1
|
Ma X, Gao Z, Niu J, Zhang S, Luo L, Yan S, Zhang Q, Zhang W. Cascade Pd-Catalyzed Azide-Isocyanide Cross Coupling/Cyclization/Lactamization Reactions for the Synthesis of Tricyclic Guanidine-Containing Polyheterocycles. J Org Chem 2025; 90:2707-2716. [PMID: 39932429 DOI: 10.1021/acs.joc.4c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A one-pot synthesis of a tricyclic guanidine scaffold is developed. The azido-bearing [3 + 2] adducts are used for cascade azide-isocyanide cross-coupling/nucleophilic cyclization/lactamization to afford highly condensed polyheterocycles. A wide range of azido-containing [3 + 2] adducts and isocyanides are tolerated in the sequential reactions.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Zijie Gao
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Jiawei Niu
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Sai Zhang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Lingfeng Luo
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, Massachusetts 02125, United States
| |
Collapse
|
2
|
Franke L, Globisch C, Karakurt MC, Stephan T, Peter C. Atomistic Simulations Reveal Crucial Role of Metal Ions for Ligand Binding in Guanidine-I Riboswitch. Macromol Rapid Commun 2024; 45:e2400606. [PMID: 39225633 PMCID: PMC11661666 DOI: 10.1002/marc.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches are structured ribonucleic acid (RNA) segments that act as specific sensors for small molecules in bacterial metabolism. Due to the flexible nature of these highly charged macromolecules, molecular dynamics simulations are instrumental to investigating the mechanistic details of their regulatory function. In the present study, the guanidine-I riboswitch serves as an example of how atomistic simulations can shed light on the effect of ions on the structure and dynamics of RNA and on ligand binding. Relying on two orthologous crystal structures from different bacterial species, it is demonstrated how the ion setup crucially determines whether the simulation yields meaningful insights into the conformational stability of the RNA, functionally relevant residues and RNA-ligand interactions. The ion setup in this context includes diffuse ions in solution and bound ions associated directly with the RNA, in particular a triad of 2 Mg2+ ions and a K+ ion in close proximity to the guanidinium binding site. A detailed investigation of the binding pocket reveals that the K+ from the ion triad plays a decisive role in stabilizing the ligand binding by stabilizing important localized interactions, which in turn contribute to the overall shape of the folded state of the RNA.
Collapse
Affiliation(s)
- Leon Franke
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Christoph Globisch
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Mehmet Can Karakurt
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Theresa Stephan
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Christine Peter
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
3
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
4
|
Bu F, Lin X, Liao W, Lu Z, He Y, Luo Y, Peng X, Li M, Huang Y, Chen X, Xiao B, Jiang J, Deng J, Huang J, Lin T, Miao Z, Huang L. Ribocentre-switch: a database of riboswitches. Nucleic Acids Res 2024; 52:D265-D272. [PMID: 37855663 PMCID: PMC10767811 DOI: 10.1093/nar/gkad891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.
Collapse
Affiliation(s)
- Fan Bu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Xiaowei Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjian Liao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhizhong Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanlin He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuhang Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mengxiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bowen Xiao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Jiuhong Jiang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhichao Miao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
5
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
6
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
7
|
Hall PM, Inman JT, Fulbright RM, Le TT, Brewer JJ, Lambert G, Darst SA, Wang MD. Polarity of the CRISPR roadblock to transcription. Nat Struct Mol Biol 2022; 29:1217-1227. [PMID: 36471058 PMCID: PMC9758054 DOI: 10.1038/s41594-022-00864-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) utility relies on a stable Cas effector complex binding to its target site. However, a Cas complex bound to DNA may be removed by motor proteins carrying out host processes and the mechanism governing this removal remains unclear. Intriguingly, during CRISPR interference, RNA polymerase (RNAP) progression is only fully blocked by a bound endonuclease-deficient Cas (dCas) from the protospacer adjacent motif (PAM)-proximal side. By mapping dCas-DNA interactions at high resolution, we discovered that the collapse of the dCas R-loop allows Escherichia coli RNAP read-through from the PAM-distal side for both Sp-dCas9 and As-dCas12a. This finding is not unique to RNAP and holds for the Mfd translocase. This mechanistic understanding allowed us to modulate the dCas R-loop stability by modifying the guide RNAs. This work highlights the importance of the R-loop in dCas-binding stability and provides valuable mechanistic insights for broad applications of CRISPR technology.
Collapse
Affiliation(s)
- Porter M Hall
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Robert M Fulbright
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Tung T Le
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Joshua J Brewer
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Guillaume Lambert
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Michelle D Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Sun Z, Wu R, Zhao B, Zeinert R, Chien P, You M. Live-Cell Imaging of Guanosine Tetra- and Pentaphosphate (p)ppGpp with RNA-based Fluorescent Sensors*. Angew Chem Int Ed Engl 2021; 60:24070-24074. [PMID: 34487413 PMCID: PMC8545912 DOI: 10.1002/anie.202111170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Guanosine tetra- and pentaphosphate, (p)ppGpp, are important alarmone nucleotides that regulate bacterial survival in stressful environment. A direct detection of (p)ppGpp in living cells is critical for our understanding of the mechanism of bacterial stringent response. However, it is still challenging to image cellular (p)ppGpp. Here, we report RNA-based fluorescent sensors for the live-cell imaging of (p)ppGpp. Our sensors are engineered by conjugating a recently identified (p)ppGpp-specific riboswitch with a fluorogenic RNA aptamer, Broccoli. These sensors can be genetically encoded and enable direct monitoring of cellular (p)ppGpp accumulation. Unprecedented information on cell-to-cell variation and cellular dynamics of (p)ppGpp levels is now obtained under different nutritional conditions. These RNA-based sensors can be broadly adapted to study bacterial stringent response.
