1
|
Vidal Ceballos A, Geissmann A, Favaro DC, Deshpande P, Elbaum-Garfinkle S. RNA guanine content and G-quadruplex structure tune the phase behavior and material properties of biomolecular condensates. Sci Rep 2025; 15:9295. [PMID: 40102453 PMCID: PMC11920403 DOI: 10.1038/s41598-025-88499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
RNA binding proteins (RBPs) are enriched in phase separated biomolecular assemblies across cell types. These RBPs often harbor arginine-glycine rich RGG motifs, which can drive phase separation, and can preferentially interact with RNA G-quadruplex (G4) structures, particularly in the neuron. Increasing evidence underscores the important role that RNA sequence and structure play in contributing to the form and function of protein condensates, however, less is known about the role of G4 RNAs and their interaction with RGG domains specifically. In this study we focused on the model protein, Fragile X mental retardation protein (FMRP), to investigate how G4-containing RNA sequences impact the phase behavior and material properties of condensates. FMRP is implicated in the development of Fragile X Syndrome, and is enriched in neuronal granules where it is thought to aid in mRNA trafficking and translational control. Here, we examined RNA sequences with increasing G content and G4 propensity in complex with the RGG-containing low complexity region (LCR) of FMRP. We found, that while increasing G content triggers aggregation of poly-arginine, all RNA sequences supported phase separation into liquid droplets with FMRP-LCR. Combining microrheology, and fluorescence recovery after photobleaching, we measured a moderate increase in viscosity and decrease in dynamics for increasing G-content, and detected no measurable increase in elasticity as a function of G4 structure. Additionally, we found that while methylation of FMRP decreased RNA binding affinity, this modification did not impact condensate material properties suggesting that RNA sequence/structure can play a greater role than binding affinity in determining the emergent properties of condensates. Together, this work lends much needed insight into the ways in which G-rich RNA sequences tune the assembly, dynamics and material properties of protein/RNA condensates and/or granules.
Collapse
Affiliation(s)
- Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Anna Geissmann
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Denize C Favaro
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Priyasha Deshpande
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Kamzeeva PN, Alferova VA, Korshun VA, Varizhuk AM, Aralov AV. 5'-UTR G-Quadruplex-Mediated Translation Regulation in Eukaryotes: Current Understanding and Methodological Challenges. Int J Mol Sci 2025; 26:1187. [PMID: 39940956 PMCID: PMC11818886 DOI: 10.3390/ijms26031187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
RNA G-quadruplexes (rG4s) in 5'-UTRs represent complex regulatory elements capable of both inhibiting and activating mRNA translation through diverse mechanisms in eukaryotes. This review analyzes the evolution of our understanding of 5'-UTR rG4-mediated translation regulation, from early discoveries of simple translation inhibitors to the current recognition of their multifaceted regulatory roles. We discuss canonical and non-canonical rG4 structures, their interactions with regulatory proteins, including helicases and FMRP, and their function in both cap-dependent and IRES-mediated translation. Special attention is given to the synergistic effects between rG4s and upstream open reading frames (uORFs), stress-responsive translation regulation, and their role in repeat-associated non-AUG (RAN) translation linked to neurodegenerative diseases. We critically evaluate methodological challenges in the field, including limitations of current detection methods, reporter system artifacts, and the necessity to verify rG4 presence in endogenous transcripts. Recent technological advances, including genome editing and high-throughput sequencing approaches, have revealed that rG4 effects are more complex and context-dependent than initially thought. This review highlights the importance of developing more robust methodologies for studying rG4s at endogenous levels and carefully reevaluating previously identified targets, while emphasizing their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Polina N. Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna M. Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
| |
Collapse
|
3
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Factors Affecting Liquid-Liquid Phase Separation of RGG Peptides with DNA G-Quadruplex. ChemMedChem 2025; 20:e202400460. [PMID: 39256186 DOI: 10.1002/cmdc.202400460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Liquid-liquid phase separation (LLPS), mediated by G-quadruplexes (G4 s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4-LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4-LLPS. It was found that the FMRP-derived RGG peptide induced LLPS with G4-forming Myc-DNA, whereas a point-mutated peptide, in which all arginine residues were replaced with lysine, was unable to undergo LLPS, indicating the importance of arginine residues. Moreover, systematically truncated peptides showed that at least five positive net charges of peptide are required to induce G4-LLPS. Furthermore, quantitative investigation demonstrated that the higher binding affinity of peptides with G4 led to a higher LLPS ability, whereas threshold of the binding affinity for undergoing LLPS was identified. These insights elucidate the pivotal role of arginine in G4-LLPS and the specific requirement for multiple arginine residues, contributing to a deeper understanding of the complex interplay between intrinsically disordered proteins and nucleic acids.
