1
|
Li X, Mills WT, Jin DS, Meffert MK. Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing. CELL REPORTS METHODS 2024; 4:100836. [PMID: 39127045 PMCID: PMC11384083 DOI: 10.1016/j.crmeth.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel S Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Ressel S, Kumar S, Bermúdez-Barrientos JR, Gordon K, Lane J, Wu J, Abreu-Goodger C, Schwarze J, Buck A. RNA-RNA interactions between respiratory syncytial virus and miR-26 and miR-27 are associated with regulation of cell cycle and antiviral immunity. Nucleic Acids Res 2024; 52:4872-4888. [PMID: 38412296 PMCID: PMC11109944 DOI: 10.1093/nar/gkae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sujai Kumar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Katrina Gordon
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Julia Lane
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jin Wu
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Eadara S, Li X, Eiss EA, Meffert MK. Computational Analysis Tutorial for Chimeric Small Noncoding RNA: Target RNA Sequencing Libraries. J Vis Exp 2023:10.3791/65779. [PMID: 38108375 PMCID: PMC11423256 DOI: 10.3791/65779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
An understanding of the in vivo gene regulatory interactions of small noncoding RNAs (sncRNAs), such as microRNAs (miRNAs), with their target RNAs has been advanced in recent years by biochemical approaches which use cross-linking followed by ligation to capture sncRNA:target RNA interactions through the formation of chimeric RNAs and subsequent sequencing libraries. While datasets from chimeric RNA sequencing provide genome-wide and substantially less ambiguous input than miRNA prediction software, distilling this data into meaningful and actionable information requires additional analyses and may dissuade investigators lacking a computational background. This report provides a tutorial to support entry-level computational biologists in installing and applying a recent open-source software tool: Small Chimeric RNA Analysis Pipeline (SCRAP). Platform requirements, updates, and an explanation of pipeline steps and manipulation of key user-input variables is provided. Reducing a barrier for biologists to gain insights from chimeric RNA sequencing approaches has the potential to springboard discovery-based investigations of regulatory sncRNA:target RNA interactions in multiple biological contexts.
Collapse
Affiliation(s)
- Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine
| | - Emily A Eiss
- Department of Biological Chemistry, Johns Hopkins University School of Medicine
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine;
| |
Collapse
|
5
|
Wang J, Fu Y, Huang W, Biswas R, Banerjee A, Broussard JA, Zhao Z, Wang D, Bjerke G, Raghavan S, Yan J, Green KJ, Yi R. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc Natl Acad Sci U S A 2023; 120:e2220635120. [PMID: 37216502 PMCID: PMC10235966 DOI: 10.1073/pnas.2220635120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuheng Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Wenmao Huang
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
| | - Avinanda Banerjee
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Glen Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
6
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
7
|
Thomas KT, Vermare A, Egleston SO, Wang YD, Mishra A, Lin T, Peng J, Zakharenko SS. MicroRNA 3' ends shorten during adolescent brain maturation. Front Mol Neurosci 2023; 16:1168695. [PMID: 37122627 PMCID: PMC10140418 DOI: 10.3389/fnmol.2023.1168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics remain poorly understood during adolescent and early adult brain maturation, when symptoms often first appear. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early-, mid-, and late-adolescent and adult mice. Furthermore, we use quantitative proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects. We found that ~25% of miRNAs' 3' ends shorten with age due to increased 3' trimming and decreased U tailing. Particularly, shorter but functionally competent isoforms (isomiRs) of miR-338-3p increase up to 10-fold during adolescence and only in brain. MiRNAs that undergo 3' shortening exhibit stronger negative correlations with targets that decrease with age and stronger positive correlations with targets that increase with age, than miRNAs with stable 3' ends. Increased 3' shortening with age was also observed in available mouse and human miRNA-seq data sets, and stronger correlations between miRNAs that undergo shortening and their mRNA targets were observed in two of the three available data sets. We conclude that age-associated miRNA 3' shortening is a well-conserved feature of postnatal brain maturation.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anaïs Vermare