Collapse
Affiliation(s)
- Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, USA
| |
Collapse
|
9
|
Sun Z, Wu R, Zhao B, Zeinert R, Chien P, You M. Live‐Cell Imaging of Guanosine Tetra‐ and Pentaphosphate (p)ppGpp with RNA‐based Fluorescent Sensors**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhining Sun
- Department of Chemistry University of Massachusetts Amherst USA
| | - Rigumula Wu
- Department of Chemistry University of Massachusetts Amherst USA
| | - Bin Zhao
- Department of Chemistry University of Massachusetts Amherst USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts Amherst USA
| |
Collapse
|
10
|
Negi I, Mahmi AS, Seelam Prabhakar P, Sharma P. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch ykkC-III: Structural Insights into the Discrimination of Cognate and Alternate Ligands. J Chem Inf Model 2021; 61:5243-5255. [PMID: 34609872 DOI: 10.1021/acs.jcim.1c01022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guanidinium ion is a toxic cellular metabolite. The ykkC-III riboswitch, an mRNA stretch, regulates the gene expression by undergoing a conformational change in response to the binding of a free guanidinium ion and thereby plays a potentially important role in alleviating guanidinium toxicity in cells. An experimental crystal structure of the guanidinium-bound aptamer domain of the riboswitch from Thermobifida Fusca revealed the overall RNA architecture and mapped the specific noncovalent interactions that stabilize the ligand within the binding pocket aptamer. However, details of how the aptamer domain discriminates the cognate ligand from its closest structurally analogous physiological metabolites (arginine and urea), and how the binding of cognate ligand arrays information from the aptamer domain to the expression platform for regulating the gene expression, are not well understood. To fill this void, we perform a cumulative of 2 μs all-atom explicit-solvent molecular dynamics (MD) simulations on the full aptamer domain, augmented with quantum-chemical calculations on the ligand-binding pocket, to compare the structural and dynamical details of the guanidinium-bound state with the arginine or urea bound states, as well as the unbound (open) state. Analysis of the ligand-binding pocket reveals that due to unfavorable interactions with the binding-pocket residues, urea cannot bind the aptamer domain and thereby cannot alter the gene expression. Although interaction of the guanidyl moiety of arginine within the binding pocket is either comparable or stronger than the guanidinium ion, additional non-native hydrogen-bonding networks, as well as differences in the dynamical details of the arginine-bound state, explain why arginine cannot transmit the information from the aptamer domain to the expression platform. Based on our simulations, we propose a mechanism of how the aptamer domain communicates with the expression platform. Overall, our work provides interesting insights into the ligand recognition by a specific class of riboswitches and may hopefully inspire future studies to further understand the gene regulation by riboswitches.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Preethi Seelam Prabhakar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
Trachman RJ, Ferré-D'Amaré AR. An uncommon [K +(Mg 2+) 2] metal ion triad imparts stability and selectivity to the Guanidine-I riboswitch. RNA (NEW YORK, N.Y.) 2021; 27:1257-1264. [PMID: 34257148 PMCID: PMC8457001 DOI: 10.1261/rna.078824.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The widespread ykkC-I riboswitch class exemplifies divergent riboswitch evolution. To analyze how natural selection has diversified its versatile RNA fold, we determined the X-ray crystal structure of the Burkholderia sp. TJI49 ykkC-I subtype-1 (Guanidine-I) riboswitch aptamer domain. Differing from the previously reported structures of orthologs from Dickeya dadantii and Sulfobacillus acidophilus, our Burkholderia structure reveals a chelated K+ ion adjacent to two Mg2+ ions in the guanidine-binding pocket. Thermal melting analysis shows that K+ chelation, which induces localized conformational changes in the binding pocket, improves guanidinium-RNA interactions. Analysis of ribosome structures suggests that the [K+(Mg2+)2] ion triad is uncommon. It is, however, reminiscent of metal ion clusters found in the active sites of ribozymes and DNA polymerases. Previous structural characterization of ykkC-I subtype-2 RNAs, which bind the effector ligands ppGpp and PRPP, indicate that in those paralogs, an adenine responsible for K+ chelation in the Burkholderia Guanidine-I riboswitch is replaced by a pyrimidine. This mutation results in a water molecule and Mg2+ ion binding in place of the K+ ion. Thus, our structural analysis demonstrates how ion and solvent chelation tune divergent ligand specificity and affinity among ykkC-I riboswitches.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
12
|
Siblings or doppelgängers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Biochem Soc Trans 2021; 48:1941-1951. [PMID: 32869842 PMCID: PMC7609027 DOI: 10.1042/bst20191060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Structured cis-regulatory RNAs have evolved across all domains of life, highlighting the utility and plasticity of RNA as a regulatory molecule. Homologous RNA sequences and structures often have similar functions, but homology may also be deceiving. The challenges that derive from trying to assign function to structure and vice versa are not trivial. Bacterial riboswitches, viral and eukaryotic IRESes, CITEs, and 3′ UTR elements employ an array of mechanisms to exert their effects. Bioinformatic searches coupled with biochemical and functional validation have elucidated some shared and many unique ways cis-regulators are employed in mRNA transcripts. As cis-regulatory RNAs are resolved in greater detail, it is increasingly apparent that shared homology can mask the full spectrum of mRNA cis-regulator functional diversity. Furthermore, similar functions may be obscured by lack of obvious sequence similarity. Thus looking beyond homology is crucial for furthering our understanding of RNA-based regulation.