Collapse
Affiliation(s)
- Sumit Shil
- Frontiers of Innovative Research in Science and Technology, FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe, 650-0047, Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe, 650-0047, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe, 650-0047, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe, 650-0047, Japan
| |
Collapse
|
4
|
Peng R, Huang Q, Wang L, Qiao G, Huang X, Jiang J, Chu X. G-Quadruplex RNA Based PROTAC Enables Targeted Degradation of RNA Binding Protein FMRP for Tumor Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202402715. [PMID: 39135270 DOI: 10.1002/anie.202402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
Fragile X mental retardation protein (FMRP), an RNA binding protein (RBP), is aberrantly hyper-expressed in human tumors and plays an essential role in tumor invasion, metastasis and immune evasion. However, there is no small-molecule inhibitor for FMRP so far. In this study, we developed the first FMRP-targeting degrader based on PROteolysis TArgeting Chimera (PROTAC) technology and constructed a heterobifunctional PROTAC through linking a FMRP-targeting G-quadruplex RNA (sc1) to a von Hippel-Lindau (VHL)-targeting ligand peptide (named as sc1-VHLL). Sc1-VHLL specifically degraded endogenous FMRP via ubiquitination pathway in both mouse and human cancer cells. The FMRP degradation significantly changed the secretion pattern of cancer cells, resulting in higher expression of pro-inflammatory cytokine and smaller amounts of immunomodulatory contents. Furthermore, sc1-VHLL, when encapsulated into ionizable liposome nanoparticles (LNP), efficiently targeted tumor site and degraded FMRP in cancer cells. In CT26 tumor-bearing mouse model, FMRP degradation within tumors substantially promoted the infiltration of lymphocytes and CD8 T cells and reduced the proportion of Treg cells, reshaping the proinflammatory tumor microenvironment and accordingly transforming cold tumor into hot tumor. When combined with immune checkpoint blockade (ICB) therapy, sc1-VHLL based treatment remarkably inhibited the tumor growth.
Collapse
Affiliation(s)
- Ruixi Peng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Qian Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Li Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Gongxi Qiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiangrong Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
5
|
Kletzien OA, Wuttke DS, Batey RT. The RNA-binding Selectivity of the RGG/RG Motifs of hnRNP U is Abolished by Elements Within the C-terminal Intrinsically Disordered Region. J Mol Biol 2024; 436:168702. [PMID: 38996909 PMCID: PMC11441334 DOI: 10.1016/j.jmb.2024.168702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The abundant nuclear protein hnRNP U interacts with a broad array of RNAs along with DNA and protein to regulate nuclear chromatin architecture. The RNA-binding activity is achieved via a disordered ∼100 residue C-terminal RNA-binding domain (RBD) containing two distinct RGG/RG motifs. Although the RNA-binding capabilities of RGG/RG motifs have been widely reported, less is known about hnRNP U's RNA-binding selectivity. Furthermore, while it is well established that hnRNP U binds numerous nuclear RNAs, it remains unknown whether it selectively recognizes sequence or structural motifs in target RNAs. To address this question, we performed equilibrium binding assays using fluorescence anisotropy (FA) and electrophoretic mobility shift assays (EMSAs) to quantitatively assess the ability of human hnRNP U RBD to interact with segments of cellular RNAs identified from eCLIP data. These RNAs often, but not exclusively, contain poly-uridine or 5'-AGGGAG sequence motifs. Detailed binding analysis of several target RNAs reveal that the hnRNP U RBD binds RNA in a promiscuous manner with high affinity for a broad range of structured RNAs, but with little preference for any distinct sequence motif. In contrast, the isolated RGG/RG of hnRNP U motif exhibits a strong preference for G-quadruplexes, similar to that observed for other RGG motif bearing peptides. These data reveal that the hnRNP U RBD attenuates the RNA binding selectivity of its core RGG motifs to achieve an extensive RNA interactome. We propose that a critical role of RGG/RG motifs in RNA biology is to alter binding affinity or selectivity of adjacent RNA-binding domains.
