1
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
2
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
3
|
Alahmari AA, Chaubey AH, Jonnakuti VS, Tisdale AA, Schwarz CD, Cornwell AC, Maraszek KE, Paterson EJ, Kim M, Venkat S, Gomez EC, Wang J, Gurova KV, Yalamanchili HK, Feigin ME. CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing. RNA (NEW YORK, N.Y.) 2024; 30:281-297. [PMID: 38191171 PMCID: PMC10870380 DOI: 10.1261/rna.079931.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that CPSF3 is highly expressed in PDAC and is associated with poor prognosis. CPSF3 knockdown blocks PDAC cell proliferation and colony formation in vitro and tumor growth in vivo. Chemical inhibition of CPSF3 by the small molecule JTE-607 also attenuates PDAC cell proliferation and colony formation, while it has no effect on cell proliferation of nontransformed immortalized control pancreatic cells. Mechanistically, JTE-607 induces transcriptional readthrough in replication-dependent histones, reduces core histone expression, destabilizes chromatin structure, and arrests cells in the S-phase of the cell cycle. Therefore, CPSF3 represents a potential therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aditi H Chaubey
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Venkata S Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arwen A Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Carla D Schwarz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Kathryn E Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Emily J Paterson
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Minsuh Kim
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| |
Collapse
|
4
|
Mendiratta S, Ray-Gallet D, Lemaire S, Gatto A, Forest A, Kerlin MA, Almouzni G. Regulation of replicative histone RNA metabolism by the histone chaperone ASF1. Mol Cell 2024; 84:791-801.e6. [PMID: 38262410 DOI: 10.1016/j.molcel.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Dominique Ray-Gallet
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Sébastien Lemaire
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Maciej A Kerlin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France.
| |
Collapse
|
5
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Chaubal A, Waldern JM, Taylor C, Laederach A, Marzluff WF, Duronio RJ. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell 2023; 34:ar118. [PMID: 37647143 PMCID: PMC10846616 DOI: 10.1091/mbc.e22-11-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Justin M. Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin Taylor
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - William F. Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. Cell Rep 2023; 42:112768. [PMID: 37428633 PMCID: PMC10440735 DOI: 10.1016/j.celrep.2023.112768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this burst in histone biosynthesis as DNA replication begins. Here, we use single-cell time-lapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the restriction point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
Affiliation(s)
- Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Victor J Passanisi
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Humza M Ashraf
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
8
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
9
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533218. [PMID: 36993620 PMCID: PMC10055190 DOI: 10.1101/2023.03.17.533218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this change in histone biosynthesis as DNA replication begins. Here, we use single-cell timelapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the Restriction Point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
|
11
|
Shine M, Harris SE, Pellegrene KA, Kensinger AH, Mihailescu MR, Evanseck JD, Lackey PE. Uridylation of the histone mRNA stem-loop weakens binding interactions with SLBP while maintaining interactions with 3'hExo. RNA Biol 2023; 20:469-481. [PMID: 37516934 PMCID: PMC10388802 DOI: 10.1080/15476286.2023.2171760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/03/2022] [Accepted: 01/19/2023] [Indexed: 07/31/2023] Open
Abstract
Histone mRNA degradation is controlled by the unique 3' stem-loop of histone mRNA and the stem-loop binding protein (SLBP). As part of this process, the 3' stem-loop is trimmed by the histone-specific 3' exonuclease (3'hExo) and uridylated by the terminal uridylyl transferase 7 (TUT7), creating partially degraded intermediates with short uridylations. The role of these uridylations in degradation is not fully understood. Our work examines changes in the stability of the ternary complex created by trimming and uridylation of the stem-loop to better understand the role of this process in the histone mRNA life cycle. In this study, we used fluorescence polarization and electrophoretic mobility shift assays to demonstrate that both SLBP and 3'hExo can bind to uridylated and partially degraded stem-loop intermediates, although with lower affinity. We further characterized this complex by performing 1-µs molecular dynamics simulations using the AMBER force field and Nanoscale Molecular Dynamics (NAMD). These simulations show that while uridylation helps maintain the overall shape of the stem-loop, the combination of uridylation and dephosphorylation of the TPNK motif in SLBP disrupts key RNA-protein interactions. They also demonstrate that uridylation allows 3'hExo to maintain contact with the stem-loop after partial degradation and plays a role in disrupting key base pairs in partially degraded histone mRNA intermediates. Together, these experiments and simulations suggest that trimming by 3'hExo, uridylation, and SLBP dephosphorylation weakens both RNA-protein interactions and the stem-loop itself. Our results further elucidate the role of uridylation and SLBP dephosphorylation in the early stages of histone mRNA degradation.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, PA, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sarah E Harris
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, PA, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendy A Pellegrene
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Adam H Kensinger
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Patrick E Lackey
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, PA, USA
| |
Collapse
|
12
|
Veerappan A, Stavrou A, Costa M. Polyadenylation of canonical histone H3.1 in carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:267-282. [PMID: 36858776 DOI: 10.1016/bs.apha.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Canonical histone messenger RNAs (mRNAs) are transcribed during S phase and do not terminate with a poly(A) tail at the 3' end. Instead, the histone mRNAs display a stem-loop structure at their 3-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. We previously demonstrated that exposure to arsenic, an environmental carcinogen, induces polyadenylation of canonical histone H3.1 mRNA, causing transformation of human cells in vitro. Arsenic decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Similarly, we also reported that nickel and arsenic have similar effects on canonical histone mRNA transcription and translation. Most recently, we further demonstrated that bisphenols' exposure increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. This facilitates the abnormal stability of at least one canonical histone isoform (H3.1), and also increases H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic, nickel and bisphenols exposure may contribute to metal and bisphenol-induced carcinogenesis.