Collapse
|
13
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
14
|
Steuer J, Kukharenko O, Riedmiller K, Hartig JS, Peter C. Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation. Nucleic Acids Res 2021; 49:7954-7965. [PMID: 34233001 PMCID: PMC8373139 DOI: 10.1093/nar/gkab592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
Regulation of gene expression via riboswitches is a widespread mechanism in bacteria. Here, we investigate ligand binding of a member of the guanidine sensing riboswitch family, the guanidine-II riboswitch (Gd-II). It consists of two stem–loops forming a dimer upon ligand binding. Using extensive molecular dynamics simulations we have identified conformational states corresponding to ligand-bound and unbound states in a monomeric stem–loop of Gd-II and studied the selectivity of this binding. To characterize these states and ligand-dependent conformational changes we applied a combination of dimensionality reduction, clustering, and feature selection methods. In absence of a ligand, the shape of the binding pocket alternates between the conformation observed in presence of guanidinium and a collapsed conformation, which is associated with a deformation of the dimerization interface. Furthermore, the structural features responsible for the ability to discriminate against closely related analogs of guanidine are resolved. Based on these insights, we propose a mechanism that couples ligand binding to aptamer dimerization in the Gd-II system, demonstrating the value of computational methods in the field of nucleic acids research.
Collapse
Affiliation(s)
- Jakob Steuer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Oleksandra Kukharenko
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kai Riedmiller
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
15
|
Sinn M, Hauth F, Lenkeit F, Weinberg Z, Hartig JS. Widespread bacterial utilization of guanidine as nitrogen source. Mol Microbiol 2021; 116:200-210. [PMID: 33590553 DOI: 10.1111/mmi.14702] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
Guanidine is sensed by at least four different classes of riboswitches that are widespread in bacteria. However, only very few insights into physiological roles of guanidine exist. Genes predominantly regulated by guanidine riboswitches are Gdx transporters exporting the compound from the bacterial cell. In addition, urea/guanidine carboxylases and associated hydrolases and ABC transporters are often found combined in guanidine-inducible operons. We noted that the associated ABC transporters are configured to function as importers, challenging the current view that riboswitches solely control the detoxification of guanidine in bacteria. We demonstrate that the carboxylase pathway enables utilization of guanidine as sole nitrogen source. We isolated three enterobacteria (Raoultella terrigena, Klebsiella michiganensis, and Erwinia rhapontici) that utilize guanidine efficiently as N-source. Proteome analyses show that the expression of a carboxylase, associated hydrolases and transport genes is strongly induced by guanidine. Finding two urea/guanidine carboxylase enzymes in E. rhapontici, we demonstrate that the riboswitch-controlled carboxylase displays specificity toward guanidine, whereas the other enzyme prefers urea. We characterize the distribution of riboswitch-associated carboxylases and Gdx exporters in bacterial habitats by analyzing available metagenome data. The findings represent a paradigm shift from riboswitch-controlled detoxification of guanidine to the uptake and assimilation of this enigmatic nitrogen-rich compound.
Collapse
Affiliation(s)
- Malte Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Franziskus Hauth
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Felina Lenkeit
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Lenkeit F, Eckert I, Hartig JS, Weinberg Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res 2021; 48:12889-12899. [PMID: 33237283 PMCID: PMC7736828 DOI: 10.1093/nar/gkaa1102] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Riboswitches are RNAs that specifically sense a small molecule and regulate genes accordingly. The recent discovery of guanidine-binding riboswitches revealed the biological significance of this compound, and uncovered genes related to its biology. For example, certain sugE genes encode guanidine exporters and are activated by the riboswitches to reduce toxic levels of guanidine in the cell. In order to study guanidine biology and riboswitches, we applied a bioinformatics strategy for discovering additional guanidine riboswitches by searching for new candidate motifs associated with sugE genes. Based on in vitro and in vivo experiments, we determined that one of our six best candidates is a new structural class of guanidine riboswitches. The expression of a genetic reporter was induced 80-fold in response to addition of 5 mM guanidine in Staphylococcus aureus. This new class, called the guanidine-IV riboswitch, reveals additional guanidine-associated protein domains that are extremely rarely or never associated with previously established guanidine riboswitches. Among these protein domains are two transporter families that are structurally distinct from SugE, and could represent novel types of guanidine exporters. These results establish a new metabolite-binding RNA, further validate a bioinformatics method for finding riboswitches and suggest substrate specificities for as-yet uncharacterized transporter proteins.
