1
|
Mseis-Jackson N, Jiang M, Sharma M, Ranchod A, Williams C, Chen X, Li H. Dynamic regulation of NeuroD1 expression level by a novel viral construct during astrocyte-to-neuron reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638625. [PMID: 40027739 PMCID: PMC11870611 DOI: 10.1101/2025.02.17.638625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Astrocyte-to-neuron reprogramming presents a viable approach for regenerative medicine. The reprogramming factor NeuroD1 has demonstrated capability of neuronal reprogramming with high efficiency both in culture and in the injured central nervous system. High level of NeuroD1 expression is required to break down the cellular identity barrier for a successful reprogramming, and yet persistence of this high level drives the reprogrammed neurons primarily to glutamatergic subtype. This is consistent with the critical role of NeuroD1 in determination of glutamatergic neuronal lineage during development. However, diversified neuronal subtypes are needed to establish appropriate neuronal connectivity in disease/injury conditions. We reason that continuously high level of NeuroD1 expression forces the reprogrammed neurons into glutamatergic subtype, and that reducing NeuroD1 level after reprogramming may allow generation of neurons with diversified subtypes. For this purpose, we engineered a novel viral expression vector by which NeuroD1 expression can be dynamically regulated during the reprogramming process. Specifically, the target site of a neuron-specific microRNA (miR-124) is incorporated in the expression system. Therefore, this novel construct would still achieve a high NeuroD1 expression level in astrocytes for reprogramming to occur and yet reduce its level in the reprogrammed neurons by suppression of endogenous miR-124. In this study, we demonstrated that this construct elicits a dynamic gene expression pattern with much reduced level of NeuroD1 at later stages of neuronal reprogramming. We also showed that this construct still retains relatively high reprogramming efficiency and can generate mature neurons with an enhanced GABAergic neuronal phenotype.
Collapse
|
2
|
Głowacki P, Tręda C, Rieske P. Regulation of CAR transgene expression to design semiautonomous CAR-T. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200833. [PMID: 39184876 PMCID: PMC11344471 DOI: 10.1016/j.omton.2024.200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.
Collapse
Affiliation(s)
- Paweł Głowacki
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
3
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 Is Induced during Astrocyte-to-Neuron Reprogramming and Promotes Survival of Reprogrammed Neurons when Overexpressed. Cells 2023; 12:2202. [PMID: 37681934 PMCID: PMC10486704 DOI: 10.3390/cells12172202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. To understand the function of miRNAs during the AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activated essential neuronal genes to initiate the reprogramming process but also induced miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes (nELAVLs), which encode a family of RNA-binding proteins and were also upregulated by NeuroD1. We further showed that manipulating the miR-375 level regulated nELAVLs' expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/nELAVLs were also induced by the reprogramming factors Neurog2 and ASCL1 in HA, suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improved NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA and did not appear to compromise the maturation of the reprogrammed neurons. Lastly, overexpression of miR-375-refractory ELAVL4 induced apoptosis and reversed the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrated a neuroprotective role of miR-375 during NeuroD1-mediated AtN reprogramming.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Wang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mei Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Christine Williams
- Department of Chemistry & Biochemistry, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA
| | - Kristopher Mayes
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Na Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Brendan Puls
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quansheng Du
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 is induced during astrocyte-to-neuron reprogramming and promotes survival of reprogrammed neurons when overexpressed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548401. [PMID: 37503054 PMCID: PMC10369893 DOI: 10.1101/2023.07.10.548401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. MicroRNAs (miRNAs), as post-transcriptional regulators of gene expression, play crucial roles during development and under various pathological conditions. To understand the function of miRNAs during AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activates essential neuronal genes to initiate reprogramming process but also induces miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes ( nELAVLs ), which encode a family of RNA-binding proteins and are also upregulated by NeuroD1. We further showed that manipulating miR-375 level regulates nELAVLs expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/ nELAVLs are also induced by reprogramming factors Neurog2 and ASCL1 in HA suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improves NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA even in cultures treated with the chemotherapy drug Cisplatin. Moreover, miR-375 overexpression doesn't appear to compromise maturation of the reprogrammed neurons in long term HA cultures. Lastly, overexpression of miR-375-refractory ELAVL4 induces apoptosis and reverses the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrate a neuro-protective role of miR-375 during NeuroD1-mediated AtN reprogramming and suggest a strategy of combinatory overexpression of NeuroD1 and miR-375 for improving neuronal reprogramming efficiency.