Collapse
Affiliation(s)
- Arul Veerappan
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Aikaterini Stavrou
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Max Costa
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
13
|
Ielasi FS, Ternifi S, Fontaine E, Iuso D, Couté Y, Palencia A. Human histone pre-mRNA assembles histone or canonical mRNA-processing complexes by overlapping 3'-end sequence elements. Nucleic Acids Res 2022; 50:12425-12443. [PMID: 36447390 PMCID: PMC9756948 DOI: 10.1093/nar/gkac878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3' processing and polyadenylation.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sara Ternifi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emeline Fontaine
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Domenico Iuso
- Institute for Advanced Biosciences (IAB), Epigenetics and Cell Signaling, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Andrés Palencia
- To whom correspondence should be addressed. Tel: +33 476 54 95 75;
| |
Collapse
|
14
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
15
|
Wu T, Jun S, Choi EJ, Sun J, Yang EB, Lee HS, Kim SY, Fahmi NA, Jiang Q, Zhang W, Yong J, Lee JH, You HJ. 53BP1-ACLY-SLBP-coordinated activation of replication-dependent histone biogenesis maintains genomic integrity. Nucleic Acids Res 2022; 50:1465-1483. [PMID: 35037047 PMCID: PMC8860602 DOI: 10.1093/nar/gkab1300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 11/12/2022] Open
Abstract
p53-binding protein 1 (53BP1) regulates the DNA double-strand break (DSB) repair pathway and maintains genomic integrity. Here we found that 53BP1 functions as a molecular scaffold for the nucleoside diphosphate kinase-mediated phosphorylation of ATP-citrate lyase (ACLY) which enhances the ACLY activity. This functional association is critical for promoting global histone acetylation and subsequent transcriptome-wide alterations in gene expression. Specifically, expression of a replication-dependent histone biogenesis factor, stem-loop binding protein (SLBP), is dependent upon 53BP1-ACLY-controlled acetylation at the SLBP promoter. This chain of regulation events carried out by 53BP1, ACLY, and SLBP is crucial for both quantitative and qualitative histone biogenesis as well as for the preservation of genomic integrity. Collectively, our findings reveal a previously unknown role for 53BP1 in coordinating replication-dependent histone biogenesis and highlight a DNA repair-independent function in the maintenance of genomic stability through a regulatory network that includes ACLY and SLBP.
Collapse
Affiliation(s)
- TingTing Wu
- DNA Damage Response Network Center.,Department of Pharmacology
| | - Semo Jun
- DNA Damage Response Network Center.,Department of Pharmacology
| | - Eun-Ji Choi
- DNA Damage Response Network Center.,Department of Cellular and Molecular Medicine
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Eun-Bi Yang
- DNA Damage Response Network Center.,Department of Cellular and Molecular Medicine
| | | | - Sang-Yong Kim
- Division of Endocrinology, Chosun University School of medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Naima Ahmed Fahmi
- Division of Endocrinology, Chosun University School of medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Qibing Jiang
- Division of Endocrinology, Chosun University School of medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Wei Zhang
- Division of Endocrinology, Chosun University School of medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jung-Hee Lee
- DNA Damage Response Network Center.,Department of Cellular and Molecular Medicine
| | - Ho Jin You
- DNA Damage Response Network Center.,Department of Pharmacology
| |
Collapse
|
16
|
Bradford BR, Jin C. Stem-loop binding protein and metal carcinogenesis. Semin Cancer Biol 2021; 76:38-44. [PMID: 34416372 PMCID: PMC8627438 DOI: 10.1016/j.semcancer.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
Pre-mRNA processing of the replication-dependent canonical histone mRNAs requires an endonucleolytic cleavage immediately after a conserved stem loop structure which occurs before RNA Pol II encounters any poly(A) signal. Thus, in contrast to all other eukaryotic mRNAs, the canonical histone mRNAs are not polyadenylated in their 3' ends. The binding of stem-loop binding protein (SLBP) to the stem loop structure of the histone mRNAs is required for this process. SLBP is also involved in regulation of histone mRNA nuclear export, degradation, and translation. Depletion of SLBP has been shown to induce polyadenylation of histone mRNAs and alteration of histone protein levels, which are considered to contribute to the observed aberrant cell cycle progress and genomic instability resulting from the loss of SLBP function. Recent studies have demonstrated that some heavy metal carcinogens, including arsenic and nickel, can induce the loss of SLBP and the gain of polyadenylation of canonical histone mRNAs. Polyadenylated canonical histone H3 can result in abnormal transcription, cell cycle arrest, genomic instability, and cell transformation, which links SLBP depletion and subsequent histone mRNA misprocessing to cancer. This review seeks to briefly summarize what is known about regulation of SLBP expression, consequences of SLBP depletion, its roles in cancer-related end points, with particular focus on metal-induced SLBP depletion and the potential of SLBP depletion as a new mechanism for metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Beatrix R Bradford
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
17
|
Abstract
The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.