Collapse
Affiliation(s)
- Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
6
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Life B, Bettio LE, Gantois I, Christie BR, Leavitt BR. Progranulin is an FMRP target that influences macroorchidism but not behaviour in a mouse model of Fragile X Syndrome. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100094. [PMID: 37416094 PMCID: PMC10319828 DOI: 10.1016/j.crneur.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
A growing body of evidence has implicated progranulin in neurodevelopment and indicated that aberrant progranulin expression may be involved in neurodevelopmental disease. Specifically, increased progranulin expression in the prefrontal cortex has been suggested to be pathologically relevant in male Fmr1 knockout (Fmr1 KO) mice, a mouse model of Fragile X Syndrome (FXS). Further investigation into the role of progranulin in FXS is warranted to determine if therapies that reduce progranulin expression represent a viable strategy for treating patients with FXS. Several key knowledge gaps remain. The mechanism of increased progranulin expression in Fmr1 KO mice is poorly understood and the extent of progranulin's involvement in FXS-like phenotypes in Fmr1 KO mice has been incompletely explored. To this end, we have performed a thorough characterization of progranulin expression in Fmr1 KO mice. We find that the phenomenon of increased progranulin expression is post-translational and tissue-specific. We also demonstrate for the first time an association between progranulin mRNA and FMRP, suggesting that progranulin mRNA is an FMRP target. Subsequently, we show that progranulin over-expression in Fmr1 wild-type mice causes reduced repetitive behaviour engagement in females and mild hyperactivity in males but is largely insufficient to recapitulate FXS-associated behavioural, morphological, and electrophysiological abnormalities. Lastly, we determine that genetic reduction of progranulin expression on an Fmr1 KO background reduces macroorchidism but does not alter other FXS-associated behaviours or biochemical phenotypes.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 0B3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Luis E.B. Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montreal, H3A 2T5, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, H3A 2T5, Quebec, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, V8P 5C2, Canada
- Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 0B3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC, V6T 2B5, Canada
- Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
8
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
9
|
Hoque ME, Mahendran T, Basu S. Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022; 12:314. [PMID: 35204814 PMCID: PMC8869680 DOI: 10.3390/biom12020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
G-quadruplexes (GQs) are secondary nucleic acid structures that play regulatory roles in various cellular processes. G-quadruplex-forming sequences present within the 5' UTR of mRNAs can function not only as repressors of translation but also as elements required for optimum function. Based upon previous reports, the majority of the 5' UTR GQ structures inhibit translation, presumably by blocking the ribosome scanning process that is essential for detection of the initiation codon. However, there are certain mRNAs containing GQs that have been identified as positive regulators of translation, as they are needed for translation initiation. While most cellular mRNAs utilize the 5' cap structure to undergo cap-dependent translation initiation, many rely on cap-independent translation under certain conditions in which the cap-dependent initiation mechanism is not viable or slowed down, for example, during development, under stress and in many diseases. Cap-independent translation mainly occurs via Internal Ribosomal Entry Sites (IRESs) that are located in the 5' UTR of mRNAs and are equipped with structural features that can recruit the ribosome or other factors to initiate translation without the need for a 5' cap. In this review, we will focus only on the role of RNA GQs present in the 5' UTR of mRNAs, where they play a critical role in translation initiation, and discuss the potential mechanism of this phenomenon, which is yet to be fully delineated.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (M.E.H.); (T.M.)
| |
Collapse
|
10
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
11
|
Rodrigues EC, Grawenhoff J, Baumann SJ, Lorenzon N, Maurer SP. Mammalian Neuronal mRNA Transport Complexes: The Few Knowns and the Many Unknowns. Front Integr Neurosci 2021; 15:692948. [PMID: 34211375 PMCID: PMC8239176 DOI: 10.3389/fnint.2021.692948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of messenger RNAs (mRNAs) are transported into neurites to provide templates for the assembly of local protein networks. These networks enable a neuron to configure different cellular domains for specialized functions. According to current evidence, mRNAs are mostly transported in rather small packages of one to three copies, rarely containing different transcripts. This opens up fascinating logistic problems: how are hundreds of different mRNA cargoes sorted into distinct packages and how are they coupled to and released from motor proteins to produce the observed mRNA distributions? Are all mRNAs transported by the same transport machinery, or are there different adaptors or motors for different transcripts or classes of mRNAs? A variety of often indirect evidence exists for the involvement of proteins in mRNA localization, but relatively little is known about the essential activities required for the actual transport process. Here, we summarize the different types of available evidence for interactions that connect mammalian mRNAs to motor proteins to highlight at which point further research is needed to uncover critical missing links. We further argue that a combination of discovery approaches reporting direct interactions, in vitro reconstitution, and fast perturbations in cells is an ideal future strategy to unravel essential interactions and specific functions of proteins in mRNA transport processes.