Collapse
|
5
|
Urak R, Gittins B, Soemardy C, Grepo N, Goldberg L, Maker M, Shevchenko G, Davis A, Li S, Scott T, Morris KV, Forman SJ, Wang X. Evaluation of the Elements of Short Hairpin RNAs in Developing shRNA-Containing CAR T Cells. Cancers (Basel) 2023; 15:2848. [PMID: 37345185 DOI: 10.3390/cancers15102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Short hairpin RNAs (shRNAs) have emerged as a powerful tool for gene knockdown in various cellular systems, including chimeric antigen receptor (CAR) T cells. However, the elements of shRNAs that are crucial for their efficacy in developing shRNA-containing CAR T cells remain unclear. In this study, we evaluated the impact of different shRNA elements, including promoter strength, orientation, multiple shRNAs, self-targeting, and sense and antisense sequence composition on the knockdown efficiency of the target gene in CAR T cells. Our findings highlight the importance of considering multiple shRNAs and their orientation to achieve effective knockdown. Moreover, we demonstrate that using a strong promoter and avoiding self-targeting can enhance CAR T cell functionality. These results provide a framework for the rational design of CAR T cells with shRNA-mediated knockdown capabilities, which could improve the therapeutic efficacy of CAR T cell-based immunotherapy.
Collapse
Affiliation(s)
- Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Brenna Gittins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Nicole Grepo
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Lior Goldberg
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Madeleine Maker
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Shirley Li
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Tristan Scott
- Center for Gene Therapy, Beckman Research Institute, Duarte, CA 91010, USA
| | - Kevin V Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4215, Australia
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Urusov FA, Glazkova DV, Tsyganova GM, Pozdyshev DV, Bogoslovskaya EV, Shipulin GA. The Titer of the Lentiviral Vector Encoding Chimeric TRIM5α-HRH Gene is Reduced Due to Expression of TRIM5α-HRH in Producer Cells and the Negative Effect of Ef1α Promoter. Mol Biol 2022. [DOI: 10.1134/s0026893322010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Solé C, Lawrie CH. MicroRNAs in Metastasis and the Tumour Microenvironment. Int J Mol Sci 2021; 22:4859. [PMID: 34064331 PMCID: PMC8125549 DOI: 10.3390/ijms22094859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process whereby cancer cells migrate from the primary tumour site to colonise the surrounding or distant tissue or organ. Metastasis is the primary cause of cancer-related mortality and approximately half of all cancer patients present at diagnosis with some form of metastasis. Consequently, there is a clear need to better understand metastasis in order to develop new tools to combat this process. MicroRNAs (miRNAs) regulate gene expression and play an important role in cancer development and progression including in the metastatic process. Particularly important are the roles that miRNAs play in the interaction between tumour cells and non-tumoral cells of the tumour microenvironment (TME), a process mediated largely by circulating miRNAs contained primarily in extracellular vesicles (EVs). In this review, we outline the accumulating evidence for the importance of miRNAs in the communication between tumour cells and the cells of the TME in the context of the pre-metastatic and metastatic niche.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
| | - Charles Henderson Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX4 3DU, UK
| |
Collapse
|
8
|
Choi SH, Reeves RE, Romano Ibarra GS, Lynch TJ, Shahin WS, Feng Z, Gasser GN, Winter MC, Evans TIA, Liu X, Luo M, Zhang Y, Stoltz DA, Devor EJ, Yan Z, Engelhardt JF. Detargeting Lentiviral-Mediated CFTR Expression in Airway Basal Cells Using miR-106b. Genes (Basel) 2020; 11:E1169. [PMID: 33036232 PMCID: PMC7601932 DOI: 10.3390/genes11101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral-mediated integration of a CFTR transgene cassette into airway basal cells is a strategy being considered for cystic fibrosis (CF) cell-based therapies. However, CFTR expression is highly regulated in differentiated airway cell types and a subset of intermediate basal cells destined to differentiate. Since basal stem cells typically do not express CFTR, suppressing the CFTR expression from the lentiviral vector in airway basal cells may be beneficial for maintaining their proliferative capacity and multipotency. We identified miR-106b as highly expressed in proliferating airway basal cells and extinguished in differentiated columnar cells. Herein, we developed lentiviral vectors with the miR-106b-target sequence (miRT) to both study miR-106b regulation during basal cell differentiation and detarget CFTR expression in basal cells. Given that miR-106b is expressed in the 293T cells used for viral production, obstacles of viral genome integrity and titers were overcome by creating a 293T-B2 cell line that inducibly expresses the RNAi suppressor B2 protein from flock house virus. While miR-106b vectors effectively detargeted reporter gene expression in proliferating basal cells and following differentiation in the air-liquid interface and organoid cultures, the CFTR-miRT vector produced significantly less CFTR-mediated current than the non-miR-targeted CFTR vector following transduction and differentiation of CF basal cells. These findings suggest that miR-106b is expressed in certain airway cell types that contribute to the majority of CFTR anion transport in airway epithelium.