Collapse
|
18
|
Heyl F, Backofen R. StoatyDive: Evaluation and classification of peak profiles for sequencing data. Gigascience 2021; 10:giab045. [PMID: 34143874 PMCID: PMC8212874 DOI: 10.1093/gigascience/giab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/26/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The prediction of binding sites (peak-calling) is a common task in the data analysis of methods such as cross-linking immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). The predicted binding sites are often further analyzed to predict sequence motifs or structure patterns. When looking at a typical result of such high-throughput experiments, the obtained peak profiles differ largely on a genomic level. Thus, a tool is missing that evaluates and classifies the predicted peaks on the basis of their shapes. We hereby present StoatyDive, a tool that can be used to filter for specific peak profile shapes of sequencing data such as CLIP. FINDINGS With StoatyDive we are able to classify peak profile shapes from CLIP-seq data of the histone stem-loop-binding protein (SLBP). We compare the results to existing tools and show that StoatyDive finds more distinct peak shape clusters for CLIP data. Furthermore, we present StoatyDive's capabilities as a quality control tool and as a filter to pick different shapes based on biological or technical questions for other CLIP data from different RNA binding proteins with different biological functions and numbers of RNA recognition motifs. We finally show that proteins involved in splicing, such as RBM22 and U2AF1, have potentially sharper-shaped peaks than other RNA binding proteins. CONCLUSION StoatyDive finally fills the demand for a peak shape clustering tool for CLIP-Seq data that fine-tunes downstream analysis steps such as structure or sequence motif predictions and that acts as a quality control.
Collapse
Affiliation(s)
- Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Balan P, Chong YS, Qingsong L, Lim TK, Wong ML, Lopez V, He HG, Seneviratne CJ. Quantitative proteomics analysis identifies salivary biomarkers for early detection of pregnancy loss in a Singaporean cohort-A pilot study. Proteomics Clin Appl 2021; 15:e2000068. [PMID: 33979484 DOI: 10.1002/prca.202000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Early pregnancy loss (EPL) is one of the most common complications encountered in clinical practice. As most of EPLs occur relatively early on during pregnancy, they are often misunderstood as an expected menstrual cycle. Thus, it is essential to investigate the diagnostic biomarkers for monitoring pregnancy loss for continuous non-invasive monitoring of EPL. EXPERIMENTAL DESIGN Unstimulated saliva was collected from 10 subjects with EPL and a matched cohort of healthy pregnant women as controls. Samples were analyzed using iTRAQ analysis, and ELISA was performed to validate results. RESULTS Enrichment analysis of the 38 differentially abundant proteins identified that regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism was significantly affected in EPL. The nucleosome assembly pathway was significantly underrepresented in EPL and was associated with depletion of histone proteins (H2B, H3, and H4). These results were validated with ELISA experiments. A depletion of histones can impair nucleosome assembly and cause the nuclear machinery to fail. CONCLUSION Regulation of nucleosome is critical for the maintenance of genome stability and epigenetic information, lack of which may lead to pregnancy loss. Thus, assessing and monitoring salivary histone levels in patients with threatened miscarriage can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. CLINICAL RELEVANCE There is considerable uncertainty regarding the prognosis of threatened pregnancy, making it stressful for expecting mothers and healthcare professionals. Most EPLs are often misunderstood or ignored as an expected menstrual cycle. Thus it is essential to develop screenings and rapid detection devices using a medium that can be non-invasive and self-performed for continuous monitoring. Using saliva, we have identified that the nucleosome assembly gets affected in EPL with depletion of histone proteins (H2B, H3, and H4). With further verification, these findings can help saliva be utilized as a medium to determine which patients will/will not progress to miscarriage and at what point of their pregnancy. Assessing and monitoring EPL using salivary diagnostics can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. Hence, these findings need to be investigated further to improve the prediction of outcomes in women with threatened pregnancy.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynecology, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Mun Loke Wong
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Hong-Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| |
Collapse
|
20
|
Potter-Birriel JM, Gonsalvez GB, Marzluff WF. A region of SLBP outside the mRNA-processing domain is essential for deposition of histone mRNA into the Drosophila egg. J Cell Sci 2021; 134:jcs251728. [PMID: 33408246 PMCID: PMC7888719 DOI: 10.1242/jcs.251728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. Stemloop-binding protein (SLBP) binds the 3' end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte. The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in wild-type stage 10B oocytes, the histone locus bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, which is normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10-amino-acid deletion, fail to deposit sufficient histone mRNA in the oocyte, and do not transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion phenocopy the deletion. We conclude that a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer Michelle Potter-Birriel
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graydon B Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 , USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Hluchý M, Ule J, Blazek D. CDK11 is required for transcription of replication-dependent histone genes. Nat Struct Mol Biol 2020; 27:500-510. [PMID: 32367068 PMCID: PMC7116321 DOI: 10.1038/s41594-020-0406-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during S-phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S-phase. Moreover, its N-terminal region binds FLASH, RDH-specific 3´end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the C-terminal domain (CTD) of RNA polymerase II (RNAPII), which is initiated at the middle of RDH genes and is required for further RNAPII elongation and 3´end processing. CDK11 depletion leads to decreased number of cells in S-phase, likely due to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for growth of many cancers.