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Suzannah O. Egleston
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Stanislav S. Zakharenko,
| |
Collapse
|
8
|
Mills WT, Eadara S, Jaffe AE, Meffert MK. SCRAP: a bioinformatic pipeline for the analysis of small chimeric RNA-seq data. RNA (NEW YORK, N.Y.) 2022; 29:rna.079240.122. [PMID: 36316086 PMCID: PMC9808574 DOI: 10.1261/rna.079240.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (sncRNAs) that function in post-transcriptional gene regulation through imperfect base pairing with mRNA targets which results in inhibition of translation and typically destabilization of bound transcripts. Sequence-based algorithms historically used to predict miRNA targets face inherent challenges in reliably reflecting in vivo interactions. Recent strategies have directly profiled miRNA-target interactions by crosslinking and ligation of sncRNAs to their targets within the RNA-induced silencing complex (RISC), followed by high throughput sequencing of the chimeric sncRNA:target RNAs. Despite the strength of these direct profiling approaches, standardized pipelines for effectively analyzing the resulting chimeric sncRNA:target RNA sequencing data are not readily available. Here we present SCRAP, a robust Small Chimeric RNA Analysis Pipeline for the bioinformatic processing of chimeric sncRNA:target RNA sequencing data. SCRAP consists of two parts, each of which are specifically optimized for the distinctive characteristics of chimeric small RNA sequencing reads: first, read processing and alignment and second, peak calling and annotation. We apply SCRAP to benchmark chimeric sncRNA:target RNA sequencing datasets generated by distinct molecular approaches, and compare SCRAP to existing chimeric RNA analysis pipelines. SCRAP has minimal hardware requirements, is cross-platform, and contains extensive annotation to broaden accessibility for processing small chimeric RNA sequencing data and enable insights about the targets of small non-coding RNAs in regulating diverse biological systems.
Collapse
|
9
|
Dogan B, Gumusoglu E, Ulgen E, Sezerman OU, Gunel T. Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer. Genomics Inform 2022; 20:e20. [PMID: 35794700 PMCID: PMC9299562 DOI: 10.5808/gi.21067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies have focused on the early detection of ovarian cancer (OC) using tumor materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and signaling pathways are still unknown. This study aims to reliably perform functional analysis of previously validated circulating miRNAs' target genes by using pathfindR. Also, overall survival and pathological stage analyses were evaluated with miRNAs' target genes which are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsalet7d-3p) having a diagnostic value in OC patients' sera, with high-throughput techniques. The predicted target genes of these miRNAs were retrieved from the miRDB database (v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by pathfindR using the target genes. Enrichment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch signaling pathway were the top three pathways with the lowest p-values (p < 0.001). Ninety-three common genes were found to be differentially expressed (p < 0.05) in the datasets. No significant genes were found to be significant in the analysis of overall survival analyses, but 24 genes were found to be significant with pathological stages analysis (p < 0.05). The findings of our study provide in-silico evidence that validated circulating miRNAs' target genes and enriched pathways are related to OC and have potential roles in theranostics applications. Further experimental investigations are required to validate our results which will ultimately provide a new perspective for translational applications in OC management.
Collapse
Affiliation(s)
- Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey.,Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa 16059, Turkey
| | - Ece Gumusoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ege Ulgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34750, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34750, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| |
Collapse
|
10
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
11
|
Watson KL, Yi R, Moorehead RA. Transgenic overexpression of the miR-200b/200a/429 cluster inhibits mammary tumor initiation. Transl Oncol 2021; 14:101228. [PMID: 34562686 PMCID: PMC8473771 DOI: 10.1016/j.tranon.2021.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.