Collapse
Affiliation(s)
- Soon H. Choi
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Rosie E. Reeves
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | | | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Weam S. Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Michael C. Winter
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - T. Idil Apak Evans
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Meihui Luo
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| |
Collapse
|
9
|
Brendel C, Negre O, Rothe M, Guda S, Parsons G, Harris C, McGuinness M, Abriss D, Tsytsykova A, Klatt D, Bentler M, Pellin D, Christiansen L, Schambach A, Manis J, Trebeden-Negre H, Bonner M, Esrick E, Veres G, Armant M, Williams DA. Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy. Mol Ther Methods Clin Dev 2020; 17:589-600. [PMID: 32300607 PMCID: PMC7150438 DOI: 10.1016/j.omtm.2020.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023]
Abstract
In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle β-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.
Collapse
Affiliation(s)
- Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Swaroopa Guda
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Chad Harris
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Daniela Abriss
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Alla Tsytsykova
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Denise Klatt
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - John Manis
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Helene Trebeden-Negre
- Connell & O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Erica Esrick
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Myriam Armant
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
10
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
11
|
Rezaeian AH, Khanbabaei H, Calin GA. Therapeutic Potential of the miRNA-ATM Axis in the Management of Tumor Radioresistance. Cancer Res 2019; 80:139-150. [PMID: 31767626 DOI: 10.1158/0008-5472.can-19-1807] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is widely known for its function as a chief mobilizer of the DNA damage response (DDR) upon DNA double-strand breaks. ATM orchestrates the DDR by modulating the expression of various miRNAs through several mechanisms. On the other hand, a set of miRNAs contribute to tight regulation of ATM by directly targeting the 3'-untranslated region of ATM mRNA. This review addresses the therapeutic application and molecular mechanisms that underlie the intricate interactions between miRNAs and ATM. It also describes therapeutic delivery of miRNAs in different environments such as hypoxic tumor microenvironments.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia and the Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
12
|
Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 2018; 25:454-472. [PMID: 30190607 PMCID: PMC6478381 DOI: 10.1038/s41434-018-0039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.
Collapse
|
13
|
Type III Transforming Growth Factor- β Receptor RNA Interference Enhances Transforming Growth Factor β3-Induced Chondrogenesis Signaling in Human Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:4180857. [PMID: 30158983 PMCID: PMC6109468 DOI: 10.1155/2018/4180857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
The type III transforming growth factor-β (TGF-β) receptor (TβRIII), a coreceptor of the TGF-β superfamily, is known to bind TGF-βs and regulate TGF-β signaling. However, the regulatory roles of TβRIII in TGF-β-induced mesenchymal stem cell (MSC) chondrogenesis have not been explored. The present study examined the effect of TβRIII RNA interference (RNAi) on TGF-β3-induced human MSC (hMSC) chondrogenesis and possible signal mechanisms. A lentiviral expression vector containing TβRIII small interfering RNA (siRNA) (SiTβRIII) or a control siRNA (SiNC) gene was constructed and infected into hMSCs. The cells were cultured in chondrogenic medium containing TGF-β3 or control medium. TβRIII RNAi significantly enhanced TGF-β3-induced chondrogenic differentiation of hMSCs, the ratio of type II (TβRII) to type I (TβRI) TGF-β receptors, and phosphorylation levels of Smad2/3 as compared with cells infected with SiNC. An inhibitor of the TGF-β signal, SB431542, not only inhibited TβRIII RNAi-stimulated TGF-β3-mediated Smad2/3 phosphorylation but also inhibited the effects of TβRIII RNAi on TGF-β3-induced chondrogenic differentiation. These results demonstrate that TβRIII RNAi enhances TGF-β3-induced chondrogenic differentiation in hMSCs by activating TGF-β/Smad2/3 signaling. The finding points to the possibility of modifying MSCs by TβRIII knockdown as a potent future strategy for cell-based cartilage tissue engineering.
