1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Rogalska ME, Mancini E, Bonnal S, Gohr A, Dunyak BM, Arecco N, Smith PG, Vaillancourt FH, Valcárcel J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024; 386:551-560. [PMID: 39480945 DOI: 10.1126/science.adn8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
The spliceosome is the complex molecular machinery that sequentially assembles on eukaryotic messenger RNA precursors to remove introns (pre-mRNA splicing), a physiologically regulated process altered in numerous pathologies. We report transcriptome-wide analyses upon systematic knock down of 305 spliceosome components and regulators in human cancer cells and the reconstruction of functional splicing factor networks that govern different classes of alternative splicing decisions. The results disentangle intricate circuits of splicing factor cross-regulation, reveal that the precise architecture of late-assembling U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complexes regulates splice site pairing, and discover an unprecedented division of labor among protein components of U1 snRNP for regulating exon definition and alternative 5' splice site selection. Thus, we provide a resource to explore physiological and pathological mechanisms of splicing regulation.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Lin TC, Tsai CH, Shiau CK, Huang JH, Tsai HK. Predicting splicing patterns from the transcription factor binding sites in the promoter with deep learning. BMC Genomics 2024; 25:830. [PMID: 39227799 PMCID: PMC11373144 DOI: 10.1186/s12864-024-10667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the exon/intron regions are known, the relationship between promoter-bound transcription factors and the downstream alternative splicing largely remains unexplored. RESULTS In this study, we present computational approaches to unravel the regulatory relationship between promoter-bound transcription factor binding sites (TFBSs) and the splicing patterns. We curated a fine dataset that includes DNase I hypersensitive site sequencing and transcriptomes across fifteen human tissues from ENCODE. Specifically, we proposed different representations of TF binding context and splicing patterns to examine the associations between the promoter and downstream splicing events. While machine learning models demonstrated potential in predicting splicing patterns based on TFBS occupancies, the limitations in the generalization of predicting the splicing forms of singleton genes across diverse tissues was observed with carefully examination using different cross-validation methods. We further investigated the association between alterations in individual TFBS at promoters and shifts in exon splicing efficiency. Our results demonstrate that the convolutional neural network (CNN) models, trained on TF binding changes in the promoters, can predict the changes in splicing patterns. Furthermore, a systemic in silico substitutions analysis on the CNN models highlighted several potential splicing regulators. Notably, using empirical validation using K562 CTCFL shRNA knock-down data, we showed the significant role of CTCFL in splicing regulation. CONCLUSION In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing the regulation of downstream splicing patterns and provides insights for discovering alternative splicing regulations.
Collapse
Affiliation(s)
- Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Kai Shiau
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| |
Collapse
|
4
|
Yustis JC, Devoucoux M, Côté J. The Functional Relationship Between RNA Splicing and the Chromatin Landscape. J Mol Biol 2024; 436:168614. [PMID: 38762032 DOI: 10.1016/j.jmb.2024.168614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chromatin is a highly regulated and dynamic structure that has been shown to play an essential role in transcriptional and co-transcriptional regulation. In the context of RNA splicing, early evidence suggested a loose connection between the chromatin landscape and splicing. More recently, it has been shown that splicing occurs in a co-transcriptional manner, meaning that the splicing process occurs in the context of chromatin. Experimental and computational evidence have also shown that chromatin dynamics can influence the splicing process and vice versa. However, much of this evidence provides mainly correlative relationships between chromatin and splicing with just a few concrete examples providing defined molecular mechanisms by which these two processes are functionally related. Nevertheless, it is clear that chromatin and RNA splicing are tightly interconnected to one another. In this review, we highlight the current state of knowledge of the relationship between chromatin and splicing.