Collapse
Affiliation(s)
- Felina Lenkeit
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Iris Eckert
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
17
|
The structural basis of promiscuity in small multidrug resistance transporters. Nat Commun 2020; 11:6064. [PMID: 33247110 PMCID: PMC7695847 DOI: 10.1038/s41467-020-19820-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
By providing broad resistance to environmental biocides, transporters from the small multidrug resistance (SMR) family drive the spread of multidrug resistance cassettes among bacterial populations. A fundamental understanding of substrate selectivity by SMR transporters is needed to identify the types of selective pressures that contribute to this process. Using solid-supported membrane electrophysiology, we find that promiscuous transport of hydrophobic substituted cations is a general feature of SMR transporters. To understand the molecular basis for promiscuity, we solved X-ray crystal structures of a SMR transporter Gdx-Clo in complex with substrates to a maximum resolution of 2.3 Å. These structures confirm the family’s extremely rare dual topology architecture and reveal a cleft between two helices that provides accommodation in the membrane for the hydrophobic substituents of transported drug-like cations. Gdx-Clo is a bacterial transporter from the small multidrug resistance (SMR) family. Here, the authors use solid supported membrane electrophysiology to characterize Gdx-Clo functionally and report crystal structures of Gdx-Clo which confirm the dual topology architecture and offer insight into substrate binding and transport mechanism.
Collapse
|
18
|
Salvail H, Balaji A, Yu D, Roth A, Breaker RR. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria. Biochemistry 2020; 59:4654-4662. [PMID: 33236895 DOI: 10.1021/acs.biochem.0c00793] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An intriguing consequence of ongoing riboswitch discovery efforts is the occasional identification of metabolic or toxicity response pathways for unusual ligands. Recently, we reported the experimental validation of three distinct bacterial riboswitch classes that regulate gene expression in response to the selective binding of a guanidinium ion. These riboswitch classes, called guanidine-I, -II, and -III, regulate numerous genes whose protein products include previously misannotated guanidine exporters and enzymes that degrade guanidine via an initial carboxylation reaction. Guanidine is now recognized as the primal substrate of many multidrug efflux pumps that are important for bacterial resistance to certain antibiotics. Guanidine carboxylase enzymes had long been annotated as urea carboxylase enzymes but are now understood to participate in guanidine degradation. Herein, we report the existence of a fourth riboswitch class for this ligand, called guanidine-IV. Members of this class use a novel aptamer to selectively bind guanidine and use an unusual expression platform arrangement that is predicted to activate gene expression when ligand is present. The wide distribution of this abundant riboswitch class, coupled with the striking diversity of other guanidine-sensing RNAs, demonstrates that many bacterial species maintain sophisticated sensory and genetic mechanisms to avoid guanidine toxicity. This finding further highlights the mystery regarding the natural source of this nitrogen-rich chemical moiety.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Adam Roth
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| |
Collapse
|
19
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
21
|
Abstract
Biocatalysis is dominated by protein enzymes, and only a few classes of ribozymes are known to contribute to the task of promoting biochemical transformations. The RNA World theory encompasses the notion that earlier forms of life made use of a much greater diversity of ribozymes and other functional RNAs to guide complex metabolic states long before proteins had emerged in evolution. In recent years, the discoveries of various classes of ribozymes, riboswitches, and other noncoding RNAs in bacteria have provided additional support for the hypothesis that RNA molecules indeed have the catalytic competence to promote diverse chemical reactions without the aid of protein enzymes. Herein, some of the most striking observations made from examinations of natural riboswitches that bind small ligands are highlighted and used as a basis to imagine the characteristics and functions of long-extinct ribozymes from the RNA World.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Matyjasik MM, Batey RT. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Nucleic Acids Res 2020; 47:10931-10941. [PMID: 31598729 PMCID: PMC6847200 DOI: 10.1093/nar/gkz839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022] Open
Abstract
A recent bioinformatic analysis of well-characterized classes of riboswitches uncovered subgroups unable to bind to the regulatory molecule of the parental class. Within the guanine/adenine class, seven groups of RNAs were identified that deviate from the consensus sequence at one or more of three positions directly involved purine nucleobase recognition, one of which was validated as a second class of 2'-deoxyguanosine riboswitch (called 2'-dG-II). To understand how 2'-dG-II riboswitches recognize their cognate ligand and how they differ from a previously identified class of 2'-deoxyguanosine binding riboswitches, we have solved the crystal structure of a 2'-dG-II aptamer domain bound to 2'-deoxyguanosine. This structure reveals a global architecture similar to other members of the purine riboswitch family, but contains key differences within the ligand binding core. Defining the 2'-dG-II riboswitches is a two-nucleotide insertion in the three-way junction that promotes novel base-base interactions. Unlike 2'-dG-I riboswitches, the 2'-dG-II class only requires local changes to the ligand binding pocket of the guanine/adenine class to achieve a change in ligand preference. Notably, members of the 2'-dG-II family have variable ability to discriminate between 2'-deoxyguanosine and riboguanosine, suggesting that a subset of 2'-dG-II riboswitches may bind either molecule to regulate gene expression.