Collapse
Affiliation(s)
- Elsa C. Rodrigues
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia Grawenhoff
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian J. Baumann
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Nicola Lorenzon
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian P. Maurer
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
12
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Kharel P, Becker G, Tsvetkov V, Ivanov P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 2020; 48:12534-12555. [PMID: 33264409 PMCID: PMC7736831 DOI: 10.1093/nar/gkaa1126] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-quadruplexes (G4s) are non-canonical four-stranded structures that can be formed in guanine (G) rich nucleic acid sequences. A great number of G-rich sequences capable of forming G4 structures have been described based on in vitro analysis, and evidence supporting their formation in live cells continues to accumulate. While formation of DNA G4s (dG4s) within chromatin in vivo has been supported by different chemical, imaging and genomic approaches, formation of RNA G4s (rG4s) in vivo remains a matter of discussion. Recent data support the dynamic nature of G4 formation in the transcriptome. Such dynamic fluctuation of rG4 folding-unfolding underpins the biological significance of these structures in the regulation of RNA metabolism. Moreover, rG4-mediated functions may ultimately be connected to mechanisms underlying disease pathologies and, potentially, provide novel options for therapeutics. In this framework, we will review the landscape of rG4s within the transcriptome, focus on their potential impact on biological processes, and consider an emerging connection of these functions in human health and disease.
Collapse
Affiliation(s)
- Prakash Kharel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gertraud Becker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Federal Research and Clinical Center for Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow 119435, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 117912, Russia
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
14
|
Athar YM, Joseph S. The Human Fragile X Mental Retardation Protein Inhibits the Elongation Step of Translation through Its RGG and C-Terminal Domains. Biochemistry 2020; 59:3813-3822. [PMID: 32945655 DOI: 10.1021/acs.biochem.0c00534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates the translation of numerous mRNAs in neurons. The precise mechanism of translational regulation by FMRP is unknown. Some studies have indicated that FMRP inhibits the initiation step of translation, whereas other studies have indicated that the elongation step of translation is inhibited by FMRP. To determine whether FMRP inhibits the initiation or the elongation step of protein synthesis, we investigated m7G-cap-dependent and IRES-driven, cap-independent translation of several reporter mRNAs in vitro. Our results show that FMRP inhibits both m7G-cap-dependent and cap-independent translation to similar degrees, indicating that the elongation step of translation is inhibited by FMRP. Additionally, we dissected the RNA-binding domains of hFMRP to determine the essential domains for inhibiting translation. We show that the RGG domain, together with the C-terminal domain (CTD), is sufficient to inhibit translation, while the KH domains do not inhibit mRNA translation. However, the region between the RGG domain and the KH2 domain may contribute as NT-hFMRP shows more potent inhibition than the RGG-CTD tail alone. Interestingly, we see a correlation between ribosome binding and translation inhibition, suggesting the RGG-CTD tail of hFMRP may anchor FMRP to the ribosome during translation inhibition.
Collapse
Affiliation(s)
- Youssi M Athar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
15
|
Goering R, Hudish LI, Guzman BB, Raj N, Bassell GJ, Russ HA, Dominguez D, Taliaferro JM. FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. eLife 2020; 9:e52621. [PMID: 32510328 PMCID: PMC7279889 DOI: 10.7554/elife.52621] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
The sorting of RNA molecules to subcellular locations facilitates the activity of spatially restricted processes. We have analyzed subcellular transcriptomes of FMRP-null mouse neuronal cells to identify transcripts that depend on FMRP for efficient transport to neurites. We found that these transcripts contain an enrichment of G-quadruplex sequences in their 3' UTRs, suggesting that FMRP recognizes them to promote RNA localization. We observed similar results in neurons derived from Fragile X Syndrome patients. We identified the RGG domain of FMRP as important for binding G-quadruplexes and the transport of G-quadruplex-containing transcripts. Finally, we found that the translation and localization targets of FMRP were distinct and that an FMRP mutant that is unable to bind ribosomes still promoted localization of G-quadruplex-containing messages. This suggests that these two regulatory modes of FMRP may be functionally separated. These results provide a framework for the elucidation of similar mechanisms governed by other RNA-binding proteins.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Laura I Hudish
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nisha Raj
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Gary J Bassell
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusBoulderUnited States
| |
Collapse
|
16
|
Athar YM, Joseph S. RNA-Binding Specificity of the Human Fragile X Mental Retardation Protein. J Mol Biol 2020; 432:3851-3868. [PMID: 32343993 DOI: 10.1016/j.jmb.2020.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Fragile X syndrome is the most common form of inherited intellectual disability and is caused by a deficiency of the fragile X mental retardation protein (FMRP) in neurons. FMRP regulates the translation of numerous mRNAs within dendritic synapses, but how FMRP recognizes these target mRNAs remains unknown. FMRP has KH0, KH1, KH2, and RGG domains, which are thought to bind to specific RNA recognition elements (RREs). Several studies used high-throughput methods to identify various RREs in mRNAs that FMRP may bind to in vivo. However, there is little overlap in the mRNA targets identified by each study, suggesting that the RNA-binding specificity of FMRP is still unknown. To determine the specificity of FMRP for the RREs, we performed quantitative in vitroRNA binding studies with various constructs of human FMRP. Unexpectedly, our studies show that the KH domains do not bind to the previously identified RREs. To further investigate the RNA-binding specificity of FMRP, we developed a new method called Motif Identification by Analysis of Simple sequences (MIDAS) to identify single-stranded RNA sequences bound by KH domains. We find that the FMRP KH0, KH1, and KH2 domains bind weakly to the single-stranded RNA sequences suggesting that they may have evolved to bind more complex RNA structures. Additionally, we find that the RGG motif of human FMRP binds with a high affinity to an RNAG-quadruplex structure that lacks single-stranded loops, double-stranded stems, or junctions.