Collapse
Affiliation(s)
- Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
24
|
Ryu I, Kim YK. AU-rich element-mediated mRNA decay via the butyrate response factor 1 controls cellular levels of polyadenylated replication-dependent histone mRNAs. J Biol Chem 2019; 294:7558-7565. [PMID: 30962286 DOI: 10.1074/jbc.ac118.006766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/03/2019] [Indexed: 11/06/2022] Open
Abstract
Replication-dependent histone (RDH) mRNAs have a nonpolyadenylated 3'-UTR that ends in a highly conserved stem-loop structure. Nonetheless, a subset of RDH mRNAs has a poly(A) tail under physiological conditions. The biological meaning of poly(A)-containing (+) RDH mRNAs and details of their biosynthesis remain elusive. Here, using HeLa cells and Western blotting, qRT-PCR, and biotinylated RNA pulldown assays, we show that poly(A)+ RDH mRNAs are post-transcriptionally regulated via adenylate- and uridylate-rich element-mediated mRNA decay (AMD). We observed that the rapid degradation of poly(A)+ RDH mRNA is driven by butyrate response factor 1 (BRF1; also known as ZFP36 ring finger protein-like 1) under normal conditions. Conversely, cellular stresses such as UV C irradiation promoted BRF1 degradation, increased the association of Hu antigen R (HuR; also known as ELAV-like RNA-binding protein 1) with the 3'-UTR of poly(A)+ RDH mRNAs, and eventually stabilized the poly(A)+ RDH mRNAs. Collectively, our results provide evidence that AMD surveils poly(A)+ RDH mRNAs via BRF1-mediated degradation under physiological conditions.
Collapse
Affiliation(s)
- Incheol Ryu
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Fan J, Wang K, Du X, Wang J, Chen S, Wang Y, Shi M, Zhang L, Wu X, Zheng D, Wang C, Wang L, Tian B, Li G, Zhou Y, Cheng H. ALYREF links 3'-end processing to nuclear export of non-polyadenylated mRNAs. EMBO J 2019; 38:e99910. [PMID: 30858280 PMCID: PMC6484419 DOI: 10.15252/embj.201899910] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
The RNA-binding protein ALYREF plays key roles in nuclear export and also 3'-end processing of polyadenylated mRNAs, but whether such regulation also extends to non-polyadenylated RNAs is unknown. Replication-dependent (RD)-histone mRNAs are not polyadenylated, but instead end in a stem-loop (SL) structure. Here, we demonstrate that ALYREF prevalently binds a region next to the SL on RD-histone mRNAs. SL-binding protein (SLBP) directly interacts with ALYREF and promotes its recruitment. ALYREF promotes histone pre-mRNA 3'-end processing by facilitating U7-snRNP recruitment through physical interaction with the U7-snRNP-specific component Lsm11. Furthermore, ALYREF, together with other components of the TREX complex, enhances histone mRNA export. Moreover, we show that 3'-end processing promotes ALYREF recruitment and histone mRNA export. Together, our results point to an important role of ALYREF in coordinating 3'-end processing and nuclear export of non-polyadenylated mRNAs.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xian Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Changshou Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Wu X, Qu L, Li S, Guo Y, He J, Liu M, Liu X, Lin H. Molecular characterization and expression patterns of stem-loop binding protein (SLBP) genes in protogynous hermaphroditic grouper, Epinephelus coioides. Gene 2019; 700:120-130. [PMID: 30910559 DOI: 10.1016/j.gene.2019.02.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Abstract
Stem-loop binding protein (SLBP) binds a stem-loop structure of the mRNA, which is important for the stability of histone mRNAs and translation process. In the present study, two slbp cDNAs (Ecslbp1 and Ecslbp2) were cloned from a protogynous hermaphroditic orange-spotted grouper, Epinephelus coioides. Ecslbp1 cDNA contained a 678 base pair (bp) open reading frame (ORF), encoding a predicted polypeptide of 225 amino acids. Ecslbp2 cDNA contained a 1041 bp, encoding a predicted protein of 346 amino acids. The result of real-time PCR revealed that Ecslbp2 mRNA was exclusively detected in the ovary. Moreover, it was found to be restricted to oocytes according to in situ hybridization (ISH) analysis. Ecslbp2 was found to be hardly detected in gonia and significantly increase in the cytoplasm of primary-growth stage oocytes, but decreased during the process of vitellogenesis. Interestingly, Ecslbp2 expression centralized as a perinuclear speckle in early-primary-growth stage oocytes, which appeared to form into the Balbiani body (Bb) in late-primary-growth stage oocytes. These data indicated that Ecslbp2 might play an important role in the process of oocyte development, and could serve as an oocyte-specific molecular marker for the study of ovary development and sex reversal in groupers.
Collapse
Affiliation(s)
- Xi Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Qu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Meifeng Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Pettinati I, Grzechnik P, Ribeiro de Almeida C, Brem J, McDonough MA, Dhir S, Proudfoot NJ, Schofield CJ. Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease. eLife 2018; 7:e39865. [PMID: 30507380 PMCID: PMC6303110 DOI: 10.7554/elife.39865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo β-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.
