute crucially to the three-dimensional architecture of large RNA molecules; however, how to accurately model them remains an open challenge in RNA 3D structure prediction. Here, we report a promising coarse-grained (CG) IsRNA2 model to predict noncanonical base pairs in large RNAs through molecular dynamics simulations. By introducing a five-bead per nucleotide CG representation to reserve the three interacting edges of nucleobases, IsRNA2 accurately models various base-pairing interactions, including both canonical and noncanonical base pairs. A benchmark test indicated that IsRNA2 achieves a comparable performance to the atomic model in de novo modeling of noncanonical RNA structures. In addition, IsRNA2 was able to refine the 3D structure predictions for large RNAs in RNA-puzzle challenges. Finally, the graphics processing unit acceleration was introduced to speed up the sampling efficiency in IsRNA2 for very large RNA molecules. Therefore, the CG IsRNA2 model reported here offers a reliable approach to predict the structures and dynamics of large RNAs.
Collapse
Affiliation(s)
- Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Ruhong Zhou
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Popenda M, Zok T, Sarzynska J, Korpeta A, Adamiak R, Antczak M, Szachniuk M. Entanglements of structure elements revealed in RNA 3D models. Nucleic Acids Res 2021; 49:9625-9632. [PMID: 34432024 PMCID: PMC8464073 DOI: 10.1093/nar/gkab716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023] Open
Abstract
Computational methods to predict RNA 3D structure have more and more practical applications in molecular biology and medicine. Therefore, it is crucial to intensify efforts to improve the accuracy and quality of predicted three-dimensional structures. A significant role in this is played by the RNA-Puzzles initiative that collects, evaluates, and shares RNAs built computationally within currently nearly 30 challenges. RNA-Puzzles datasets, subjected to multi-criteria analysis, allow revealing the strengths and weaknesses of computer prediction methods. Here, we study the issue of entangled RNA fragments in the predicted RNA 3D structure models. By entanglement, we mean an arrangement of two structural elements such that one of them passes through the other. We propose the classification of entanglements driven by their topology and components. It distinguishes two general classes, interlaces and lassos, and subclasses characterized by element types-loops, dinucleotide steps, open single-stranded fragments-and puncture multiplicity. Our computational pipeline for entanglement detection, applied for 1,017 non-redundant models from RNA-Puzzles, has shown the frequency of different entanglements and allowed identifying 138 structures with intersected assemblies.
Collapse
Affiliation(s)
- Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Korpeta
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| |
Collapse
|
38
|
Singh J, Paliwal K, Singh J, Zhou Y. RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. J Chem Inf Model 2021; 61:2610-2622. [PMID: 34037398 DOI: 10.1021/acs.jcim.1c00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| |
Collapse
|
39
|
Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by Evolutionary Coupling Analysis. Bioinformatics 2021; 37:3494-3500. [PMID: 34021744 DOI: 10.1093/bioinformatics/btab391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.
Collapse
Affiliation(s)
- Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
40
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
41
|
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nat Commun 2021; 12:2777. [PMID: 33986288 PMCID: PMC8119458 DOI: 10.1038/s41467-021-23100-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
Collapse
|
42
|
Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys 2021; 50:267-301. [PMID: 33606945 PMCID: PMC8105287 DOI: 10.1146/annurev-biophys-091720-102019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA;
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | | | - Christopher G Myers
- Department of Chemistry, New York University, New York, New York 10003, USA;
| | - Lauren Beljak
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Justin Chen
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sami Dakhel
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Daniel Darling
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sayak Ghosh
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Joseph Hall
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mikaeel Jan
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Emily Liang
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sera Saju
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mackenzie Vohr
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Chris Wu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Yifan Xu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Eva Xue
- College of Arts and Science, New York University, New York, New York 10003, USA
| |
Collapse
|
43
|
Rangan R, Watkins AM, Chacon J, Kretsch R, Kladwang W, Zheludev IN, Townley J, Rynge M, Thain G, Das R. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Res 2021; 49:3092-3108. [PMID: 33693814 PMCID: PMC8034642 DOI: 10.1093/nar/gkab119] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta's FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5' UTR; the reverse complement of the 5' UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3' UTR. For eleven of these elements (the stems in SL1-8, reverse complement of SL1-4, FSE, s2m and 3' UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets ('FARFAR2-SARS-CoV-2', https://github.com/DasLab/FARFAR2-SARS-CoV-2; and 'FARFAR2-Apo-Riboswitch', at https://github.com/DasLab/FARFAR2-Apo-Riboswitch') include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Jose Chacon
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Rachael Kretsch
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | | | - Mats Rynge
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292, USA
| | - Gregory Thain
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
45
|
Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes. Nat Commun 2021; 12:1576. [PMID: 33707432 PMCID: PMC7952577 DOI: 10.1038/s41467-021-21578-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
We apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes. Phage-coat proteins can be used to build synthetic biology parts. Here the authors use an oligo library and machine learning to predict and verify sequences based on binding scores.