Collapse
Affiliation(s)
- Juan-Carlos Yustis
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Maëva Devoucoux
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada.
| |
Collapse
|
5
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Engal E, Sharma A, Aviel U, Taqatqa N, Juster S, Jaffe-Herman S, Bentata M, Geminder O, Gershon A, Lewis R, Kay G, Hecht M, Epsztejn-Litman S, Gotkine M, Mouly V, Eiges R, Salton M, Drier Y. DNMT3B splicing dysregulation mediated by SMCHD1 loss contributes to DUX4 overexpression and FSHD pathogenesis. SCIENCE ADVANCES 2024; 10:eadn7732. [PMID: 38809976 PMCID: PMC11135424 DOI: 10.1126/sciadv.adn7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is a noncanonical SMC protein and an epigenetic regulator. Mutations in SMCHD1 cause facioscapulohumeral muscular dystrophy (FSHD), by overexpressing DUX4 in muscle cells. Here, we demonstrate that SMCHD1 is a key regulator of alternative splicing in various cell types. We show how SMCHD1 loss causes splicing alterations of DNMT3B, which can lead to hypomethylation and DUX4 overexpression. Analyzing RNA sequencing data from muscle biopsies of patients with FSHD and Smchd1 knocked out cells, we found mis-splicing of hundreds of genes upon SMCHD1 loss. We conducted a high-throughput screen of splicing factors, revealing the involvement of the splicing factor RBM5 in the mis-splicing of DNMT3B. Subsequent RNA immunoprecipitation experiments confirmed that SMCHD1 is required for RBM5 recruitment. Last, we show that mis-splicing of DNMT3B leads to hypomethylation of the D4Z4 region and to DUX4 overexpression. These results suggest that DNMT3B mis-splicing due to SMCHD1 loss plays a major role in FSHD pathogenesis.
Collapse
Affiliation(s)
- Eden Engal
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Aveksha Sharma
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uria Aviel
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shiri Jaffe-Herman
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mercedes Bentata
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Gershon
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Reyut Lewis
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Vincent Mouly
- UPMC University Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne University,75252 Paris, France
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
7
|
Mohan N, Dashwood RH, Rajendran P. A-Z of Epigenetic Readers: Targeting Alternative Splicing and Histone Modification Variants in Cancer. Cancers (Basel) 2024; 16:1104. [PMID: 38539439 PMCID: PMC10968829 DOI: 10.3390/cancers16061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Baker M, Khosravi R, Salton M. Native RNA Immunoprecipitation (RIP) for Precise Detection and Quantification of Protein-Interacting RNA. Methods Mol Biol 2023; 2666:107-114. [PMID: 37166660 DOI: 10.1007/978-1-0716-3191-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Proteins with either RNA or DNA-binding motifs were shown to bind RNA. Immunoprecipitation of such proteins using antibodies and identification of the RNA-binding molecules is called RNA immunoprecipitation (RIP). The RNA precipitated with the studied protein can be detected by real-time polymerase chain reaction (PCR), microarray or sequencing. Here, we detail a method for native immunoprecipitation, without cross-linking, to isolate protein-RNA complexes followed by subsequent extraction and quantification of the co-purified RNA.
Collapse
Affiliation(s)
- Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami Khosravi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
10
|
HAT- and HDAC-Targeted Protein Acetylation in the Occurrence and Treatment of Epilepsy. Biomedicines 2022; 11:biomedicines11010088. [PMID: 36672596 PMCID: PMC9856006 DOI: 10.3390/biomedicines11010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.
Collapse
|
11
|
DAZAP1 overexpression promotes growth of HCC cell lines: a primary study using CEUS. Clin Transl Oncol 2022; 24:1168-1176. [PMID: 35091997 DOI: 10.1007/s12094-021-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common types of hepatic carcinoma. The overall prognosis is poor. DAZAP1, a regulator of alternative splicing (AS) events, may participate in tumor growth. METHODS We collected 105 HCC patients and tissue samples from the Department of Hepatological Surgery in the Second Affiliated Hospital of Qiqihar Medical University. TCGA datasets were downloaded and operated using the R project. DAZAP1 expressions were examined by quantitative RT-PCR and western blotting. CCK8 assay was used to investigate the cell proliferation, and transwell assay was employed to examine the ability of migration and invasion in vitro. Contrast-enhanced ultrasound (CEUS) was used to evaluate images and parameters of the tumor. RESULTS DAZAP1 is highly expressed in the tissue samples of HCC. The peak intensity (PI) and area under the curve (AUC) of the tumor is higher than that of liver parenchyma, and correlated with high DAZAP1 expression. Parameters of CEUS in the tumor are correlated with TNM stage, tumor size, and vascularity. High DAZAP1 expression correlates with a shorter survival time and advanced histologic grade (G3-G4). Bioinformatical analysis revealed that downregulation of DAZAP1 identified differentiated expressed genes (DEGs) involved in the tumor growth process. CONCLUSIONS DAZAP1 is highly expressed in hepatic carcinoma and related to the blood flow, and high DAZAP1 expression predicts poor prognosis. DAZAP1 may promote liver carcinoma cell proliferation, migration, and invasion of HEPG2 cells. CEUS parameters are related to the high DAZAP1 expression, and will help to differentiate the HCC tumor.