Collapse
Affiliation(s)
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Jurgen Brem
- Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Somdutta Dhir
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
28
|
Ryu I, Park Y, Seo JW, Park OH, Ha H, Nam JW, Kim YK. HuR stabilizes a polyadenylated form of replication-dependent histone mRNAs under stress conditions. FASEB J 2018; 33:2680-2693. [PMID: 30303743 DOI: 10.1096/fj.201800431r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All metazoan mRNAs have a poly(A) tail at the 3' end with the exception of replication-dependent histone (RDH) mRNAs, which end in a highly conserved stem-loop (SL) structure. However, a subset of RDH mRNAs are reported to be polyadenylated under physiologic conditions. The molecular details of the biogenesis of polyadenylated RDH [poly(A)+ RDH] mRNAs remain unknown. In this study, our genome-wide analyses reveal that puromycin treatment or UVC irradiation stabilizes poly(A)+ RDH mRNAs, relative to canonical RDH mRNAs, which end in an SL structure. We demonstrate that the stabilization of poly(A)+ RDH mRNAs occurs in a translation-independent manner and is regulated via human antigen R (HuR) binding to the extended 3' UTR under stress conditions. Our data suggest that HuR regulates the expression of poly(A)+ RDH mRNAs.-Ryu, I., Park, Y., Seo, J.-W., Park, O. H., Ha, H., Nam, J.-W., Kim, Y. K. HuR stabilizes a polyadenylated form of replication-dependent histone mRNAs under stress conditions.
Collapse
Affiliation(s)
- Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jwa-Won Seo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea; and
| | - Ok Hyun Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hongseok Ha
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea; and.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Routh A, Ji P, Jaworski E, Xia Z, Li W, Wagner EJ. Poly(A)-ClickSeq: click-chemistry for next-generation 3΄-end sequencing without RNA enrichment or fragmentation. Nucleic Acids Res 2017; 45:e112. [PMID: 28449108 PMCID: PMC5499544 DOI: 10.1093/nar/gkx286] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
The recent emergence of alternative polyadenylation (APA) as an engine driving transcriptomic diversity has stimulated the development of sequencing methodologies designed to assess genome-wide polyadenylation events. The goal of these approaches is to enrich, partition, capture and ultimately sequence poly(A) site junctions. However, these methods often require poly(A) enrichment, 3΄ linker ligation steps, and RNA fragmentation, which can necessitate higher levels of starting RNA, increase experimental error and potentially introduce bias. We recently reported a click-chemistry based method for generating RNAseq libraries called ‘ClickSeq’. Here, we adapt this method to direct the cDNA synthesis specifically toward the 3΄UTR/poly(A) tail junction of cellular RNA. With this novel approach, we demonstrate sensitive and specific enrichment for poly(A) site junctions without the need for complex sample preparation, fragmentation or purification. Poly(A)-ClickSeq (PAC-seq) is therefore a simple procedure that generates high-quality RNA-seq poly(A) libraries. As a proof-of-principle, we utilized PAC-seq to explore the poly(A) landscape of both human and Drosophila cells in culture and observed outstanding overlap with existing poly(A) databases and also identified previously unannotated poly(A) sites. Moreover, we utilize PAC-seq to quantify and analyze APA events regulated by CFIm25 illustrating how this technology can be harnessed to identify alternatively polyadenylated RNA.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Zheng Xia
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
30
|
Biochemical Fractionation of Time-Resolved Drosophila Embryos Reveals Similar Transcriptomic Alterations in Replication Checkpoint and Histone mRNA Processing Mutants. J Mol Biol 2017; 429:3264-3279. [DOI: 10.1016/j.jmb.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 11/22/2022]
|
31
|
Brodersen MML, Lampert F, Barnes CA, Soste M, Piwko W, Peter M. CRL4(WDR23)-Mediated SLBP Ubiquitylation Ensures Histone Supply during DNA Replication. Mol Cell 2017; 62:627-35. [PMID: 27203182 DOI: 10.1016/j.molcel.2016.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/11/2016] [Accepted: 04/15/2016] [Indexed: 01/07/2023]
Abstract
To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones.
Collapse
Affiliation(s)
- Mia M L Brodersen
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Fabienne Lampert
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christopher A Barnes
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Martin Soste
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Wojciech Piwko
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
32
|
Jordan A, Zhang X, Li J, Laulicht-Glick F, Sun H, Costa M. Nickel and cadmium-induced SLBP depletion: A potential pathway to metal mediated cellular transformation. PLoS One 2017; 12:e0173624. [PMID: 28306745 PMCID: PMC5357021 DOI: 10.1371/journal.pone.0173624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/23/2017] [Indexed: 12/04/2022] Open
Abstract
Both nickel and cadmium compounds have been established as group I carcinogens for several decades. Despite over-whelming evidence of these compounds' carcinogenicity in humans, the specific underlying molecular mechanisms that govern metal induced cellular transformation remain unclear. In this study, we found that there were slightly different effects on decreased SLBP mRNA and protein as well as increased polyA H3.1 in our nickel exposed cells. This suggested that nickel and arsenic have similar effects on canonical histone mRNA transcription and translation. We also saw that the depletion of SLBP protein was reversed by inhibiting the proteosome. Finally, we showed that inhibiting the SLBP mRNA and protein levels were rescued by epigenetic modifiers suggesting that nickel's effects on SLBP may be mediated via epigenetic mechanisms. Taken together these results suggest a similar mechanism by which both arsenic and nickel may exert their carcinogenic effects.