Collapse
|
46
|
Abstract
The molecules of the ribonucleic acid (RNA) perform a variety of vital roles in all living cells. Their biological function depends on their structure and dynamics, both of which are difficult to experimentally determine but can be theoretically inferred based on the RNA sequence. SimRNA is one of the computational methods for molecular simulations of RNA 3D structure formation. The method is based on a simplified (coarse-grained) representation of nucleotide chains, a statistically derived model of interactions (statistical potential), and the Monte Carlo method as a conformational sampling scheme.The current version of SimRNA (3.22) is able to predict basic topologies of RNA molecules with sizes up to about 50-70 nucleotides, based on their sequences only, and larger molecules if supplied with appropriate distance restraints. The user can specify various types of restraints, including secondary structure, pairwise atom-atom distances, and positions of atoms. SimRNA can be also used for studying systems composed of several chains of RNA. SimRNA is a folding simulations method, thus it allows for examining folding pathways, getting an approximate view of the energy landscapes.
Collapse
|
47
|
Zhang D, Li J, Chen SJ. IsRNA1: De Novo Prediction and Blind Screening of RNA 3D Structures. J Chem Theory Comput 2021; 17:1842-1857. [PMID: 33560836 DOI: 10.1021/acs.jctc.0c01148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling structures and functions of large ribonucleic acid (RNAs) especially with complicated topologies is highly challenging due to the inefficiency of large conformational sampling and the presence of complicated tertiary interactions. To address this problem, one highly promising approach is coarse-grained modeling. Here, following an iterative simulated reference state approach to decipher the correlations between different structural parameters, we developed a potent coarse-grained RNA model named as IsRNA1 for RNA studies. Molecular dynamics simulations in the IsRNA1 can predict the native structures of small RNAs from a sequence and fold medium-sized RNAs into near-native tertiary structures with the assistance of secondary structure constraints. A large-scale benchmark test on RNA 3D structure prediction shows that IsRNA1 exhibits improved performance for relatively large RNAs of complicated topologies, such as large stem-loop structures and structures containing long-range tertiary interactions. The advantages of IsRNA1 include the consideration of the correlations between the different structural variables, the appropriate characterization of canonical base-pairing and base-stacking interactions, and the better sampling for the backbone conformations. Moreover, a blind screening protocol was developed based on IsRNA1 to identify good structural models from a pool of candidates without prior knowledge of the native structures.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Jun Li
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
48
|
Abstract
Novel RNA motif design is of great practical importance for technology and medicine. Increasingly, computational design plays an important role in such efforts. Our coarse-grained RAG (RNA-As-Graphs) framework offers strategies for enumerating the universe of RNA 2D folds, selecting "RNA-like" candidates for design, and determining sequences that fold onto these candidates. In RAG, RNA secondary structures are represented as tree or dual graphs. Graphs with known RNA structures are called "existing", and the others are labeled "hypothetical". By using simplified features for RNA graphs, we have clustered the hypothetical graphs into "RNA-like" and "non-RNA-like" groups and proposed RNA-like graphs as candidates for design. Here, we propose a new way of designing graph features by using Fiedler vectors. The new features reflect graph shapes better, and they lead to a more clustered organization of existing graphs. We show significant increases in K-means clustering accuracy by using the new features (e.g., up to 95% and 98% accuracy for tree and dual graphs, respectively). In addition, we propose a scoring model for top graph candidate selection. This scoring model allows users to set a threshold for candidates, and it incorporates weighing of existing graphs based on their corresponding number of known RNAs. We include a list of top scored RNA-like candidates, which we hope will stimulate future novel RNA design.