Collapse
|
12
|
Dong J, He J, Zhang Z, Zhang W, Li Y, Li D, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Yun M, Shen L, Yin L, Tang D, Dai Y. Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics. J Proteomics 2022; 262:104598. [PMID: 35489685 DOI: 10.1016/j.jprot.2022.104598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Jingjing Dong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zeyu Zhang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Yixi Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Hongliang Xie
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wenxin Zuo
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Jianming Tang
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China
| | - Manhua Yun
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lingjun Shen
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China.
| |
Collapse
|
13
|
Segelle A, Núñez-Álvarez Y, Oldfield AJ, Webb KM, Voigt P, Luco RF. Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing. Cell Rep 2022; 38:110357. [PMID: 35172149 DOI: 10.1016/j.celrep.2022.110357] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Histone modifications impact final splicing decisions. However, there is little evidence of the driving role of these marks in inducing cell-specific splicing changes. Using CRISPR epigenome editing tools, we show in an epithelial-to-mesenchymal cell reprogramming system (epithelial-to-mesenchymal transition [EMT]) that a single change in H3K27ac or H3K27me3 levels right at the alternatively spliced exon is necessary and sufficient to induce a splicing change capable of recapitulating important aspects of EMT, such as cell motility and invasiveness. This histone-mark-dependent splicing effect is highly dynamic and mediated by direct recruitment of the splicing regulator PTB to its RNA binding sites. These results support a role for H3K27 marks in inducing a change in the cell's phenotype via regulation of alternative splicing. We propose the dynamic nature of chromatin as a rapid and reversible mechanism to coordinate the splicing response to cell-extrinsic cues, such as induction of EMT.
Collapse
Affiliation(s)
- Alexandre Segelle
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Yaiza Núñez-Álvarez
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Andrew J Oldfield
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Reini F Luco
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.
| |
Collapse
|
14
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 399] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
15
|
Paz I, Argoetti A, Cohen N, Even N, Mandel-Gutfreund Y. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment. Methods Mol Biol 2022; 2404:53-65. [PMID: 34694603 DOI: 10.1007/978-1-0716-1851-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RNA-binding proteins (RBPs) play a key role in post-transcriptional regulation via binding to coding and non-coding RNAs. Recent development in experimental technologies, aimed to identify the targets of RBPs, has significantly broadened our knowledge on protein-RNA interactions. However, for many RBPs in many organisms and cell types, experimental RNA-binding data is not available. In this chapter we describe a computational approach, named RBPmap, available as a web service via http://rbpmap.technion.ac.il/ and as a stand-alone version for download. RBPmap was designed for mapping and predicting the binding sites of any RBP within a nucleic acid sequence, given the availability of an experimentally defined binding motif of the RBP. The algorithm searches for a sub-sequence that significantly matches the RBP motif, considering the clustering propensity of other weak matches within the motif environment. Here, we present different applications of RBPmap for discovering the involvement of RBPs and their targets in a variety of cellular processes, in health and disease states. Finally, we demonstrate the performance of RBPmap in predicting the binding targets of RBPs in large-scale RNA-binding data, reinforcing the strength of the tool in distinguishing cognate binding sites from weak motifs.