Collapse
|
14
|
Park HH, Triboulet R, Bentler M, Guda S, Du P, Xu H, Gregory RI, Brendel C, Williams DA. DROSHA Knockout Leads to Enhancement of Viral Titers for Vectors Encoding miRNA-Adapted shRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:591-599. [PMID: 30195795 PMCID: PMC6078836 DOI: 10.1016/j.omtn.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023]
Abstract
RNAi-based gene therapy using miRNA-adapted short hairpin RNAs (shRNAmiR) is a powerful approach to modulate gene expression. However, we have observed low viral titers with shRNAmiR-containing recombinant vectors and hypothesized that this could be due to cleavage of viral genomic RNA by the endogenous microprocessor complex during virus assembly. To test this hypothesis, we targeted DROSHA, the core component of the microprocessor complex, and successfully generated monoallelic and biallelic DROSHA knockout (KO) HEK293T cells for vector production. DROSHA KO was verified by polymerase chain reaction (PCR) and western blot analysis. We produced lentiviral vectors containing Venus with or without shRNA hairpins and generated virus supernatants using DROSHA KO packaging cells. We observed an increase in the fluorescence intensity of hairpin-containing Venus transcripts in DROSHA KO producer cells consistent with reduced microprocessor cleavage of encoded mRNA transcripts, and recovery in the viral titer of hairpin-containing vectors compared with non-hairpin-containing constructs. We confirmed the absence of significant shRNAmiR processing by northern blot analysis and showed that this correlated with an increase in the amount of full-length vector genomic RNA. These findings may have important implications in future production of viral shRNAmiR-containing vectors for RNAi-based therapy.
Collapse
Affiliation(s)
- Hee Ho Park
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Program of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Robinson Triboulet
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Swaroopa Guda
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peng Du
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA; Harvard Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA; Harvard Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Lauren C. Aguado
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York City, New York, United States of America
- * E-mail: (LCA); (Bt)
| | - Benjamin tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (LCA); (Bt)
| |
Collapse
|
16
|
Kim JO, Bae J, Kim J, Oh SH, An HJ, Han IB, Oh D, Kim OJ, Kim NK. Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality. J Stroke 2018; 20:110-121. [PMID: 29402068 PMCID: PMC5836584 DOI: 10.5853/jos.2017.02586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/30/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE MicroRNA (miRNA) expression has been examined in multiple conditions, including various cancers, neurological diseases, and cerebrovascular diseases, particularly stroke. Existing evidence indicates that miRNA biosynthesis and function play crucial roles in ischemic stroke physiology and pathology. In this study, we selected six known polymorphisms in miRNA-biogenesis genes; DICER rs13078A>T, rs3742330A>G; DROSHA rs10719T>C, rs6877842G>C; Ran GTPase (RAN) rs14035C>T; exportin 5 (XPO5) rs11077A>C. METHODS We analyzed the associations between these polymorphisms and disease status and clinical factors in 585 ischemic stroke patients and 403 controls. Genotyping was performed with the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS The DICER rs3742330A>G (AA vs. AG+GG: adjusted odds ratio [AOR], 1.360; 95% confidence interval [CI], 1.024 to 1.807; P=0.034) and DROSHA rs10719T>C polymorphisms (TT vs. CC: AOR, 2.038; 95% CI, 1.113 to 3.730; P=0.021) were associated with ischemic stroke prevalence. During a mean follow-up of 4.80±2.11 years, 99 (5.91%) of the stroke patients died. In multivariate Cox proportional hazard regression models, a significant association was found between RAN rs14035 and survival of large artery disease patients with ischemic stroke (CC vs. TT: adjusted hazard ratio, 5.978; P=0.015). CONCLUSIONS An association was identified between the DICER and DROSHA polymorphisms and ischemic stroke. Specifically, polymorphisms (rs3742330 and rs10719) were more common in stroke patients, suggesting that they may be associated with an increased risk of ischemic stroke.