Collapse
Affiliation(s)
- Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Jinquan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Science, Central China Normal University, Wuhan, Hubei, China
| | - Freda Laulicht-Glick
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
33
|
Lampert F, Brodersen MML, Peter M. Guard the guardian: A CRL4 ligase stands watch over histone production. Nucleus 2017; 8:134-143. [PMID: 28072566 DOI: 10.1080/19491034.2016.1276143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Histones are evolutionarily conserved proteins that together with DNA constitute eukaryotic chromatin in a defined stoichiometry. Core histones are dynamic scaffolding proteins that undergo a myriad of post-translational modifications, which selectively engage chromosome condensation, replication, transcription and DNA damage repair. Cullin4-RING ubiquitin E3 ligases are known to hold pivotal roles in a wide spectrum of chromatin biology ranging from chromatin remodeling and transcriptional repression, to sensing of cytotoxic DNA lesions. Our recent work uncovers an unexpected function of a CRL4 ligase upstream of these processes in promoting histone biogenesis. The CRL4WDR23 ligase directly controls the activity of the stem-loop binding protein (SLBP), which orchestrates elemental steps of canonical histone transcript metabolism. We demonstrate that non-proteolytic ubiquitination of SLBP ensures sufficient histone reservoirs during DNA replication and is vital for genome integrity and cellular fitness.
Collapse
Affiliation(s)
| | - Mia M L Brodersen
- a Institute of Biochemistry, ETH Zurich , Zürich , Switzerland.,b nspm. ltd. , Meggen , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, ETH Zurich , Zürich , Switzerland
| |
Collapse
|
34
|
Sokolova M, Turunen M, Mortusewicz O, Kivioja T, Herr P, Vähärautio A, Björklund M, Taipale M, Helleday T, Taipale J. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. Cell Cycle 2016; 16:189-199. [PMID: 27929715 PMCID: PMC5283814 DOI: 10.1080/15384101.2016.1261765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.
Collapse
Affiliation(s)
- Maria Sokolova
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikko Turunen
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Oliver Mortusewicz
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Teemu Kivioja
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Patrick Herr
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Anna Vähärautio
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikael Björklund
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Minna Taipale
- c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Thomas Helleday
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Jussi Taipale
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland.,c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
35
|
Christopher A, Hameister H, Corrigall H, Ebenhöh O, Müller B, Ullner E. Modelling Robust Feedback Control Mechanisms That Ensure Reliable Coordination of Histone Gene Expression with DNA Replication. PLoS One 2016; 11:e0165848. [PMID: 27798685 PMCID: PMC5087906 DOI: 10.1371/journal.pone.0165848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Histone proteins are key elements in the packing of eukaryotic DNA into chromosomes. A little understood control system ensures that histone gene expression is balanced with DNA replication so that histone proteins are produced in appropriate amounts. Disturbing or disrupting this system affects genome stability and gene expression, and has detrimental consequences for human development and health. It has been proposed that feedback control involving histone proteins contributes to this regulation and there is evidence implicating cell cycle checkpoint molecules activated when DNA synthesis is impaired in this control. We have developed mathematical models that incorporate these control modes in the form of inhibitory feedback of histone gene expression from free histone proteins, and alternatively a direct link that couples histone RNA synthesis to DNA synthesis. Using our experimental evidence and related published data we provide a simplified description of histone protein synthesis during S phase. Both models reproduce the coordination of histone gene expression with DNA replication during S phase and the down-regulation of histone RNA when DNA synthesis is interrupted, but only the model incorporating histone protein feedback control was able to effectively simulate the coordinate expression of a simplified histone gene family. Our combined theoretical and experimental approach supports the hypothesis that the regulation of histone gene expression involves feedback control.
Collapse
Affiliation(s)
- Andrea Christopher
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Heike Hameister
- Department of Physics (SUPA) and Institute for Complex Systems and Mathematical Biology (ICSMB), University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Holly Corrigall
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Oliver Ebenhöh
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom.,Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ekkehard Ullner
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, Scotland, United Kingdom.,Department of Physics (SUPA) and Institute for Complex Systems and Mathematical Biology (ICSMB), University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
36
|
Lyons SM, Cunningham CH, Welch JD, Groh B, Guo AY, Wei B, Whitfield ML, Xiong Y, Marzluff WF. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues. Nucleic Acids Res 2016; 44:9190-9205. [PMID: 27402160 PMCID: PMC5100578 DOI: 10.1093/nar/gkw620] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/30/2016] [Indexed: 11/24/2022] Open
Abstract
Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins.
Collapse
Affiliation(s)
- Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Clark H Cunningham
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599
| | - Beezly Groh
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Y Guo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bruce Wei
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Whitfield
- Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, NH 03755, USA
| | - Yue Xiong
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA .,Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Djakbarova U, Marzluff WF, Köseoğlu MM. DDB1 and CUL4 associated factor 11 (DCAF11) mediates degradation of Stem-loop binding protein at the end of S phase. Cell Cycle 2016; 15:1986-96. [PMID: 27254819 DOI: 10.1080/15384101.2016.1191708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51-108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.