Collapse
Affiliation(s)
- Youssi M Athar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093-0314, USA.
| |
Collapse
|
17
|
Imperatore JA, McAninch DS, Valdez-Sinon AN, Bassell GJ, Mihailescu MR. FUS Recognizes G Quadruplex Structures Within Neuronal mRNAs. Front Mol Biosci 2020; 7:6. [PMID: 32118033 PMCID: PMC7018707 DOI: 10.3389/fmolb.2020.00006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3'-untranslated region (3'-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3'-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3'-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3'-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets.
Collapse
Affiliation(s)
- Joshua A. Imperatore
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | - Damian S. McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | | | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Imperatore JA, Then ML, McDougal KB, Mihailescu MR. Characterization of a G-Quadruplex Structure in Pre-miRNA-1229 and in Its Alzheimer's Disease-Associated Variant rs2291418: Implications for miRNA-1229 Maturation. Int J Mol Sci 2020; 21:ijms21030767. [PMID: 31991575 PMCID: PMC7037302 DOI: 10.3390/ijms21030767] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disease, is associated with various forms of cognitive and functional impairment that worsen with disease progression. AD is typically characterized as a protein misfolding disease, in which abnormal plaques form due to accumulation of tau and β-amyloid (Aβ) proteins. An assortment of proteins is responsible for the processing and trafficking of Aβ, including sortilin-related receptor 1 (SORL1). Recently, a genome-wide association study of microRNA-related variants found that a single nucleotide polymorphism (SNP) rs2291418 within premature microRNA-1229 (pre-miRNA-1229) is significantly associated with AD. Moreover, the levels of the mature miRNA-1229-3p, which has been shown to regulate the SORL1 translation, are increased in the rs2291418 pre-miRNA-1229 variant. In this study we used various biophysical techniques to show that pre-miRNA-1229 forms a G-quadruplex secondary structure that coexists in equilibrium with the canonical hairpin structure, potentially controlling the production of the mature miR-1229-3p, and furthermore, that the AD-associated SNP rs2291418 pre-miR-1229 changes the equilibrium between these structures. Thus, the G-quadruplex structure we identified within pre-miRNA-1229 could potentially act as a novel therapeutic target in AD.
Collapse
|
19
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
20
|
Shioda N, Yabuki Y, Asamitsu S. [The potential of G-quadruplexes as a therapeutic target for neurological diseases]. Nihon Yakurigaku Zasshi 2019; 154:294-300. [PMID: 31787679 DOI: 10.1254/fpj.154.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most common form of DNA is a right-handed helix, the B-form DNA. DNA can also adopt a variety of alternative conformations, termed non-B-form DNA secondary structures, including the G-quadruplex (G4). Furthermore, non-canonical RNA G4 secondary structures are also observed. Recent bioinformatics analysis revealed genomic positions of G4. In addition, G4 formation may be associated with various biological functions, including DNA replication, transcription, epigenetic modification, and RNA metabolism. In this review, we focus on G4 structures in neuronal functions, which may have important roles reveal mechanisms underlying neurological disorders. In addition, we discuss the potential of G4s as a therapeutic target for neurological diseases.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| |
Collapse
|
21
|
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. J Neurosci 2019; 39:7453-7464. [PMID: 31350260 DOI: 10.1523/jneurosci.1443-17.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.