Collapse
Affiliation(s)
- Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Tamar Schlick
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P. R. China
| |
Collapse
|
49
|
Arriola JT, Müller UF. A combinatorial method to isolate short ribozymes from complex ribozyme libraries. Nucleic Acids Res 2020; 48:e116. [PMID: 33035338 PMCID: PMC7672470 DOI: 10.1093/nar/gkaa834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
In vitro selections are the only known methods to generate catalytic RNAs (ribozymes) that do not exist in nature. Such new ribozymes are used as biochemical tools, or to address questions on early stages of life. In both cases, it is helpful to identify the shortest possible ribozymes since they are easier to deploy as a tool, and because they are more likely to have emerged in a prebiotic environment. One of our previous selection experiments led to a library containing hundreds of different ribozyme clusters that catalyze the triphosphorylation of their 5'-terminus. This selection showed that RNA systems can use the prebiotically plausible molecule cyclic trimetaphosphate as an energy source. From this selected ribozyme library, the shortest ribozyme that was previously identified had a length of 67 nucleotides. Here we describe a combinatorial method to identify short ribozymes from libraries containing many ribozymes. Using this protocol on the library of triphosphorylation ribozymes, we identified a 17-nucleotide sequence motif embedded in a 44-nucleotide pseudoknot structure. The described combinatorial approach can be used to analyze libraries obtained by different in vitro selection experiments.
Collapse
Affiliation(s)
- Joshua T Arriola
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
50
|
Abstract
The structural and regulatory elements in therapeutically relevant RNAs offer many opportunities for targeting by small molecules, yet fundamental understanding of what drives selectivity in small molecule:RNA recognition has been a recurrent challenge. In particular, RNAs tend to be more dynamic and offer less chemical functionality than proteins, and biologically active ligands must compete with the highly abundant and highly structured RNA of the ribosome. Indeed, the only small molecule drug targeting RNA other than the ribosome was just approved in August 2020, and our recent survey of the literature revealed fewer than 150 reported chemical probes that target non-ribosomal RNA in biological systems. This Feature outlines our efforts to improve small molecule targeting strategies and gain fundamental insights into small molecule:RNA recognition by analyzing patterns in both RNA-biased small molecule chemical space and RNA topological space privileged for differentiation. First, we synthesized libraries based on RNA binding scaffolds that allowed us to reveal general principles in small molecule:recognition and to ask precise chemical questions about drivers of affinity and selectivity. Elaboration of these scaffolds has led to recognition of medicinally relevant RNA targets, including viral and long noncoding RNA structures. More globally, we identified physicochemical, structural, and spatial properties of biologically active RNA ligands that are distinct from those of protein-targeted ligands, and we have provided the dataset and associated analytical tools as part of a publicly available online platform to facilitate RNA ligand discovery. At the same time, we used pattern recognition protocols to identify RNA topologies that can be differentially recognized by small molecules and have elaborated this technique to visualize conformational changes in RNA secondary structure. These fundamental insights into the drivers of RNA recognition in vitro have led to functional targeting of RNA structures in biological systems. We hope that these initial guiding principles, as well as the approaches and assays developed in their pursuit, will enable rapid progress toward the development of RNA-targeted chemical probes and ultimately new therapeutic approaches to a wide range of deadly human diseases.
Collapse
Affiliation(s)
- Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|