1
|
Zhang Y, Liu T, Li P, Xing Z, Mi L, He T, Wei T, Wu W. Potential therapeutic targets of eukaryotic translation initiation factors in tumor therapy. Eur J Med Chem 2025; 291:117638. [PMID: 40273663 DOI: 10.1016/j.ejmech.2025.117638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Translation initiation is the first and rate-limiting step in protein synthesis, and its dysregulation is frequently observed in various malignancies. Cap-dependent translation, the predominant form of translation initiation, relies on the coordinated action of eukaryotic translation initiation factors (eIFs), including eIF1, eIF2, eIF4, and others. These factors play critical roles in regulating the efficiency and fidelity of protein synthesis, and their overexpression has been linked to tumor progression, proliferation, and metastasis. Notably, certain eIFs have emerged as potential prognostic markers due to their elevated expression in tumors. Targeting eIFs represents a promising strategy, particularly for cancers characterized by aberrant eIF activity. In this review, we summarize the roles of individual eIFs in cap-dependent translation and discuss their potential as therapeutic targets in cancer treatment. We also highlight recent advances in drug discovery efforts aimed at modulating eIF activity, providing insights into the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianyou Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengyu Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Mercier FE, Gife V, Aloyz R, Hulea L. Translational control of leukemic metabolism and disease progression. Trends Cell Biol 2025:S0962-8924(25)00108-4. [PMID: 40410003 DOI: 10.1016/j.tcb.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological cancer with a 70% five-year mortality rate. Relapse occurs in approximately half of adults treated with intensive chemotherapy, while responses to targeted therapies are short-lasting. Frequent mutations in signaling pathways, such as FLT3 tyrosine kinase and RAS, lead to dysregulated mammalian target of rapamycin complex 1 (mTORC1)and mitogen-activated protein kinase (MAPK) signaling, increased protein synthesis, enhanced mitochondrial fitness, and metabolic adaptations that drive leukemic cell proliferation and survival. Here, emerging evidence supporting the unique role of eukaryotic initiation factor 4F as a key driver of the expression of proteins regulating leukemic cell metabolism and survival and the potential therapeutic benefit of targeting this pathway pharmacologically in AML are discussed.
Collapse
Affiliation(s)
- François E Mercier
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada.
| | - Victor Gife
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
| | - Raquel Aloyz
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. J Proteome Res 2025; 24:2026-2039. [PMID: 40077831 PMCID: PMC12039896 DOI: 10.1021/acs.jproteome.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report novel DDX targets of high-profile rocaglates-including the clinical candidate Zotatifin-and validate our findings using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path toward characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alice C. Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Lauren E. Brown
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - John A. Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
4
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590252. [PMID: 38659867 PMCID: PMC11042367 DOI: 10.1101/2024.04.19.590252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report and validate novel DDX targets of high-profile rocaglates - including the clinical candidate Zotatifin - using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA, USA
| | - Alice C. Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - John A. Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Keiser PT, Zhang W, Ricca M, Wacquiez A, Grimins A, Cencic R, Patten JJ, Shah P, Padilha E, Connor JH, Pelletier J, Lyons SM, Saeed M, Brown LE, Porco JA, Davey RA. Amidino-rocaglates (ADRs), a class of synthetic rocaglates, are potent inhibitors of SARS-CoV-2 replication through inhibition of viral protein synthesis. Antiviral Res 2024; 230:105976. [PMID: 39117283 PMCID: PMC11434215 DOI: 10.1016/j.antiviral.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.