Collapse
Affiliation(s)
- Inbal Paz
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Noa Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Computer Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Niv Even
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Computer Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Computer Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Larizza L, Alari V, Calzari L, Russo S. Interconnected Gene Networks Underpin the Clinical Overlap of HNRNPH1-Related and Rubinstein-Taybi Intellectual Disability Syndromes. Front Neurosci 2021; 15:745684. [PMID: 34759793 PMCID: PMC8573106 DOI: 10.3389/fnins.2021.745684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lidia Larizza
- Laboratory of Medical Cytogenetics and Human Molecular Genetics, Biomedical & Technologies Research Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Alari
- Laboratory of Medical Cytogenetics and Human Molecular Genetics, Biomedical & Technologies Research Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Laboratory of Medical Cytogenetics and Human Molecular Genetics, Biomedical & Technologies Research Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Human Molecular Genetics, Biomedical & Technologies Research Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
17
|
Zhou Y, Zhu G, Wang Y, He Z, Zhou W. A Comparative Transcriptional Landscape of Two Castor Cultivars Obtained by Single-Molecule Sequencing Comparative Analysis. Front Genet 2021; 12:749340. [PMID: 34733316 PMCID: PMC8558441 DOI: 10.3389/fgene.2021.749340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Castor (Ricinus communis L.) is an important non-edible oilseed crop. Lm-type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in their inflorescence structures and leaf shapes. To better understand the mechanisms underlying these differences at the molecular level, we performed a comparative transcriptional analysis. Materials and Methods: Full-length transcriptome sequencing and short-read RNA sequencing were employed. Results: A total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm-type female strains and normal amphiprotic strains, respectively. In Lm-type female strains and normal amphiprotic strains, 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed a great variety of gene expression of common and unique transcription factors between the two cultivars. Meanwhile, a functional analysis of the isoforms was conducted. The full-length sequences were used as a reference genome, and a short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis. Conclusion: The results revealed considerable differences and expression diversity between the two cultivars, well beyond what was reported in previous studies and likely reflecting the differences in architecture between these two cultivars.
Collapse
Affiliation(s)
- Yaxing Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Guoli Zhu
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Yun Wang
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Zhibiao He
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Wei Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
18
|
Baker M, Petasny M, Taqatqa N, Bentata M, Kay G, Engal E, Nevo Y, Siam A, Dahan S, Salton M. KDM3A regulates alternative splicing of cell-cycle genes following DNA damage. RNA (NEW YORK, N.Y.) 2021; 27:1353-1362. [PMID: 34321328 PMCID: PMC8522690 DOI: 10.1261/rna.078796.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Mai Baker
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mayra Petasny
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eden Engal
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ahmad Siam
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
19
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Dahan S, Sharma A, Cohen K, Baker M, Taqatqa N, Bentata M, Engal E, Siam A, Kay G, Drier Y, Elias S, Salton M. VEGFA's distal enhancer regulates its alternative splicing in CML. NAR Cancer 2021; 3:zcab029. [PMID: 34316716 PMCID: PMC8276762 DOI: 10.1093/narcan/zcab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
Enhancer demethylation in leukemia has been shown to lead to overexpression of genes which promote cancer characteristics. The vascular endothelial growth factor A (VEGFA) enhancer, located 157 Kb downstream of its promoter, is demethylated in chronic myeloid leukemia (CML). VEGFA has several alternative splicing isoforms with different roles in cancer progression. Since transcription and splicing are coupled, we wondered whether VEGFA enhancer activity can also regulate the gene's alternative splicing to contribute to the pathology of CML. Our results show that mutating the VEGFA +157 enhancer promotes exclusion of exons 6a and 7 and activating the enhancer by tethering a chromatin activator has the opposite effect. In line with these results, CML patients present with high expression of +157 eRNA and inclusion of VEGFA exons 6a and 7. In addition, our results show that the positive regulator of RNAPII transcription elongation, CCNT2, binds VEGFA's promoter and enhancer, and its silencing promotes exclusion of exons 6a and 7 as it slows down RNAPII elongation rate. Thus our results suggest that VEGFA's +157 enhancer regulates its alternative splicing by increasing RNAPII elongation rate via CCNT2. Our work demonstrates for the first time a connection between an endogenous enhancer and alternative splicing regulation of its target gene.