Collapse
Affiliation(s)
- Michal M Matyjasik
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| |
Collapse
|
24
|
Knappenberger AJ, Reiss CW, Focht CM, Strobel SA. A Modular RNA Domain That Confers Differential Ligand Specificity. Biochemistry 2020; 59:1361-1366. [PMID: 32202416 DOI: 10.1021/acs.biochem.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed ykkC was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of ykkC RNAs and that the scaffold coaxial stack is generally compatible with various ykkC ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.
Collapse
Affiliation(s)
- Andrew J Knappenberger
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Caroline W Reiss
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Caroline M Focht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States.,Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
25
|
Gupta A, Swati D. Riboswitches in Archaea. Comb Chem High Throughput Screen 2019; 22:135-149. [DOI: 10.2174/1386207322666190425143301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/15/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022]
Abstract
Background:
Riboswitches are cis-acting, non-coding RNA elements found in the
5’UTR of bacterial mRNA and 3’ UTR of eukaryotic mRNA, that fold in a complex manner to act
as receptors for specific metabolites hence altering their conformation in response to the change in
concentrations of a ligand or metabolite. Riboswitches function as gene regulators in numerous
bacteria, archaea, fungi, algae and plants.
Aim and Objective:
This study identifies different classes of riboswitches in the Archaeal domain
of life. Previous studies have suggested that riboswitches carry a conserved aptameric domain in
different domains of life. Since Archaea are considered to be the most idiosyncratic organisms it
was interesting to look for the conservation pattern of riboswitches in these obviously strange
microorganisms.
Materials and Methods:
Completely sequenced Archaeal Genomes present in the NCBI repository
were used for studying riboswitches and other ncRNAs. The sequence files in FASTA format were
downloaded from NCBI Genome database and information related to these genomes was retrieved
from GenBank. Three bioinformatics approaches were used namely, ab initio, consensus structure
prediction and statistical model-based prediction for identifying riboswitches.
Results:
Archaeal genomes have a sporadic distribution of putative riboswitches like the TPP,
FMN, Guanidine, Lysine and c-di-AMP riboswitches, which are known to occur in bacteria. Also,
a class of riboswitch sensing c-di-GMP, a second messenger, has been identified in a few Archaeal
organisms.
Conclusion:
This study clearly reveals that bioinformatics methods are likely to play a major role
in identifying conserved riboswitches and in establishing how widespread these classes are in all
domains of life, even though the final confirmation may come from wet lab methods.
Collapse
Affiliation(s)
- Angela Gupta
- Department of Bioinformatics, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - D. Swati
- Department of Bioinformatics, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| |
Collapse
|
26
|
Guanidine Riboswitch-Regulated Efflux Transporters Protect Bacteria against Ionic Liquid Toxicity. J Bacteriol 2019; 201:JB.00069-19. [PMID: 30988034 DOI: 10.1128/jb.00069-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Plant cell walls contain a renewable, nearly limitless supply of sugar that could be used to support microbial production of commodity chemicals and biofuels. Imidazolium ionic liquid (IIL) solvents are among the best reagents for gaining access to the sugars in this otherwise recalcitrant biomass. However, the sugars from IIL-treated biomass are inevitably contaminated with residual IILs that inhibit growth in bacteria and yeast, blocking biochemical production by these organisms. IIL toxicity is, therefore, a critical roadblock in many industrial biosynthetic pathways. Although several IIL-tolerant (IILT) bacterial and yeast isolates have been identified in nature, few genetic mechanisms have been identified. In this study, we identified two IILT Bacillus isolates as well as a spontaneous IILT Escherichia coli lab strain that are tolerant to high levels of two widely used IILs. We demonstrate that all three IILT strains contain one or more pumps of the small multidrug resistance (SMR) family, and two of these strains contain mutations that affect an adjacent regulatory guanidine riboswitch. Furthermore, we show that the regulation of E. coli sugE by the guanidine II riboswitch can be exploited to promote IIL tolerance by the simple addition of guanidine to the medium. Our results demonstrate the critical role that transporter genes play in IIL tolerance in their native bacterial hosts. The study presented here is another step in engineering IIL tolerance into industrial strains toward overcoming this key gap in biofuels and industrial biochemical production processes.IMPORTANCE This study identifies bacteria that are tolerant to ionic liquid solvents used in the production of biofuels and industrial biochemicals. For industrial microbiology, it is essential to find less-harmful reagents and microbes that are resistant to their cytotoxic effects. We identified a family of small multidrug resistance efflux transporters, which are responsible for the tolerance of these strains. We also found that this resistance can be caused by mutations in the sequences of guanidine-specific riboswitches that regulate these efflux pumps. Extending this knowledge, we demonstrated that guanidine itself can promote ionic liquid tolerance. Our findings will inform genetic engineering strategies that improve conversion of cellulosic sugars into biofuels and biochemicals in processes where low concentrations of ionic liquids surpass bacterial tolerance.