Collapse
Affiliation(s)
- Katrina L Watson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Rui Yi
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
12
|
Johansson K, Woodruff PG, Ansel KM. Regulation of airway immunity by epithelial miRNAs. Immunol Rev 2021; 304:141-153. [PMID: 34549450 PMCID: PMC9135676 DOI: 10.1111/imr.13028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The airway epithelium is essential to protect the host from inhaled pathogens and particles. It maintains immune homeostasis and mediates tissue repair after injury. Inflammatory diseases of the airways are associated with failure of epithelial functions, including loss of barrier integrity that results in increased tissue permeability and immune activation; excessive mucus secretion and impaired mucociliary clearance that leads to airflow obstruction and microbial overgrowth; and dysregulation of cellular signals that promotes inflammation and alters tissue structure and airway reactivity. MicroRNAs play crucial roles in mounting appropriate cellular responses to environmental stimuli and preventing disease, using a common machinery and mechanism to regulate gene expression in epithelial cells, immune cells of hematopoietic origin, and other cellular components of the airways. Respiratory diseases are accompanied by dramatic changes in epithelial miRNA expression that drive persistent immune dysregulation. In this review, we discuss responses of the epithelium that promote airway immunopathology, with a focus on miRNAs that contribute to the breakdown of essential epithelial functions. We emphasize the emerging role of miRNAs in regulation of epithelial responses in respiratory health and their value as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Prescott G. Woodruff
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Wen B, Zhu R, Jin H, Zhao K. Differential expression and role of miR-200 family in multiple tumors. Anal Biochem 2021; 626:114243. [PMID: 33964251 DOI: 10.1016/j.ab.2021.114243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 01/02/2023]
Abstract
microRNA (miRNA) can maintain the homeostasis of the human by participating in the regulation of cell proliferation, apoptosis, differentiation, and metabolism. During the entire stage of tumorigenesis, miRNA can maintain the heterogeneity of cancer stem cells by regulating the formation and metastasis of the tumor, which leads to chemotherapy resistance. miR-200 family consists of five members, which can regulate the proliferation, invasion, and migration of cancer cells by inhibiting the transcription of downstream genes (including zinc finger E-box binding homeobox 1 and 2, E-cadherin, N-cadherin, transforming growth factor-β, and cancer stem cell related-proteins). Meanwhile, Long non-coding RNA can bind to miR-200s to regulate the proliferation and apoptosis of cancer cells. Besides, the expression of the miR-200 family can affect the mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Rong Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
14
|
Siddiqui S, Johansson K, Joo A, Bonser LR, Koh KD, Le Tonqueze O, Bolourchi S, Bautista RA, Zlock L, Roth TL, Marson A, Bhakta NR, Ansel KM, Finkbeiner WE, Erle DJ, Woodruff PG. Epithelial miR-141 regulates IL-13-induced airway mucus production. JCI Insight 2021; 6:139019. [PMID: 33682796 PMCID: PMC8021117 DOI: 10.1172/jci.insight.139019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
IL-13-induced goblet cell metaplasia contributes to airway remodeling and pathological mucus hypersecretion in asthma. miRNAs are potent modulators of cellular responses, but their role in mucus regulation is largely unexplored. We hypothesized that airway epithelial miRNAs play roles in IL-13-induced mucus regulation. miR-141 is highly expressed in human and mouse airway epithelium, is altered in bronchial brushings from asthmatic subjects at baseline, and is induced shortly after airway allergen exposure. We established a CRISPR/Cas9-based protocol to target miR-141 in primary human bronchial epithelial cells that were differentiated at air-liquid-interface, and goblet cell hyperplasia was induced by IL-13 stimulation. miR-141 disruption resulted in decreased goblet cell frequency, intracellular MUC5AC, and total secreted mucus. These effects correlated with a reduction in a goblet cell gene expression signature and enrichment of a basal cell gene expression signature defined by single cell RNA sequencing. Furthermore, intranasal administration of a sequence-specific mmu-miR-141-3p inhibitor in mice decreased Aspergillus-induced secreted mucus and mucus-producing cells in the lung and reduced airway hyperresponsiveness without affecting cellular inflammation. In conclusion, we have identified a miRNA that regulates pathological airway mucus production and is amenable to therapeutic manipulation through an inhaled route.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | - Kristina Johansson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