Collapse
Affiliation(s)
- Sara Dahan
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Aveksha Sharma
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Klil Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ahmad Siam
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shlomo Elias
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Bordonaro M. Hypothesis: Sam68 and Pygo2 mediate cell type-specific effects of the modulation of CBP-Wnt and p300-Wnt activities in Colorectal Cancer Cells. J Cancer 2021; 12:5046-5052. [PMID: 34234873 PMCID: PMC8247382 DOI: 10.7150/jca.59726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
The preventive activity of dietary fiber against colorectal cancer (CRC) may be in part mediated by the fermentation product of fiber, butyrate, a histone deacetylase inhibitor (HDACi) that induces CRC cell growth arrest and apoptosis. This action of butyrate, and other HDACis, is in part due to the hyperactivation of the deregulated Wnt activity found in the relevant CRC cell lines. The histone acetylases CBP and p300 interact with beta-catenin; and the relative levels of CBP-Wnt vs. p300-Wnt activity influences CRC cell physiology. It has previously been observed that there are cell type-specific differences in how cotreatment with butyrate and ICG-001, an agent that blocks CBP-Wnt activity allowing for p300-Wnt activity, affects CRC cell physiology. These differences may have clinical significance in dealing with treatment of CRC patients with ICG-001-like agents. Sam68 is a factor differentially expressed in cancer cells, with higher expression in cancer cell lines that have cancer stem cell (CSC)-like properties. Sam68 expression sensitizes cancer cells to ICG-001 treatment, as ICG-001 enhances nuclear localization of Sam68, where binding between Sam68 and CBP diminishes CBP-beta-catenin binding and thus CBP-Wnt activity. Pygo2 is a chromatin effector involved with Wnt signaling that is differentially acetylated by CBP and p300; thus CBP-mediated acetylation localized Pygo2 to the nucleus where it functions in transcriptional activation, while p300-mediated acetylation localizes Pygo2 to the cytoplasm. This paper proposes the hypothesis that Sam68 and Pygo2 are responsible for cell type-specific response of CRC cell lines cotreated with ICG-001 and butyrate as well as other HDACis. Further, experiments are proposed to evaluate this hypothesis and consider possible expected results that could be obtained from such studies.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
22
|
Waddell A, Mahmud I, Ding H, Huo Z, Liao D. Pharmacological Inhibition of CBP/p300 Blocks Estrogen Receptor Alpha (ERα) Function through Suppressing Enhancer H3K27 Acetylation in Luminal Breast Cancer. Cancers (Basel) 2021; 13:2799. [PMID: 34199844 PMCID: PMC8200112 DOI: 10.3390/cancers13112799] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor alpha (ER) is the oncogenic driver for ER+ breast cancer (BC). ER antagonists are the standard-of-care treatment for ER+ BC; however, primary and acquired resistance to these agents is common. CBP and p300 are critical ER co-activators and their acetyltransferase (KAT) domain and acetyl-lysine binding bromodomain (BD) represent tractable drug targets, but whether CBP/p300 inhibitors can effectively suppress ER signaling remains unclear. We report that the CBP/p300 KAT inhibitor A-485 and the BD inhibitor GNE-049 downregulate ER, attenuate estrogen-induced c-Myc and Cyclin D1 expression, and inhibit growth of ER+ BC cells through inducing senescence. Microarray and RNA-seq analysis demonstrates that A-485 or EP300 (encoding p300) knockdown globally inhibits expression of estrogen-regulated genes, confirming that ER inhibition is an on-target effect of A-485. Using ChIP-seq, we report that A-485 suppresses H3K27 acetylation in the enhancers of ER target genes (including MYC and CCND1) and this correlates with their decreased expression, providing a mechanism underlying how CBP/p300 inhibition downregulates ER gene network. Together, our results provide a preclinical proof-of-concept that CBP/p300 represent promising therapeutic targets in ER+ BC for inhibiting ER signaling.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Iqbal Mahmud
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| | - Haocheng Ding
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Zhiguang Huo
- Departments of Biostatistics, University Florida College of Medicine, 2004 Mowry Road, Gainesville, FL 32610, USA; (H.D.); (Z.H.)