Collapse
Affiliation(s)
- Patrick T Keiser
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Wenhan Zhang
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Michael Ricca
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Alan Wacquiez
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Autumn Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Regina Cencic
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Pranav Shah
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - Elias Padilha
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - John H Connor
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Jerry Pelletier
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lauren E Brown
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA.
| |
Collapse
|
7
|
Wang Z, Thakare RP, Chitale S, Mishra AK, Goldstein SI, Fan AC, Li R, Zhu LJ, Brown LE, Cencic R, Huang S, Green MR, Pelletier J, Malonia SK, Porco JA. Identification of Rocaglate Acyl Sulfamides as Selective Inhibitors of Glioblastoma Stem Cells. ACS CENTRAL SCIENCE 2024; 10:1640-1656. [PMID: 39220711 PMCID: PMC11363328 DOI: 10.1021/acscentsci.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and frequently occurring type of malignant brain tumor in adults. The initiation, progression, and recurrence of malignant tumors are known to be driven by a small subpopulation of cells known as tumor-initiating cells or cancer stem cells (CSCs). GBM CSCs play a pivotal role in orchestrating drug resistance and tumor relapse. As a prospective avenue for GBM intervention, the targeted suppression of GBM CSCs holds considerable promise. In this study, we found that rocaglates, compounds which are known to inhibit translation via targeting of the DEAD-box helicase eIF4A, exert a robust, dose-dependent cytotoxic impact on GBM CSCs with minimal killing of nonstem GBM cells. Subsequent optimization identified novel rocaglate derivatives (rocaglate acyl sulfamides or Roc ASFs) that selectively inhibit GBM CSCs with nanomolar EC50 values. Furthermore, comparative evaluation of a lead CSC-optimized Roc ASF across diverse mechanistic and target profiling assays revealed suppressed translation inhibition relative to that of other CSC-selective rocaglates, with enhanced targeting of the DEAD-box helicase DDX3X, a recently identified secondary target of rocaglates. Overall, these findings suggest a promising therapeutic strategy for targeting GBM CSCs.
Collapse
Affiliation(s)
- Zihao Wang
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ritesh P. Thakare
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Shalaka Chitale
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Alok K. Mishra
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Stanley I. Goldstein
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
- Department
of Pharmacology, Physiology, and Biophysics, Boston University, Boston, Massachusetts 02118, United States
| | - Alice C. Fan
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| | - Rui Li
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lihua Julie Zhu
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lauren E. Brown
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Regina Cencic
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sidong Huang
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael R. Green
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Jerry Pelletier
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sunil K. Malonia
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - John A. Porco
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Thirman HL, Hayes MJ, Brown LE, Porco JA, Irish JM. Single Cell Profiling Distinguishes Leukemia-Selective Chemotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591362. [PMID: 38826485 PMCID: PMC11142275 DOI: 10.1101/2024.05.01.591362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A central challenge in chemical biology is to distinguish molecular families in which small structural changes trigger large changes in cell biology. Such families might be ideal scaffolds for developing cell-selective chemical effectors - for example, molecules that activate DNA damage responses in malignant cells while sparing healthy cells. Across closely related structural variants, subtle structural changes have the potential to result in contrasting bioactivity patterns across different cell types. Here, we tested a 600-compound Diversity Set of screening molecules from the Boston University Center for Molecular Discovery (BU-CMD) in a novel phospho-flow assay that tracked fundamental cell biological processes, including DNA damage response, apoptosis, M-phase cell cycle, and protein synthesis in MV411 leukemia cells. Among the chemotypes screened, synthetic congeners of the rocaglate family were especially bioactive. In follow-up studies, 37 rocaglates were selected and deeply characterized using 12 million additional cellular measurements across MV411 leukemia cells and healthy peripheral blood mononuclear cells. Of the selected rocaglates, 92% displayed significant bioactivity in human cells, and 65% selectively induced DNA damage responses in leukemia and not healthy human blood cells. Furthermore, the signaling and cell-type selectivity were connected to structural features of rocaglate subfamilies. In particular, three rocaglates from the rocaglate pyrimidinone (RP) structural subclass were the only molecules that activated exceptional DNA damage responses in leukemia cells without activating a detectable DNA damage response in healthy cells. These results indicate that the RP subset should be extensively characterized for anticancer therapeutic potential as it relates to the DNA damage response. This single cell profiling approach advances a chemical biology platform to dissect how systematic variations in chemical structure can profoundly and differentially impact basic functions of healthy and diseased cells.
Collapse
Affiliation(s)
- Hannah L. Thirman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Madeline J. Hayes
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|