Collapse
|
27
|
Huang L, Wang J, Wilson TJ, Lilley DMJ. Structure-guided design of a high-affinity ligand for a riboswitch. RNA (NEW YORK, N.Y.) 2019; 25:423-430. [PMID: 30609994 PMCID: PMC6426286 DOI: 10.1261/rna.069567.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
We have designed structure-based ligands for the guanidine-II riboswitch that bind with enhanced affinity, exploiting the twin binding sites created by loop-loop interaction. We synthesized diguanidine species, comprising two guanidino groups covalently connected by Cn linkers where n = 4 or 5. Calorimetric and fluorescent analysis shows that these ligands bind with a 10-fold higher affinity to the riboswitch compared to guanidine. We determined X-ray crystal structures of the riboswitch bound to the new ligands, showing that the guanidino groups are bound to both nucleobases and backbone within the binding pockets, analogously to guanidine binding. The connecting chain passes through side openings in the binding pocket and traverses the minor groove of the RNA. The combination of the riboswitch loop-loop interaction and our novel ligands has potential applications in chemical biology.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
28
|
Sherlock ME, Sadeeshkumar H, Breaker RR. Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates. Biochemistry 2018; 58:401-410. [PMID: 30081631 DOI: 10.1021/acs.biochem.8b00617] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ykkC RNA motif was a long-standing orphan riboswitch candidate that has recently been proposed to encompass at least five distinct bacterial riboswitch classes. Most ykkC RNAs belong to the subtype 1 group, which are guanidine-I riboswitches that regulate the expression of guanidine-specific carboxylase and transporter proteins. The remaining ykkC RNAs have been organized into at least four major categories called subtypes 2a-2d. Subtype 2a RNAs are riboswitches that sense the bacterial alarmone ppGpp and typically regulate amino acid biosynthesis genes. Subtype 2b riboswitches sense the purine biosynthetic intermediate PRPP and frequently partner with guanine riboswitches to regulate purine biosynthesis genes. In this study, we examined ykkC subtype 2c RNAs, which are found upstream of genes encoding hydrolase enzymes that cleave the phosphoanhydride linkages of nucleotide substrates. Subtype 2c representatives mostly recognize adenosine and cytidine 5'-diphosphate molecules in either their ribose or deoxyribose forms (ADP, dADP, CDP, and dCDP). Other nucleotide-containing compounds, especially nucleoside 5'-triphosphates, are strongly rejected by some members of this putative riboswitch class. High ligand concentrations in vivo are predicted to turn on expression of hydrolase enzymes, which presumably function to balance cellular nucleotide pools. These results further showcase the striking functional diversity derived from the structural scaffold shared among all ykkC motif RNAs, which has been adapted to sense at least five different types of natural ligands. Moreover, riboswitches for nucleoside diphosphates provide additional examples of the numerous partnerships observed between natural RNA aptamers and nucleotide-derived ligands, including metabolites, coenzymes, and signaling molecules.
Collapse
|
29
|
Peselis A, Serganov A. ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. Nat Chem Biol 2018; 14:887-894. [PMID: 30120360 PMCID: PMC6263941 DOI: 10.1038/s41589-018-0114-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022]
Abstract
The ykkC family of bacterial riboswitches combines several widespread classes that have similar secondary structures and consensus motifs but control different genes in response to different cellular metabolites. Here we report the crystal structures of two distinct ykkC riboswitches specifically bound to their cognate ligands ppGpp, a second messenger involved in stress response, or PRPP, a precursor in purine biosynthesis. Both RNAs adopt similar structures and contain a conserved core previously observed in the guanidine-specific ykkC riboswitch. However, ppGpp and PRPP riboswitches uniquely employ an additional helical element that joins the ends of the ligand-sensing domains and creates a tunnel for direct and Mg2+-mediated binding of ligands. Mutational and footprinting experiments highlight the importance of conserved nucleotides forming the tunnel and long-distance contacts for ligand binding and genetic response. Our work provides new insights into the specificity of riboswitches and gives a unique opportunity for future studies of RNA evolution.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proc Natl Acad Sci U S A 2018; 115:6052-6057. [PMID: 29784782 PMCID: PMC6003355 DOI: 10.1073/pnas.1720406115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria and other organisms make extensive use of signaling molecules that are derived from ribonucleotides or their derivatives. Previously, five riboswitch classes had been discovered that sense the four RNA-derived signaling molecules: c-di-GMP, c-di-AMP, c-AMP-GMP, and ZTP. We now report the discovery and biochemical validation of bacterial riboswitches for the widespread alarmone guanosine tetraphosphate (ppGpp), which signals metabolic and physiological adaptations to starvation. These findings expand the number of natural partnerships between riboswitches and ribonucleotide-like signaling molecules, and provide RNA-based sensors for detecting ppGpp production in cells. Riboswitches are noncoding portions of certain mRNAs that bind metabolite, coenzyme, signaling molecule, or inorganic ion ligands and regulate gene expression. Most known riboswitches sense derivatives of RNA monomers. This bias in ligand chemical composition is consistent with the hypothesis that widespread riboswitch classes first emerged during the RNA World, which is proposed to have existed before proteins were present. Here we report the discovery and biochemical validation of a natural riboswitch class that selectively binds guanosine tetraphosphate (ppGpp), a widespread signaling molecule and bacterial “alarmone” derived from the ribonucleotide GTP. Riboswitches for ppGpp are predicted to regulate genes involved in branched-chain amino acid biosynthesis and transport, as well as other gene classes that previously had not been implicated to be part of its signaling network. This newfound riboswitch–alarmone partnership supports the hypothesis that prominent RNA World signaling pathways have been retained by modern cells to control key biological processes.
