1
|
Wang J, Ruan GX, Li Y, Xiao X, Zhu Z, Chen W, Huang H, Zhang R, Wang R, Chen M, Guo L, Li Y, Xu S, Ou X. Minor Splicing Factor RNPC3 Is Essential for the Germinal Center B Cell Response. Eur J Immunol 2025; 55:e202451508. [PMID: 40170400 DOI: 10.1002/eji.202451508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
Germinal center (GC) response ensures the generation of diverse and high-affinity antibodies during the T cell-dependent (TD) immune response. This process is controlled by coordinated transcriptional and posttranscriptional gene regulatory mechanisms. Minor intron splicing is known to be involved in posttranscriptional regulation of gene expression. RNA-binding region (RNP1, RRM) containing 3 (RNPC3) is a minor spliceosome component involved in stabilizing the U11/U12 di-snRNP complex, which is essential for minor intron splicing. However, it remains unclear if RNPC3 and RNPC3-related gene regulatory mechanisms are important for the TD immune response. In this study, we conditionally ablated RNPC3 in activated B cells and showed that the mutant mice had defective antibody generation due to impaired GC B cell response. We demonstrate that RNPC3 deficiency inhibits the proliferation and promotes the apoptosis of activated B cells. Mechanistically, we show that RNPC3 regulates the development of GC B cells in a minor spliceosome-dependent manner by controlling the removal of minor introns from minor intron-containing genes associated with cell proliferation and apoptosis. Our study thus uncovers a previously unappreciated role for RNPC3 in regulating GC B cell response.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Yuxing Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiong Xiao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenjing Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Rui Zhang
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruisi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Meiyuan Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Xijun Ou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
3
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
5
|
Bai R, Wan R, Wang L, Xu K, Zhang Q, Lei J, Shi Y. Structure of the activated human minor spliceosome. Science 2021; 371:science.abg0879. [PMID: 33509932 DOI: 10.1126/science.abg0879] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
The minor spliceosome mediates splicing of the rare but essential U12-type precursor messenger RNA. Here, we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-angstrom resolution. The 5' splice site and branch point sequence of the U12-type intron are recognized by the U6atac and U12 small nuclear RNAs (snRNAs), respectively. Five newly identified proteins stabilize the conformation of the catalytic center: The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome, the RBM48-ARMC7 complex binds the γ-monomethyl phosphate cap at the 5' end of U6atac snRNA, the U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 small nuclear ribonucleoprotein (snRNP), and CRIPT stabilizes U12 snRNP. Our study provides a framework for the mechanistic understanding of the function of the human minor spliceosome.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Norppa AJ, Kauppala TM, Heikkinen HA, Verma B, Iwaï H, Frilander MJ. Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:396-409. [PMID: 29255062 PMCID: PMC5824358 DOI: 10.1261/rna.062844.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Tuuli M Kauppala
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Harri A Heikkinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
7
|
Shah AA, Xu G, Rosen A, Hummers LK, Wigley FM, Elledge SJ, Casciola-Rosen L. Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. Arthritis Rheumatol 2017; 69:1306-1312. [PMID: 28217959 DOI: 10.1002/art.40065] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/02/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Prior studies have demonstrated an increased risk of cancer-associated scleroderma in patients with anti-RNA polymerase III (anti-RNAP III) autoantibodies as well as in patients who are triple-negative for anticentromere (anti-CENP), anti-topoisomerase I (anti-topo I), and anti-RNAP III (also known as anti-POL) autoantibodies (referred to as CTP negative). In a recent study of 16 CTP-negative scleroderma patients with coincident cancer, 25% of the patients were found to have autoantibodies to RNPC-3, a member of the minor spliceosome complex. This investigation was undertaken to validate the relationship between anti-RNPC-3 antibodies and cancer and examine the associated clinical phenotype in a large sample of scleroderma patients. METHODS Scleroderma patients with cancer were assayed for anti-CENP, anti-topo I, anti-RNAP III, and anti-RNPC-3 autoantibodies. Disease characteristics and the cancer-scleroderma interval were compared across autoantibody groups. The relationship between autoantibody status and cancer-associated scleroderma was assessed by logistic regression. RESULTS Of 318 patients with scleroderma and cancer, 70 (22.0%) were positive for anti-RNAP III, 54 (17.0%) were positive for anti-topo I, and 96 (30.2%) were positive for anti-CENP. Twelve patients (3.8% of the overall group or 12.2% of CTP-negative patients) were positive for anti-RNPC-3. Patients with anti-RNPC-3 had a short cancer-scleroderma interval (median 0.9 years). Relative to patients with anti-CENP, patients with anti-RNPC-3 and those with anti-RNAP III had a >4-fold increased risk of cancer within 2 years of scleroderma onset (for anti-RNPC-3-positive patients, odds ratio [OR] 4.3, 95% confidence interval [95% CI] 1.10-16.9 [P = 0.037]; for anti-RNAP III-positive patients, OR 4.49, 95% CI 1.98-10.2 [P < 0.001]). Patients with anti-RNPC-3 had severe restrictive lung disease, gastrointestinal disease, Raynaud's phenomenon, and myopathy. CONCLUSION Anti-RNPC-3 autoantibodies, similar to anti-RNAP III autoantibodies, are associated with an increased risk of cancer at the onset of scleroderma. These data suggest the possibility of cancer-induced autoimmunity in this subset of patients with scleroderma.