Collapse
Affiliation(s)
- Jung Oh Kim
- Department of Biomedical Science, CHA University College of Life Science, Seongnam, Korea
| | - Jinkun Bae
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jinkwon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Seung Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hui Jeong An
- Department of Biomedical Science, CHA University College of Life Science, Seongnam, Korea
| | - In Bo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA University, Seongnam, Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Nam Keun Kim
- Department of Biomedical Science, CHA University College of Life Science, Seongnam, Korea
| |
Collapse
|
17
|
Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors. Hum Gene Ther Methods 2018; 28:177-190. [PMID: 28712309 DOI: 10.1089/hgtb.2017.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
18
|
Poling BC, Tsai K, Kang D, Ren L, Kennedy EM, Cullen BR. A lentiviral vector bearing a reverse intron demonstrates superior expression of both proteins and microRNAs. RNA Biol 2017; 14:1570-1579. [PMID: 28594311 PMCID: PMC5785219 DOI: 10.1080/15476286.2017.1334755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
While lentiviral expression vectors are widely used in many facets of molecular biology, due to their ability to stably express heterologous genes in both dividing and non-dividing cells, they suffer from the disadvantage that introns inserted into the vector genome are generally rapidly lost by splicing in packaging cell lines. The presence of an intron, if achievable, has the potential to facilitate the expression of transgene cDNAs, as splicing has been extensively shown to facilitate mRNA biogenesis and function. Moreover, if a stable intron could be introduced into a lentiviral vector, this could greatly facilitate the expression of microRNAs (miRNAs), and especially miRNA clusters, as the introduction of pri-miRNA stems into the exonic region of a lentiviral vector can strongly reduce both vector titer and the expression of any miRNA-linked indicator gene due to cleavage of the vector RNA genome by cellular Drosha. Here, we describe a novel lentiviral vector design in which transgenes and/or miRNAs are expressed using an antisense-orientated, inducible promoter driving an expression cassette bearing a functional intron. We demonstrate that this lentiviral vector, called pTREX, is able to express higher levels of both transgenes and pri-miRNA clusters when compared with a closely similar conventional lentiviral vector.
Collapse
Affiliation(s)
- Brigid Chiyoko Poling
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kevin Tsai
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| | - Dong Kang
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| | - Linda Ren
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| | - Edward M. Kennedy
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| | - Bryan R. Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
19
|
Herrera-Carrillo E, Harwig A, Berkhout B. Silencing of HIV-1 by AgoshRNA molecules. Gene Ther 2017; 24:453-461. [DOI: 10.1038/gt.2017.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
|
20
|
Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes (Basel) 2016; 7:genes7120119. [PMID: 27941595 PMCID: PMC5192495 DOI: 10.3390/genes7120119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection has been transformed by combined anti-retroviral therapy (ART), changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi), short interfering RNA (siRNA) induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.
Collapse
|
21
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
22
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
23
|
Chu H, Kohane DS, Langer R. RNA therapeutics - The potential treatment for myocardial infarction. Regen Ther 2016; 4:83-91. [PMID: 31245491 PMCID: PMC6581817 DOI: 10.1016/j.reth.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 01/19/2023] Open
Abstract
RNA therapeutics mainly control gene expression at the transcript level. In contrast to conventional gene therapy which solely increases production of a protein, delivered RNAs can enhance, reduce or abolish synthesis of a particular protein, which control its relevant activities in a more diverse fashion. Thus, they hold promise to treat many human diseases including myocardial infarction (MI). MI is a serious health burden that causes substantial morbidity and mortality. An unmet clinical need for treating MI is the recovery of cardiac function, which requires regeneration of the functional tissues including the vasculature, nerves, and myocardium. Several classes of RNA therapeutics have been investigated in preclinical MI models, and the results have demonstrated their benefits and encourage their future development. In this review, we summarize the common RNA therapeutic approaches and highlight their application in MI therapy.
Collapse
Affiliation(s)
- Hunghao Chu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
24
|
Nalla AK, Trobridge GD. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines 2016; 4:E8. [PMID: 28536375 PMCID: PMC5344253 DOI: 10.3390/biomedicines4020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.