Collapse
Affiliation(s)
- Umidahan Djakbarova
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| | - William F Marzluff
- c Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,d Program in Molecular Biology and Biotechnology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - M Murat Köseoğlu
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| |
Collapse
|
38
|
Prado F, Jimeno-González S, Reyes JC. Histone availability as a strategy to control gene expression. RNA Biol 2016; 14:281-286. [PMID: 27211514 DOI: 10.1080/15476286.2016.1189071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Histone proteins are main structural components of the chromatin and major determinants of gene regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that severe histone depletion also causes strong gene expression changes. We have recently reported that a moderated depletion of canonical histones in human cells leads to an open chromatin configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA splicing defects. Interestingly, some of the observed defects accompany the scheduled histone depletion that is associated with several senescence and aging processes. Thus, our comparison of induced and naturally-occurring histone depletion processes suggests that a programmed reduction of the level of canonical histones might be a strategy to control gene expression during specific physiological processes.
Collapse
Affiliation(s)
- Félix Prado
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - Silvia Jimeno-González
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| | - José C Reyes
- a Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) , Seville , Spain
| |
Collapse
|
39
|
Toompuu M, Kärblane K, Pata P, Truve E, Sarmiento C. ABCE1 is essential for S phase progression in human cells. Cell Cycle 2016; 15:1234-47. [PMID: 26985706 DOI: 10.1080/15384101.2016.1160972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion.
Collapse
Affiliation(s)
- Marina Toompuu
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Kairi Kärblane
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Pille Pata
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Erkki Truve
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| | - Cecilia Sarmiento
- a Department of Gene Technology , Tallinn University of Technology , Tallinn , Estonia
| |
Collapse
|
40
|
Abstract
In metazoan the 3′-end processing of histone mRNAs is a conserved process involving the concerted action of many protein factors and the non-coding U7 snRNA. Recently, we identified that the processing of histone pre-mRNAs is promoted by an additional ncRNA, the Y3-derived Y3** RNA. U7 modulates the association of the U7 snRNP whereas Y3** promotes recruitment of CPSF (cleavage and polyadenylation specific factor) proteins to nascent histone transcripts at histone locus bodies (HLBs) in mammals. This enhances the 3′-end cleavage of nascent histone pre-mRNAs and modulates HLB assembly. Here we discuss new insights in the role of ncRNAs in the spatiotemporal control of histone synthesis. We propose that ncRNAs scaffold the formation of functional protein-RNA complexes and their sequential deposition on nascent histone pre-mRNAs at HLBs. These findings add to the multiple roles of ncRNAs in controlling gene expression and may provide new avenues for targeting histone synthesis in cancer.
Collapse
Affiliation(s)
- Marcel Köhn
- a Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle Wittenberg, ZAMED , Halle , Germany
| | - Stefan Hüttelmaier
- a Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle Wittenberg, ZAMED , Halle , Germany
| |
Collapse
|
41
|
Liu Z, Zhang XJ, Wang W, Zhang J, Li Z, Gui JF. Molecular characterization and expression of an oocyte-specific histone stem-loop binding protein in Carassius gibelio. Comp Biochem Physiol B Biochem Mol Biol 2015; 190:46-53. [DOI: 10.1016/j.cbpb.2015.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
|
42
|
Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proc Natl Acad Sci U S A 2015; 112:14840-5. [PMID: 26578803 DOI: 10.1073/pnas.1506760112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.
Collapse
|
43
|
Song J, Song J, Mo B, Chen X. Uridylation and adenylation of RNAs. SCIENCE CHINA. LIFE SCIENCES 2015; 58:1057-66. [PMID: 26563174 PMCID: PMC5089844 DOI: 10.1007/s11427-015-4954-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022]
Abstract
The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area.
Collapse
Affiliation(s)
- JianBo Song
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - BeiXin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China.
| | - XueMei Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China.
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- Howard Hughes Medical Institute, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
44
|
Brooks L, Lyons SM, Mahoney JM, Welch JD, Liu Z, Marzluff WF, Whitfield ML. A multiprotein occupancy map of the mRNP on the 3' end of histone mRNAs. RNA (NEW YORK, N.Y.) 2015; 21:1943-65. [PMID: 26377992 PMCID: PMC4604434 DOI: 10.1261/rna.053389.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
The animal replication-dependent (RD) histone mRNAs are coordinately regulated with chromosome replication. The RD-histone mRNAs are the only known cellular mRNAs that are not polyadenylated. Instead, the mature transcripts end in a conserved stem-loop (SL) structure. This SL structure interacts with the stem-loop binding protein (SLBP), which is involved in all aspects of RD-histone mRNA metabolism. We used several genomic methods, including high-throughput sequencing of cross-linked immunoprecipitate (HITS-CLIP) to analyze the RNA-binding landscape of SLBP. SLBP was not bound to any RNAs other than histone mRNAs. We performed bioinformatic analyses of the HITS-CLIP data that included (i) clustering genes by sequencing read coverage using CVCA, (ii) mapping the bound RNA fragment termini, and (iii) mapping cross-linking induced mutation sites (CIMS) using CLIP-PyL software. These analyses allowed us to identify specific sites of molecular contact between SLBP and its RD-histone mRNA ligands. We performed in vitro crosslinking assays to refine the CIMS mapping and found that uracils one and three in the loop of the histone mRNA SL preferentially crosslink to SLBP, whereas uracil two in the loop preferentially crosslinks to a separate component, likely the 3'hExo. We also performed a secondary analysis of an iCLIP data set to map UPF1 occupancy across the RD-histone mRNAs and found that UPF1 is bound adjacent to the SLBP-binding site. Multiple proteins likely bind the 3' end of RD-histone mRNAs together with SLBP.