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, University Florida College of Medicine, UF Health Cancer Center, 2033 Mowry Road, Gainesville, FL 32610, USA; (A.W.); (I.M.)
| |
Collapse
|
23
|
Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S, Chattopadhyay S. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab 2021; 9:16. [PMID: 33863392 PMCID: PMC8052847 DOI: 10.1186/s40170-021-00252-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Highly proliferating cancer cells exhibit the Warburg effect by regulation of PKM alternative splicing and promoting the expression of PKM2. Majority of the alternative splicing events are known to occur in the nuclear matrix where various MARBPs actively participate in the alternative splicing events. SMAR1, being a MARBP and an important tumor suppressor, is known to regulate the splicing of various cancer-associated genes. This study focuses on the regulation of PKM alternative splicing and inhibition of the Warburg effect by SMAR1. METHODS Immunohistochemistry was performed in breast cancer patient samples to establish the correlation between SMAR1 and PKM isoform expression. Further, expression of PKM isoforms upon modulation in SMAR1 expression in breast cancer cell lines was quantified by qRT-PCR and western blot. The acetylation status of PTBP1 was estimated by immunoprecipitation along with its enrichment on PKM pre-mRNA by CLIP in SMAR1 knockdown conditions. The role of SMAR1 in tumor metabolism and tumorigenesis was explored by in vitro enzymatic assays and functional assays upon SMAR1 knockdown. Besides, in vivo tumor formation by injecting adeno-SMAR1-transduced MDA-MB-231 cells in NOD/SCID mice was performed. RESULTS The expression profile of SMAR1 and PKM isoforms in breast cancer patients revealed that SMAR1 has an inverse correlation with PKM2 and a positive correlation with PKM1. Further quantitative PKM isoform expression upon modulation in SMAR1 expression also reflects that SMAR1 promotes the expression of PKM1 over tumorigenic isoform PKM2. SMAR1 deacetylates PTBP1 via recruitment of HDAC6 resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. SMAR1 inhibits the Warburg effect, tumorigenic potential of cancer cells, and in vivo tumor generation in a PKM2-dependent manner. CONCLUSIONS SMAR1 regulates PKM alternative splicing by causing HDAC6-dependent deacetylation of PTBP1, resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. Additionally, SMAR1 suppresses glucose utilization and lactate production via repression of PKM2 expression. This suggests that tumor suppressor SMAR1 inhibits tumor cell metabolism and tumorigenic properties of cancer cells via regulation of PKM alternative splicing.
Collapse
Affiliation(s)
| | | | - Richa Pant
- National Centre for Cell Science, Pune, 411007, India
| | | | | | | | - Smriti Singh
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Gopal C Kundu
- National Centre for Cell Science, Pune, 411007, India.,Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Sanjeev Shukla
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, 411007, India. .,Birla Institute of Technology and Science, Pilani - K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
24
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
25
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Chew GL, Bleakley M, Bradley RK, Malik HS, Henikoff S, Molaro A, Sarthy J. Short H2A histone variants are expressed in cancer. Nat Commun 2021; 12:490. [PMID: 33473122 PMCID: PMC7817690 DOI: 10.1038/s41467-020-20707-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of "ready-made" oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.
Collapse
Affiliation(s)
- Guo-Liang Chew
- The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Antoine Molaro
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Genetics, Reproduction and Development (GReD) Institute, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Jay Sarthy
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
27
|
Bentata M, Morgenstern G, Nevo Y, Kay G, Granit Mizrahi A, Temper M, Maimon O, Monas L, Basheer R, Ben-Hur A, Peretz T, Salton M. Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes (Basel) 2020; 11:genes11080880. [PMID: 32756364 PMCID: PMC7463790 DOI: 10.3390/genes11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.