Collapse
|
22
|
Perspectives for Applying G-Quadruplex Structures in Neurobiology and Neuropharmacology. Int J Mol Sci 2019; 20:ijms20122884. [PMID: 31200506 PMCID: PMC6627371 DOI: 10.3390/ijms20122884] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
The most common form of DNA is a right-handed helix or the B-form DNA. DNA can also adopt a variety of alternative conformations, non-B-form DNA secondary structures, including the DNA G-quadruplex (DNA-G4). Furthermore, besides stem-loops that yield A-form double-stranded RNA, non-canonical RNA G-quadruplex (RNA-G4) secondary structures are also observed. Recent bioinformatics analysis of the whole-genome and transcriptome obtained using G-quadruplex–specific antibodies and ligands, revealed genomic positions of G-quadruplexes. In addition, accumulating evidence pointed to the existence of these structures under physiologically- and pathologically-relevant conditions, with functional roles in vivo. In this review, we focused on DNA-G4 and RNA-G4, which may have important roles in neuronal function, and reveal mechanisms underlying neurological disorders related to synaptic dysfunction. In addition, we mention the potential of G-quadruplexes as therapeutic targets for neurological diseases.
Collapse
|
23
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
24
|
Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol 2018; 430:4650-4665. [PMID: 29913160 DOI: 10.1016/j.jmb.2018.06.014] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
Abstract
RGG/RG motifs are RNA binding segments found in many proteins that can partition into membraneless organelles. They occur in the context of low-complexity disordered regions and often in multiple copies. Although short RGG/RG-containing regions can sometimes form high-affinity interactions with RNA structures, multiple RGG/RG repeats are generally required for high-affinity binding, suggestive of the dynamic, multivalent interactions that are thought to underlie phase separation in formation of cellular membraneless organelles. Arginine can interact with nucleotide bases via hydrogen bonding and π-stacking; thus, nucleotide conformers that provide access to the bases provide enhanced opportunities for RGG interactions. Methylation of RGG/RG regions, which is accomplished by protein arginine methyltransferase enzymes, occurs to different degrees in different cell types and may regulate the behavior of proteins containing these regions.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert M Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
McAninch DS, Heinaman AM, Lang CN, Moss KR, Bassell GJ, Rita Mihailescu M, Evans TL. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR. MOLECULAR BIOSYSTEMS 2017; 13:1448-1457. [PMID: 28612854 PMCID: PMC5544254 DOI: 10.1039/c7mb00070g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.
Collapse
Affiliation(s)
- Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Ashley M Heinaman
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Cara N Lang
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Timothy L Evans
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA. and Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| |
Collapse
|
26
|
|
27
|
Specchia V, D'Attis S, Puricella A, Bozzetti MP. dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int J Mol Sci 2017; 18:ijms18051066. [PMID: 28509881 PMCID: PMC5454977 DOI: 10.3390/ijms18051066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
28
|
Majumder P, Chu JF, Chatterjee B, Swamy KBS, Shen CKJ. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 2016; 132:721-738. [PMID: 27518042 PMCID: PMC5073124 DOI: 10.1007/s00401-016-1603-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023]
Abstract
For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.
Collapse
|
29
|
Anderson BR, Chopra P, Suhl JA, Warren ST, Bassell GJ. Identification of consensus binding sites clarifies FMRP binding determinants. Nucleic Acids Res 2016; 44:6649-59. [PMID: 27378784 PMCID: PMC5001617 DOI: 10.1093/nar/gkw593] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function.
Collapse
Affiliation(s)
- Bart R Anderson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua A Suhl
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
31
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
32
|
Stefanovic S, DeMarco BA, Underwood A, Williams KR, Bassell GJ, Mihailescu MR. Fragile X mental retardation protein interactions with a G quadruplex structure in the 3'-untranslated region of NR2B mRNA. MOLECULAR BIOSYSTEMS 2015; 11:3222-30. [PMID: 26412477 PMCID: PMC4643373 DOI: 10.1039/c5mb00423c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5'-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the post synaptic density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3'-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3'-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-d-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Brett A DeMarco
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Ayana Underwood
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
33
|
Zhang Y, Gaetano CM, Williams KR, Bassell GJ, Mihailescu MR. FMRP interacts with G-quadruplex structures in the 3'-UTR of its dendritic target Shank1 mRNA. RNA Biol 2015; 11:1364-74. [PMID: 25692235 DOI: 10.1080/15476286.2014.996464] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3'-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ' -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Yang Zhang
- a Graduate School of Pharmaceutical Sciences; Mylan School of Pharmacy ; Duquesne University ; Pittsburgh , PA USA
| | | | | | | | | |
Collapse
|
34
|
Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A 2015; 112:E5391-400. [PMID: 26374839 DOI: 10.1073/pnas.1515737112] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-Å crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K(+)-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-π interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I β-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Collapse
|
35
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
36
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
38
|
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 2015; 589:1653-68. [PMID: 25979174 DOI: 10.1016/j.febslet.2015.05.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
Abstract
G-rich sequences in DNA and RNA have a propensity to fold into stable secondary structures termed G-quadruplexes. G-quadruplex forming sequences are widespread throughout the human genome, within both, protein coding and non-coding genes, and regulatory regions. G-quadruplexes have been implicated in multiple cellular functions including chromatin epigenetic regulation, DNA recombination, transcriptional regulation of gene promoters and enhancers, and translation. Here we will review the evidence for the occurrence of G-quadruplexes both in vitro and in vivo; their role in neurological diseases including G-quadruplex-forming repeat expansions in the C9orf72 gene in frontotemporal dementia and amyotrophic lateral sclerosis and loss of the G-quadruplex binding protein FMRP in the intellectual disability fragile X syndrome. We also review mounting evidence that supports a role for G-quadruplexes in regulating the processing or function of a range of non-coding RNAs. Finally we will highlight current perspectives for therapeutic interventions that target G-quadruplexes.