Collapse
|
31
|
Battaglia RA, Ke A. Guanidine-sensing riboswitches: How do they work and what do they regulate? WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1482. [DOI: 10.1002/wrna.1482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Robert A. Battaglia
- Department of Molecular Biology and Genetics; Cornell University; Ithaca New York
| | - Ailong Ke
- Department of Molecular Biology and Genetics; Cornell University; Ithaca New York
| |
Collapse
|
32
|
Battaglia RA, Ke A. Acting in tandem. eLife 2018; 7:36489. [PMID: 29683426 PMCID: PMC5912904 DOI: 10.7554/elife.36489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
RNA structures called tandem riboswitches allow bacteria to employ complex logical operations in response to nutrient starvation.
Collapse
Affiliation(s)
- Robert A Battaglia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
33
|
Sherlock ME, Sudarsan N, Stav S, Breaker RR. Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. eLife 2018; 7:e33908. [PMID: 29504937 PMCID: PMC5912903 DOI: 10.7554/elife.33908] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/04/2018] [Indexed: 12/28/2022] Open
Abstract
Gene control systems sometimes interpret multiple signals to set the expression levels of the genes they regulate. In rare instances, ligand-binding riboswitch aptamers form tandem arrangements to approximate the function of specific two-input Boolean logic gates. Here, we report the discovery of riboswitch aptamers for phosphoribosyl pyrophosphate (PRPP) that naturally exist either in singlet arrangements, or occur in tandem with guanine aptamers. Tandem guanine-PRPP aptamers can bind the target ligands, either independently or in combination, to approximate the function expected for an IMPLY Boolean logic gate to regulate transcription of messenger RNAs for de novo purine biosynthesis in bacteria. The existence of sophisticated all-RNA regulatory systems that sense two ancient ribonucleotide derivatives to control synthesis of RNA molecules supports the hypothesis that RNA World organisms could have managed a complex metabolic state without the assistance of protein regulatory factors.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Shira Stav
- Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - Ronald R Breaker
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteNew HavenUnited States
- Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| |
Collapse
|
34
|
Abstract
The small multidrug resistance (SMR) family of membrane proteins is prominent because of its rare dual topology architecture, simplicity, and small size. Its best studied member, EmrE, is an important model system in several fields related to membrane protein biology, from evolution to mechanism. But despite decades of work on these multidrug transporters, the native function of the SMR family has remained a mystery, and many highly similar SMR homologs do not transport drugs at all. Here we establish that representative SMR proteins, selected from each of the major clades in the phylogeny, function as guanidinium ion exporters. Drug-exporting SMRs are all clustered in a single minority clade. Using membrane transport experiments, we show that these guanidinium exporters, which we term Gdx, are very selective for guanidinium and strictly and stoichiometrically couple its export with the import of two protons. These findings draw important mechanistic distinctions with the notably promiscuous and weakly coupled drug exporters like EmrE.
Collapse
|
35
|
Knappenberger AJ, Reiss CW, Strobel SA. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. eLife 2018; 7:36381. [PMID: 29877798 PMCID: PMC6031431 DOI: 10.7554/elife.36381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.
Collapse
Affiliation(s)
- Andrew John Knappenberger
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Caroline Wetherington Reiss
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Scott A Strobel
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| |
Collapse
|
36
|
Huang L, Wang J, Wilson TJ, Lilley DMJ. Structure of the Guanidine III Riboswitch. Cell Chem Biol 2017; 24:1407-1415.e2. [PMID: 28988949 PMCID: PMC5696562 DOI: 10.1016/j.chembiol.2017.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Riboswitches are structural elements found in mRNA molecules that couple small-molecule binding to regulation of gene expression, usually by controlling transcription or translation. We have determined high-resolution crystal structures of the ykkC guanidine III riboswitch from Thermobifida fusca. The riboswitch forms a classic H-type pseudoknot that includes a triple helix that is continuous with a central core of conserved nucleotides. These form a left-handed helical ramp of inter-nucleotide interactions, generating the guanidinium cation binding site. The ligand is hydrogen bonded to the Hoogsteen edges of two guanine bases. The binding pocket has a side opening that can accommodate a small side chain, shown by structures with bound methylguanidine, aminoguanidine, ethylguanidine, and agmatine. Comparison of the new structure with those of the guanidine I and II riboswitches reveals that evolution generated three different structural solutions for guanidine binding and subsequent gene regulation, although with some common elements.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
37
|
Reiss CW, Strobel SA. Structural basis for ligand binding to the guanidine-II riboswitch. RNA (NEW YORK, N.Y.) 2017; 23:1338-1343. [PMID: 28600356 PMCID: PMC5558903 DOI: 10.1261/rna.061804.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 05/04/2023]
Abstract
The guanidine-II riboswitch, also known as mini-ykkC, is a conserved mRNA element with more than 800 examples in bacteria. It consists of two stem-loops capped by identical, conserved tetraloops that are separated by a linker region of variable length and sequence. Like the guanidine-I riboswitch, it controls the expression of guanidine carboxylases and SugE-like genes. The guanidine-II riboswitch specifically binds free guanidinium cations and functions as a translationally controlled on-switch. Here we report the structure of a P2 stem-loop from the Pseudomonas aeruginosa guanidine-II riboswitch aptamer bound to guanidine at 1.57 Å resolution. The hairpins dimerize via the conserved tetraloop, which also contains the binding pocket. Two guanidinium molecules bind near the dimerization interface, one in each tetraloop. The guanidinium cation is engaged in extensive hydrogen bonding to the RNA. Contacts include the Hoogsteen face of a guanine base and three nonbridging phosphate oxygens. Cation-π interactions and ionic interactions also stabilize ligand binding. The guanidine-II riboswitch utilizes the same recognition strategies as the guanidine-I riboswitch while adopting an entirely different and much smaller RNA fold.