- Department of Microbiology and Immunology
| | - Alex Joo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | | | - Kyung Duk Koh
- Lung Biology Center
- Cardiovascular Research Institute
| | | | - Samaneh Bolourchi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | - Rodriel A. Bautista
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | | | - Theodore L. Roth
- Department of Microbiology and Immunology
- Biomedical Sciences Graduate Program, and
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, Division of Infectious Diseases, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Nirav R. Bhakta
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center
- Department of Microbiology and Immunology
| | | | - David J. Erle
- Lung Biology Center
- Cardiovascular Research Institute
| | - Prescott G. Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
- Cardiovascular Research Institute
| |
Collapse
|
15
|
Unraveling the susceptibility of paracoccidioidomycosis: Insights towards the pathogen-immune interplay and immunogenetics. INFECTION GENETICS AND EVOLUTION 2020; 86:104586. [PMID: 33039601 DOI: 10.1016/j.meegid.2020.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis caused by Paracoccidioides spp. This disease comprises three clinical forms: symptomatic acute and chronic forms (PCM disease) and PCM infection, a latent form without clinical symptoms. PCM disease differs markedly according to severity, clinical manifestations, and host immune response. Fungal virulence factors and adhesion molecules are determinants for entry, latency, immune escape and invasion, and dissemination in the host. Neutrophils and macrophages play a paramount role in first-line defense against the fungus through the recognition of antigens by pattern recognition receptors (PRRs), activating their microbicidal machinery. Furthermore, the clinical outcome of the PCM is strongly associated with the variability of cytokines and immunoglobulins produced by T and B cells. While the mechanisms that mediate susceptibility or resistance to infection are dictated by the immune system, some genetic factors may alter gene expression and its final products and, hence, modulate how the organism responds to infection and injury. This review outlines the main findings relative to this topic, addressing the complexity of the immune response triggered by Paracoccidioides spp. infection from preclinical investigations to studies in humans. Here, we focus on mechanisms of fungal pathogenesis, the patterns of innate and adaptive immunity, and the genetic and molecular basis related to immune response and susceptibility to the development of the PCM and its clinical forms. Immunogenetic features such as HLA system, cytokines/cytokines receptors genes and other immune-related genes, and miRNAs are likewise discussed. Finally, we point out the occurrence of PCM in patients with primary immunodeficiencies and call attention to the research gaps and challenges faced by the PCM field.
Collapse
|
16
|
Fan MJ, He PJ, Lin XY, Yang CR, Li CZ, Xing LG. MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J Med Sci 2020; 36:965-972. [PMID: 32757457 DOI: 10.1002/kjm2.12277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) seriously threatens the health of women. Radiation therapy (RT) is the major treatment for CC. However, the recurrent CC can acquire resistance to RT. Thus, it is necessary to find a new method for reversing RT resistance in CC. It has been reported that miR-324-5p can suppress the progression of multiple cancers. However, whether it can reverse resistance to RT in CC remains unclear. qRT-PCR and Western blotting were used to detect gene and protein expression in CC cells, respectively. Cell proliferation was tested by CCK-8 assay and colony formation assay. In addition, cell apoptosis was detected by flow cytometry. Transwell assays were performed to detect cell migration. Dual luciferase reporter assay and TargetScan were used to explore the targets of microRNA-324-5p (miR-324-5p). MiR-324-5p was downregulated in CC cells. Overexpression of miR-324-5p sensitized CC cells to RT. In addition, miR-324-5p mimics significantly induced apoptosis and inhibits the migration of CC cells in the presence of 137 Cs ionizing radiation. Furthermore, miR-324-5p sensitized CC cells to ionizing radiation by targeting ELAV-like RNA binding protein 1 (ELAVL1). MiR-324-5p overexpression affects the radiotherapy response of CC by targeting ELAVL1, which may serve as a new target for the treatment of CC.
Collapse
Affiliation(s)
- Ming-Jun Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng-Juan He
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue-Yan Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chun-Run Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chang-Zhong Li
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li-Gang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|