Collapse
Affiliation(s)
- Ami A Shah
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Xu
- Harvard University and Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts, and Howard Hughes Medical Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura K Hummers
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Stephen J Elledge
- Howard Hughes Medical Institute, Brigham and Women's Hospital, and Harvard University Medical School, Boston, Massachusetts
| | | |
Collapse
|
8
|
Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer. Proc Natl Acad Sci U S A 2016; 113:E7526-E7534. [PMID: 27821747 DOI: 10.1073/pnas.1615990113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scleroderma is a chronic autoimmune rheumatic disease associated with widespread tissue fibrosis and vasculopathy. Approximately two-thirds of all patients with scleroderma present with three dominant autoantibody subsets. Here, we used a pair of complementary high-throughput methods for antibody epitope discovery to examine patients with scleroderma with or without known autoantibody specificities. We identified a specificity for the minor spliceosome complex containing RNA Binding Region (RNP1, RNA recognition motif) Containing 3 (RNPC3) that is found in patients with scleroderma without known specificities and is absent in unrelated autoimmune diseases. We found strong evidence for both intra- and intermolecular epitope spreading in patients with RNA polymerase III (POLR3) and the minor spliceosome specificities. Our results demonstrate the utility of these technologies in rapidly identifying antibodies that can serve as biomarkers of disease subsets in the evolving precision medicine era.
Collapse
|
9
|
Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8. [PMID: 25218446 DOI: 10.1038/nsmb.2889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczański
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelius Schneider
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - ShengQi Xiang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Trowitzsch
- 1] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany
| |
Collapse
|
10
|
Wang I, Hennig J, Jagtap PKA, Sonntag M, Valcárcel J, Sattler M. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1. Nucleic Acids Res 2014; 42:5949-66. [PMID: 24682828 PMCID: PMC4027183 DOI: 10.1093/nar/gku193] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5' splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2-RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs.
Collapse
Affiliation(s)
- Iren Wang
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Center for Integrated Protein Science Munich and Biomolecular NMR, Department Chemie Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Center for Integrated Protein Science Munich and Biomolecular NMR, Department Chemie Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Center for Integrated Protein Science Munich and Biomolecular NMR, Department Chemie Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Miriam Sonntag
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Center for Integrated Protein Science Munich and Biomolecular NMR, Department Chemie Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica and Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Center for Integrated Protein Science Munich and Biomolecular NMR, Department Chemie Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| |
Collapse
|
11
|
Argente J, Flores R, Gutiérrez-Arumí A, Verma B, Martos-Moreno GÁ, Cuscó I, Oghabian A, Chowen JA, Frilander MJ, Pérez-Jurado LA. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med 2014; 6:299-306. [PMID: 24480542 PMCID: PMC3958305 DOI: 10.1002/emmm.201303573] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism
Collapse
Affiliation(s)
- Jesús Argente
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cruz-Gallardo I, Aroca Á, Persson C, Karlsson BG, Díaz-Moreno I. RNA binding of T-cell intracellular antigen-1 (TIA-1) C-terminal RNA recognition motif is modified by pH conditions. J Biol Chem 2013; 288:25986-25994. [PMID: 23902765 DOI: 10.1074/jbc.m113.489070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and
| | - Ángeles Aroca
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and
| | - Cecilia Persson
- the Swedish NMR Centre, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - B Göran Karlsson
- the Swedish NMR Centre, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Irene Díaz-Moreno
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and.
| |
Collapse
|
13
|
Law MJ, Lee DS, Lee CS, Anglim PP, Haworth IS, Laird-Offringa IA. The role of the C-terminal helix of U1A protein in the interaction with U1hpII RNA. Nucleic Acids Res 2013; 41:7092-100. [PMID: 23703211 PMCID: PMC3737524 DOI: 10.1093/nar/gkt326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous kinetic investigations of the N-terminal RNA Recognition Motif (RRM) domain of spliceosomal A protein of the U1 small nuclear ribonucleoprotein particle (U1A) interacting with its RNA target U1 hairpin II (U1hpII) provided experimental evidence for a ‘lure and lock’ model of binding. The final step of locking has been proposed to involve conformational changes in an α-helix immediately C-terminal to the RRM domain (helix C), which occludes the RNA binding surface in the unbound protein. Helix C must shift its position to accommodate RNA binding in the RNA–protein complex. This results in a new hydrophobic core, an intraprotein hydrogen bond and a quadruple stacking interaction between U1A and U1hpII. Here, we used a surface plasmon resonance-based biosensor to gain mechanistic insight into the role of helix C in mediating the interaction with U1hpII. Truncation, removal or disruption of the helix exposes the RNA-binding surface, resulting in an increase in the association rate, while simultaneously reducing the ability of the complex to lock, reflected in a loss of complex stability. Disruption of the quadruple stacking interaction has minor kinetic effects when compared with removal of the intraprotein hydrogen bonds. These data provide new insights into the mechanism whereby sequences C-terminal to an RRM can influence RNA binding.