Collapse
Affiliation(s)
- Caroline W Reiss
- Department of Molecular Biophysics and Biochemistry, Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| |
Collapse
|
38
|
McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA (NEW YORK, N.Y.) 2017; 23:995-1011. [PMID: 28396576 PMCID: PMC5473149 DOI: 10.1261/rna.061234.117] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 05/04/2023]
Abstract
Riboswitches are commonly used by bacteria to detect a variety of metabolites and ions to regulate gene expression. To date, nearly 40 different classes of riboswitches have been discovered, experimentally validated, and modeled at atomic resolution in complex with their cognate ligands. The research findings produced since the first riboswitch validation reports in 2002 reveal that these noncoding RNA domains exploit many different structural features to create binding pockets that are extremely selective for their target ligands. Some riboswitch classes are very common and are present in bacteria from nearly all lineages, whereas others are exceedingly rare and appear in only a few species whose DNA has been sequenced. Presented herein are the consensus sequences, structural models, and phylogenetic distributions for all validated riboswitch classes. Based on our findings, we predict that there are potentially many thousands of distinct bacterial riboswitch classes remaining to be discovered, but that the rarity of individual undiscovered classes will make it increasingly difficult to find additional examples of this RNA-based sensory and gene control mechanism.
Collapse
Affiliation(s)
- Phillip J McCown
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Keith A Corbino
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
39
|
Huang L, Wang J, Lilley DMJ. The Structure of the Guanidine-II Riboswitch. Cell Chem Biol 2017; 24:695-702.e2. [PMID: 28529131 PMCID: PMC5486947 DOI: 10.1016/j.chembiol.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 11/10/2022]
Abstract
The guanidine-II (mini-ykkC) riboswitch is the smallest of the guanidine-responsive riboswitches, comprising two stem loops of similar sequence. We have solved high-resolution crystal structures of both stem loops for the riboswitch from Gloeobacter violaceus. The stem loops have a strong propensity to dimerize by intimate loop-loop interaction. The dimerization creates specific binding pockets for two guanidine molecules, explaining their cooperative binding. Within the binding pockets the ligands are hydrogen bonded to a guanine at O6 and N7, and to successive backbone phosphates. Additionally they are each stacked upon a guanine nucleobase. One side of the pocket has an opening to the solvent, slightly lowering the specificity of ligand binding, and structures with bound methylguanidine, aminoguanidine, and agmatine show how this is possible.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
40
|
Jones CP, Ferré-D'Amaré AR. Long-Range Interactions in Riboswitch Control of Gene Expression. Annu Rev Biophys 2017; 46:455-481. [PMID: 28375729 DOI: 10.1146/annurev-biophys-070816-034042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Riboswitches are widespread RNA motifs that regulate gene expression in response to fluctuating metabolite concentrations. Known primarily from bacteria, riboswitches couple specific ligand binding and changes in RNA structure to mRNA expression in cis. Crystal structures of the ligand binding domains of most of the phylogenetically widespread classes of riboswitches, each specific to a particular metabolite or ion, are now available. Thus, the bound states-one end point-have been thoroughly characterized, but the unbound states have been more elusive. Consequently, it is less clear how the unbound, sensing riboswitch refolds into the ligand binding-induced output state. The ligand recognition mechanisms of riboswitches are diverse, but we find that they share a common structural strategy in positioning their binding sites at the point of the RNA three-dimensional fold where the residues farthest from one another in sequence meet. We review how riboswitch folds adhere to this fundamental strategy and propose future research directions for understanding and harnessing their ability to specifically control gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| |
Collapse
|
41
|
Breaker RR, Atilho RM, Malkowski SN, Nelson JW, Sherlock ME. The Biology of Free Guanidine As Revealed by Riboswitches. Biochemistry 2017; 56:345-347. [PMID: 28060483 DOI: 10.1021/acs.biochem.6b01269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, §Howard Hughes Medical Institute, and ∥Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Ruben M Atilho
- Department of Molecular, Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, §Howard Hughes Medical Institute, and ∥Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Sarah N Malkowski
- Department of Molecular, Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, §Howard Hughes Medical Institute, and ∥Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - James W Nelson
- Department of Molecular, Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, §Howard Hughes Medical Institute, and ∥Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Madeline E Sherlock
- Department of Molecular, Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, §Howard Hughes Medical Institute, and ∥Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|