Collapse
Affiliation(s)
- Arun K Nalla
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
| | - Grant D Trobridge
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
25
|
Abstract
Retroviral vector gene therapy is a promising approach to treating HIV-1. However, integrated vectors are mutagens with the potential to dysregulate nearby genes and cause severe adverse side effects. Leukemia has already been a documented severe adverse event in gene therapy clinical trials for the treatment of primary immunodeficiencies. These side effects will need to be reduced or avoided if retroviral vectors are to be used clinically for HIV-1 treatment. The addition of chromatin insulators to retroviral vectors is a potential strategy for reducing adverse side effects. Insulators have already been effectively used in retroviral vectors to reduce genotoxicity in pre-clinical studies. Here, we will review how insulators function, genotoxicity in gene therapy clinical trials, the design of insulated retroviral vectors, promising results from insulated retroviral vector studies, and considerations for the development of insulated retroviral treatment vectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Diana L. Browning
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Grant D. Trobridge
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA
- Correspondence: ; Tel.: +1-509-368-6535
| |
Collapse
|
26
|
Fang W, Bartel DP. The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell 2015; 60:131-45. [PMID: 26412306 DOI: 10.1016/j.molcel.2015.08.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs processed from stem-loop regions of primary transcripts (pri-miRNAs), with the choice of stem loops for initial processing largely determining what becomes a miRNA. To identify sequence and structural features influencing this choice, we determined cleavage efficiencies of >50,000 variants of three human pri-miRNAs, focusing on the regions intractable to previous high-throughput analyses. Our analyses revealed a mismatched motif in the basal stem region, a preference for maintaining or improving base pairing throughout the remainder of the stem, and a narrow stem-length preference of 35 ± 1 base pairs. Incorporating these features with previously identified features, including three primary-sequence motifs, yielded a unifying model defining mammalian pri-miRNAs in which motifs help orient processing and increase efficiency, with the presence of more motifs compensating for structural defects. This model enables generation of artificial pri-miRNAs, designed de novo, without reference to any natural sequence yet processed more efficiently than natural pri-miRNAs.
Collapse
Affiliation(s)
- Wenwen Fang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
siRNA Versus miRNA as Therapeutics for Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e252. [PMID: 26372022 PMCID: PMC4877448 DOI: 10.1038/mtna.2015.23] [Citation(s) in RCA: 718] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023]
Abstract
Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.
Collapse
|
28
|
Herrera-Carrillo E, Berkhout B. Bone Marrow Gene Therapy for HIV/AIDS. Viruses 2015; 7:3910-36. [PMID: 26193303 PMCID: PMC4517133 DOI: 10.3390/v7072804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
29
|
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7:50. [PMID: 26019725 PMCID: PMC4445287 DOI: 10.1186/s13073-015-0174-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.
Collapse
Affiliation(s)
- Maggie L Bobbin
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA
| | - John C Burnett
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| | - John J Rossi
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| |
Collapse
|
30
|
Albrecht C, Hosiner S, Tichy B, Aldrian S, Hajdu S, Nürnberger S. Comparison of Lentiviral Packaging Mixes and Producer Cell Lines for RNAi Applications. Mol Biotechnol 2015; 57:499-505. [DOI: 10.1007/s12033-015-9843-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
32
|
Herrera-Carrillo E, Berkhout B. Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets 2014; 19:245-63. [PMID: 25388088 DOI: 10.1517/14728222.2014.980236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. AREAS COVERED In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. EXPERT OPINION Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Academic Medical Center University of Amsterdam, Department of Medical Microbiology , Meibergdreef 15, Amsterdam, 1105 AZ , The Netherlands
| | | |
Collapse
|
33
|
Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther 2014; 22:163-71. [PMID: 25338920 DOI: 10.1038/gt.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) puts individuals at high risk for complicating cirrhosis and liver cancer, but available treatment to counter the virus rarely eliminates infection. Although harnessing RNA interference (RNAi) to silence HBV genes has shown the potential, achieving efficient and durable silencing of viral genes remains an important goal. Here we report on the propagation of lentiviral vectors (LVs) that successfully deliver HBV-targeting RNAi activators to liver cells. Mono- and tricistronic artificial primary microRNAs (pri-miRs) derived from pri-miR-31, placed under transcriptional control of the liver-specific modified murine transthyretin (mTTR) promoter, caused efficient inhibition of HBV replication markers. The tricistronic cassette was capable of silencing a mutant viral target and the effects were observed without disrupting the function of an endogenous miR (miR-16). The mTTR promoter stably expressed a reporter transgene in mouse livers over a study period of 1 year. Good silencing of HBV genes, without evidence of toxicity, was demonstrated following intravenous injection of LVs into neonatal HBV transgenic mice. Collectively, these data indicate that LVs may achieve sustained inhibition of HBV replication that is appealing for their therapeutic use.