Collapse
Affiliation(s)
- Roberto Simone
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Sobell Department of Motor Neuroscience and Movement, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
39
|
Chen E, Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins. Biochimie 2015; 114:147-54. [PMID: 25701550 DOI: 10.1016/j.biochi.2015.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS).
Collapse
Affiliation(s)
- Eileen Chen
- Department of Chemistry and Biochemistry, University of California at San Diego 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego 9500 Gilman Drive, La Jolla, CA 92093-0314, USA.
| |
Collapse
|
40
|
Stefanovic S, Bassell GJ, Mihailescu MR. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility. RNA (NEW YORK, N.Y.) 2015; 21:48-60. [PMID: 25406362 PMCID: PMC4274637 DOI: 10.1261/rna.046722.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/03/2014] [Indexed: 05/25/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site.
Collapse
Affiliation(s)
- Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| |
Collapse
|
41
|
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 2014; 3:118-33. [PMID: 25606362 PMCID: PMC4298642 DOI: 10.5582/irdr.2014.01024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 11/05/2022] Open
Abstract
Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.
Collapse
Affiliation(s)
- Tatiana M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
- Address correspondence to: Dr. Tatiana M. Kazdoba, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, Research II Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA. E-mail:
| | - Prescott T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
42
|
Georgieva D, Dimitrov R, Kitanova M, Genova G. New X-chromosomal interactors of dFMRP regulate axonal and synaptic morphology of brain neurons in Drosophila melanogaster. BIOTECHNOL BIOTEC EQ 2014; 28:697-709. [PMID: 26740770 PMCID: PMC4684054 DOI: 10.1080/13102818.2014.937897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/21/2014] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome is a neuro-developmental disease caused by transcriptional inactivation of the gene FMR1 (fragile X mental retardation 1) and loss of its protein product FMRP. FMRP has multiple neuronal functions which are implemented together with other proteins. To better understand these functions, the aim of this study was to reveal new protein interactors of dFMRP. In a forward genetic screen, we isolated ethyl-metanesulphonate-induced X-chromosomal modifier mutations of dfmr1. Four of them were identified and belong to the genes: peb/hindsight, rok, shaggy and ras. They are dominant suppressors of the dfmr1 overexpression wing phenotype ‘notched wings’. These mutations dominantly affected the axonal and synaptic morphology of the lateral ventral neurons (LNv's) in adult Drosophila brains. Heterozygotes for each of them displayed effects in the axonal growth, pathfinding, branching and in the synapse formation of these neurons. Double heterozygotes for both dfmr1-null mutation and for each of the suppressor mutations showed robust genetic interactions in the fly central nervous system. The mutations displayed severe defects in the axonal growth and synapse formation of the LNv's in adult brains. Our biochemical studies showed that neither of the proteins – Rok, Shaggy, Peb/Hnt or Ras – encoded by the four mutated genes regulates the protein level of dFMRP, but dFMRP negatively regulates the protein expression level of Rok in the brain. Altogether, these data suggest that Rok, Shaggy, Peb/Hnt and Ras are functional partners of dFMRP, which are required for correct wing development and for neuronal connectivity in Drosophila brain.