Collapse
Affiliation(s)
- Michael J Law
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
14
|
Structure of the mRNA splicing complex component Cwc2: insights into RNA recognition. Biochem J 2012; 441:591-7. [PMID: 21957909 DOI: 10.1042/bj20111385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Prp19-associated complex [NTC (nineteen complex)] plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Only one component of the NTC, Cwc2, is capable of binding RNA. In the present study we report the 1.9 Å (1 Å=0.1 nm) X-ray structure of the Cwc2 core domain, which is both necessary and sufficient for RNA binding. The Cwc2 core domain contains two sub-domains, a CCCH-type ZnF (zinc finger) and a RRM (RNA recognition motif). Unexpectedly, the ZnF domain and the RRM form a single folding unit, glued together by extensive hydrophobic interactions and hydrogen bonds. Structure-guided mutational analysis revealed that the intervening loop [known as the RB loop (RNA-binding loop)] between ZnF and RRM plays an essential role in RNA binding. In addition, a number of highly conserved positively charged residues on the β-strands of RRM make an important contribution to RNA binding. Intriguingly, these residues and a portion of the RB loop constitute an extended basic surface strip that encircles Cwc2 halfway. The present study serves as a framework for understanding the regulatory function of the NTC in RNA splicing.
Collapse
|
15
|
Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:229-46. [PMID: 22278943 DOI: 10.1002/wrna.1107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules.
Collapse
Affiliation(s)
- Yutaka Muto
- Systems and Structural Biology Center, RIKEN, Tsurumi, Japan.
| | | |
Collapse
|
16
|
Aroca A, Díaz-Quintana A, Díaz-Moreno I. A structural insight into the C-terminal RNA recognition motifs of T-cell intracellular antigen-1 protein. FEBS Lett 2011; 585:2958-64. [PMID: 21846467 DOI: 10.1016/j.febslet.2011.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
T-cell intracellular antigen-1 (TIA-1) plays a pleiotropic role in cell homeostasis through the regulation of alternative pre-mRNA splicing and mRNA translation by recognising uridine-rich sequences of RNAs. TIA-1 contains three RNA recognition motifs (RRMs) and a glutamine-rich domain. Here, we characterise its C-terminal RRM2 and RRM3 domains. Notably, RRM3 contains an extra novel N-terminal α-helix (α(1)) which protects its single tryptophan from the solvent exposure, even in the two-domain RRM23 context. The α(1) hardly affects the thermal stability of RRM3. On the contrary, RRM2 destabilises RRM3, indicating that both modules are tumbling together, which may influence the RNA binding activity of TIA-1.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | | | | |
Collapse
|
17
|
Rudolph MG, Klostermeier D. The Thermus thermophilus DEAD box helicase Hera contains a modified RNA recognition motif domain loosely connected to the helicase core. RNA (NEW YORK, N.Y.) 2009; 15:1993-2001. [PMID: 19710183 PMCID: PMC2764482 DOI: 10.1261/rna.1820009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DEAD box family helicases consist of a helicase core that is formed by two flexibly linked RecA-like domains. The helicase activity can be regulated by N- or C-terminal extensions flanking the core. Thermus thermophilus heat resistant RNA-dependent ATPase (Hera) is the first DEAD box helicase that forms a dimer using a unique dimerization domain. In addition to the dimerization domain, Hera contains a C-terminal RNA binding domain (RBD) that shares sequence homology only to uncharacterized proteins of the Deinococcus/Thermus group. The crystal structure of Hera_RBD reveals the fold of an altered RNA recognition motif (RRM) with limited structural homology to the RBD of the DEAD box helicase YxiN from Bacillus subtilis. Comparison with RRM/RNA complexes shows that a RNA binding mode different than that suggested for YxiN, but similar to U1A, can be inferred for Hera. The orientation of the RBD relative to the helicase core was defined in a second crystal structure of a Hera fragment including the C-terminal RecA domain, the dimerization domain, and the RBD. The structures allow construction of a model for the entire Hera helicase dimer. A likely binding surface for large RNA substrates that spans both RecA-like domains and the RBD is identified.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Structural Biology, University of Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|