Collapse
Affiliation(s)
- Lionel Brooks
- Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, USA
| | - Shawn M Lyons
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - J Matthew Mahoney
- Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Zhongle Liu
- Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Michael L Whitfield
- Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, USA
| |
Collapse
|
45
|
Amlie-Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, Van Deerlin VM, Gregory BD, Kwong LK, Trojanowski JQ, Lee VMY, Wang LS, Lee EB. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS One 2015; 10:e0141836. [PMID: 26510133 PMCID: PMC4624943 DOI: 10.1371/journal.pone.0141836] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is normally a nuclear RNA-binding protein that exhibits a range of functions including regulation of alternative splicing, RNA trafficking, and RNA stability. However, in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved, and is mislocalized to the cytoplasm where it forms distinctive aggregates. We previously developed a mouse model expressing human TDP-43 with a mutation in its nuclear localization signal (ΔNLS-hTDP-43) so that the protein preferentially localizes to the cytoplasm. These mice did not exhibit a significant number of cytoplasmic aggregates, but did display dramatic changes in gene expression as measured by microarray, suggesting that cytoplasmic TDP-43 may be associated with a toxic gain-of-function. Here, we analyze new RNA-sequencing data from the ΔNLS-hTDP-43 mouse model, together with published RNA-sequencing data obtained previously from TDP-43 antisense oligonucleotide (ASO) knockdown mice to investigate further the dysregulation of gene expression in the ΔNLS model. This analysis reveals that the transcriptomic effects of the overexpression of the ΔNLS-hTDP-43 transgene are likely due to a gain of cytoplasmic function. Moreover, cytoplasmic TDP-43 expression alters transcripts that regulate chromatin assembly, the nucleolus, lysosomal function, and histone 3' untranslated region (UTR) processing. These transcriptomic alterations correlate with observed histologic abnormalities in heterochromatin structure and nuclear size in transgenic mouse and human brains.
Collapse
Affiliation(s)
- Alexandre Amlie-Wolf
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Paul Ryvkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rui Tong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Isabelle Dragomir
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yan Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian D. Gregory
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Linda K. Kwong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
46
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
47
|
Viegas SC, Silva IJ, Apura P, Matos RG, Arraiano CM. Surprises in the 3'-end: 'U' can decide too! FEBS J 2015; 282:3489-99. [PMID: 26183531 DOI: 10.1111/febs.13377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/22/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
Abstract
RNA molecules are subjected to post-transcriptional modifications that might determine their maturation, activity, localization and stability. These alterations can occur within the RNA molecule or at its 5'- or 3'- extremities, and are essential for gene regulation and proper function of the RNA. One major type of modification is the 3'-end addition of nontemplated nucleotides. Polyadenylation is the most well studied type of 3'-RNA modification, both in eukaryotes and prokaryotes. The importance of 3'-oligouridylation has recently gained attention through the discovery of several types of uridylated-RNAs, by the existence of enzymes that specifically add poly(U) tails and others that preferentially degrade these tails. Namely, Dis3L2 is a 3'-5' exoribonuclease from the RNase II/RNB family that has been shown to act preferentially on oligo(U)-tailed transcripts. Our understanding of this process is still at the beginning, but it is already known to interfere in the regulation of diverse RNA species in most eukaryotes. Now that we are aware of the prevalence of RNA uridylation and the techniques available to globally evaluate the 3'-terminome, we can expect to make rapid progress in determining the extent of terminal oligouridylation in different RNA populations and unravel its impact on RNA decay mechanisms. Here, we sum up what is known about 3'-RNA modification in the different cellular compartments of eukaryotic cells, the conserved enzymes that perform this 3'-end modification and the effectors that are selectively activated by this process.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês J Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Patricia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecilia M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
48
|
Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 2015; 16:431-42. [PMID: 26081607 DOI: 10.1038/nrm4010] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.
Collapse
Affiliation(s)
- Vihandha O Wickramasinghe
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Ronald A Laskey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
49
|
Abstract
Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay are often regulated by phosphorylation of RNA-binding proteins. Cells use phosphorylation-dependent signaling pathways to turn on and off gene expression. Not much is known about how phosphorylation-dependent signals transmitted by exogenous factors or cell cycle checkpoints regulate RNA-mediated gene expression at the atomic level. Several human diseases are linked to an altered phosphorylation state of an RNA binding protein. Understanding the structural response to the phosphorylation "signal" and its effect on ribonucleoprotein assembly provides mechanistic understanding, as well as new information for the design of novel drugs. In this review, I highlight recent structural studies that reveal the mechanisms by which phosphorylation can regulate protein-protein and protein-RNA interactions in ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences
at Rice, Biochemistry
and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| |
Collapse
|
50
|
SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3'-end formation of histone mRNAs. Cell Rep 2014; 5:1187-95. [PMID: 24332368 DOI: 10.1016/j.celrep.2013.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here, we investigated SMN requirement for the biogenesis and function of U7--an snRNP specialized in the 3'-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3'-extended and polyadenylated transcripts followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3'-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo and identify an additional RNA pathway disrupted in SMA.
Collapse
|