Collapse
Affiliation(s)
- Dimitrina Georgieva
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Roumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| | - Ginka Genova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski' , Sofia , Bulgaria
| |
Collapse
|
43
|
Suhl JA, Chopra P, Anderson BR, Bassell GJ, Warren ST. Analysis of FMRP mRNA target datasets reveals highly associated mRNAs mediated by G-quadruplex structures formed via clustered WGGA sequences. Hum Mol Genet 2014; 23:5479-91. [PMID: 24876161 DOI: 10.1093/hmg/ddu272] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fragile X syndrome, a common cause of intellectual disability and a well-known cause of autism spectrum disorder, is the result of loss or dysfunction of fragile X mental retardation protein (FMRP), a highly selective RNA-binding protein and translation regulator. A major research priority has been the identification of the mRNA targets of FMRP, particularly as recent studies suggest an excess of FMRP targets among genes implicated in idiopathic autism and schizophrenia. Several large-scale studies have attempted to identify mRNAs bound by FMRP through several methods, each generating a list of putative target genes, leading to distinct hypotheses by which FMRP recognizes its targets; namely, by RNA structure or sequence. However, no in depth analyses have been performed to identify the level of consensus among the studies. Here, we analyze four large FMRP target datasets to generate high-confidence consensus lists, and examine all datasets for sequence elements within the target RNAs to validate reported FMRP binding motifs (GACR, ACUK and WGGA). We found GACR to be highly enriched in FMRP datasets, while ACUK was not. The WGGA pattern was modestly enriched in several, but not all datasets. The previous association between FMRP and G-quadruplexes prompted the analysis of the distribution of WGGA in the target genes. Consistent with the requirements for G-quadruplex formation, we observed highly clustered WGGA motifs in FMRP targets compared with other genes, implicating both RNA structure and sequence in the recognition motif of FMRP. In addition, we generate a list of the top 40 FMRP targets associated with FXS-related phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Stephen T Warren
- Department of Human Genetics, Departments of Biochemistry and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
45
|
Blice-Baum AC, Mihailescu MR. Biophysical characterization of G-quadruplex forming FMR1 mRNA and of its interactions with different fragile X mental retardation protein isoforms. RNA (NEW YORK, N.Y.) 2014; 20:103-114. [PMID: 24249225 PMCID: PMC3866639 DOI: 10.1261/rna.041442.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5'-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.
Collapse
|
46
|
Sethna F, Moon C, Wang H. From FMRP function to potential therapies for fragile X syndrome. Neurochem Res 2013; 39:1016-31. [PMID: 24346713 DOI: 10.1007/s11064-013-1229-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5' un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
47
|
Fernández E, Rajan N, Bagni C. The FMRP regulon: from targets to disease convergence. Front Neurosci 2013; 7:191. [PMID: 24167470 PMCID: PMC3807044 DOI: 10.3389/fnins.2013.00191] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates mRNA metabolism. FMRP has been largely studied in the brain, where the absence of this protein leads to fragile X syndrome, the most frequent form of inherited intellectual disability. Since the identification of the FMRP gene in 1991, many studies have primarily focused on understanding the function/s of this protein. Hundreds of potential FMRP mRNA targets and several interacting proteins have been identified. Here, we report the identification of FMRP mRNA targets in the mammalian brain that support the key role of this protein during brain development and in regulating synaptic plasticity. We compared the genes from databases and genome-wide association studies with the brain FMRP transcriptome, and identified several FMRP mRNA targets associated with autism spectrum disorders, mood disorders and schizophrenia, showing a potential common pathway/s for these apparently different disorders.
Collapse
Affiliation(s)
- Esperanza Fernández
- Center for the Biology of Disease, Vlaams Institut voor Biotechnologie Leuven, Belgium ; Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven Leuven, Belgium
| | | | | |
Collapse
|
48
|
Conceptualizing neurodevelopmental disorders through a mechanistic understanding of fragile X syndrome and Williams syndrome. Curr Opin Neurol 2012; 25:112-24. [PMID: 22395002 DOI: 10.1097/wco.0b013e328351823c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. RECENT FINDINGS Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. SUMMARY Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.
Collapse
|
49
|
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:495-507. [PMID: 22488917 DOI: 10.1002/wrna.1113] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.
Collapse
Affiliation(s)
- Stefania Millevoi
- Inserm UMR 1037, University of Toulouse III, Cancer Research Center of Toulouse, Toulouse 31432, Cedex 4, France.
| | | | | |
Collapse
|
50
|
Evans TL, Blice-Baum AC, Mihailescu MR. Analysis of the Fragile X mental retardation protein isoforms 1, 2 and 3 interactions with the G-quadruplex forming semaphorin 3F mRNA. ACTA ACUST UNITED AC 2012; 8:642-9. [DOI: 10.1039/c1mb05322a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|