Collapse
Affiliation(s)
- Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Guy Morgenstern
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Avital Granit Mizrahi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Ofra Maimon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Liza Monas
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Reham Basheer
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
- Correspondence:
| |
Collapse
|
28
|
Hu C, Wang Y, Liu C, Shen R, Chen B, Sun K, Rao H, Ye L, Ye J, Tian S. Systematic Profiling of Alternative Splicing for Sarcoma Patients Reveals Novel Prognostic Biomarkers Associated with Tumor Microenvironment and Immune Cells. Med Sci Monit 2020; 26:e924126. [PMID: 32683393 PMCID: PMC7388651 DOI: 10.12659/msm.924126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Alternative splicing (AS) events is a novel biomarker of tumor prognosis, but the role of AS events in sarcoma patients remains unclear. Material/Methods RNA-seq and clinicopathologic data of the sarcoma cohort were extracted from the TCGA database and data on AS events were downloaded from the TCGASpliceSeq database. Univariate Cox analysis, LASSO regression analysis, and multivariate Cox analysis were performed to determine the overall survival (OS)- and disease-free survival (DFS)-related AS events. Two nomograms were developed based on the independent variables, and subgroup analysis was performed. The area under the curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the nomograms. Then, we used the CIBERSORT and ESTIMATE package to determine the immune cell proportion and tumor microenvironment (TME) score, respectively. The associations between AS events-based clusters and TME and immune cells were studied. Results We identified 1945 and 1831 AS events as OS- and DFS-related AS events, respectively. Two nomograms based on the AS events and clinical data were established and the AUCs of nomograms ranged from 0.807 to 0.894. The calibration curve and DCA showed excellent performance of nomograms. In addition, the results indicated the distinct relationships between AS events-based clusters and OS, DFS, immune score, stromal score, and 10 immune cells. Conclusions Our study indicated that AS events are novel prognostic biomarkers for sarcoma patients that may be associated with the TME and immune cells.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yuanhe Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Rui Shen
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bo Chen
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Kang Sun
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Huili Rao
- Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Lin Ye
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jianjun Ye
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Shaoqi Tian
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
29
|
Klein Y, Fleissig O, Polak D, Barenholz Y, Mandelboim O, Chaushu S. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci Rep 2020; 10:8172. [PMID: 32424121 PMCID: PMC7235241 DOI: 10.1038/s41598-020-65089-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 02/04/2023] Open
Abstract
Orthodontic tooth movement (OTM) is a “sterile” inflammatory process. The present study aimed to reveal the underlying biological mechanisms, by studying the force associated-gene expression changes, in a time-dependent manner. Ni-Ti springs were set to move the upper 1st-molar in C57BL/6 mice. OTM was measured by μCT. Total-RNA was extracted from tissue blocks at 1,3,7 and 14-days post force application, and from two control groups: naïve and inactivated spring. Gene-expression profiles were generated by next-generation-RNA-sequencing. Gene Set Enrichment Analysis, K-means algorithm and Ingenuity pathway analysis were used for data interpretation. Genes of interest were validated with qRT-PCR. A total of 3075 differentially expressed genes (DEGs) were identified, with the greatest number at day 3. Two distinct clusters patterns were recognized: those in which DEGs peaked in the first days and declined thereafter (tissue degradation, phagocytosis, leukocyte extravasation, innate and adaptive immune system responses), and those in which DEGs were initially down-regulated and increased at day 14 (cell proliferation and migration, cytoskeletal rearrangement, tissue homeostasis, angiogenesis). The uncovering of novel innate and adaptive immune processes in OTM led us to propose a new term “Immunorthodontics”. This genomic data can serve as a platform for OTM modulation future approaches.
Collapse
Affiliation(s)
- Yehuda Klein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Omer Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel. .,Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.
| | - David Polak
- Department of Periodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Mitra M, Lee HN, Coller HA. Splicing Busts a Move: Isoform Switching Regulates Migration. Trends Cell Biol 2020; 30:74-85. [PMID: 31810769 PMCID: PMC8219349 DOI: 10.1016/j.tcb.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ha Neul Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:91. [PMID: 32140165 PMCID: PMC7042379 DOI: 10.3389/fpls.2020.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.
Collapse
|