Collapse
|
34
|
Gao S, Yang C, Jiang S, Xu XN, Lu X, He YW, Cheung A, Wang H. Applications of RNA interference high-throughput screening technology in cancer biology and virology. Protein Cell 2014; 5:805-15. [PMID: 24952721 PMCID: PMC4225462 DOI: 10.1007/s13238-014-0076-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is an ancient intra-cellular mechanism that regulates gene expression and cell function. Large-scale gene silencing using RNAi high-throughput screening (HTS) has opened an exciting frontier to systematically study gene function in mammalian cells. This approach enables researchers to identify gene function in a given biological context and will provide considerable novel insight. Here, we review RNAi HTS strategies and applications using case studies in cancer biology and virology.
Collapse
Affiliation(s)
- Shan Gao
- Department of Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Off-on polyadenylation strategy as a supplemental mechanism for silencing toxic transgene expression during lentiviral vector production. Biotechniques 2014; 56:311-2, 314-8. [PMID: 24924391 DOI: 10.2144/000114178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022] Open
Abstract
Many gene therapy strategies rely on lentiviral-mediated transfer and expression of genes coding for toxic proteins. Methods of controlling transgene expression in target cells have been extensively investigated, but comparatively little attention has been given to controlling toxic protein expression in viral vector-producing cells, despite its potential implications for viral production and transduction efficiency. In this work, we tested a new lentiviral vector with a backbone that inhibits transgene mRNA polyadenylation and subsequent transgene expression in vector-producing cells. Transgene mRNA polyadenylation was not affected in transduced cells. In a model using enhanced green fluorescent protein (EGFP) cDNA under the control of the human phosphoglycerate kinase (PGK) promoter, flow cytometry demonstrated that transgene expression was dramatically decreased in 293T cells transfected with this new vector in its plasmid configuration. Viral production was maintained, and expression was fully restored in transduced HuH7 and 293T cells. These results provide the basis for a new strategy to improve the production of lentiviral vectors expressing toxic transgenes.
Collapse
|
36
|
Harwig A, Das AT, Berkhout B. Retroviral microRNAs. Curr Opin Virol 2014; 7:47-54. [PMID: 24769093 DOI: 10.1016/j.coviro.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells and several DNA viruses encode miRNAs to regulate the expression of specific target genes. It has been controversial whether RNA viruses can encode such miRNAs as miRNA excision may lead to cleavage of the viral RNA genome. We will focus on the retrovirus family, HIV-1 in particular, and discuss the production of virus-encoded miRNAs and their putative function in the viral replication cycle. An intricate scenario of multi-layer virus-host interactions becomes apparent with small RNAs as the regulatory molecules.
Collapse
Affiliation(s)
- Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
38
|
Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus. J Virol 2014; 88:4679-86. [PMID: 24522910 DOI: 10.1128/jvi.03587-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.
Collapse
|
39
|
Abstract
Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vector.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Conroy R, Seto B. Multifunctional Nanoscale Delivery Systems for Nucleic Acids. ENGINEERING IN TRANSLATIONAL MEDICINE 2014:475-512. [DOI: 10.1007/978-1-4471-4372-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Olszko ME, Trobridge GD. Foamy virus vectors for HIV gene therapy. Viruses 2013; 5:2585-600. [PMID: 24153061 PMCID: PMC3814606 DOI: 10.3390/v5102585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to hematopoietic stem cells (HSCs) has so far limited the efficacy of this approach. Foamy virus (FV) vectors are derived from non-pathogenic viruses that are not endemic to the human population. FV vectors have been used to deliver HIV-inhibiting transgenes to human HSCs, and they have several advantages relative to other retroviral vectors. These include an attractive safety profile, broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. In addition, the titers of FV vectors are not reduced by anti-HIV transgenes that affect the production of lentivirus (LV) vectors. Thus FV vectors are very promising for anti-HIV gene therapy. This review covers the advantages of FV vectors and describes their preclinical development for anti-HIV gene therapy.
Collapse
Affiliation(s)
- Miles E. Olszko
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
| | - Grant D. Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
42
|
Abstract
RNA interference (RNAi) has been widely used as a tool for gene knockdown in fundamental research and for the development of new RNA-based therapeutics. The RNAi pathway is typically induced by expression of ∼22 base pair (bp) small interfering RNAs (siRNAs), which can be transfected into cells. For long-term gene silencing, short hairpin RNA (shRNA), or artificial microRNA (amiRNA) expression constructs have been developed that produce these RNAi inducers inside the cell. Currently, these types of constructs are broadly applied to knock down any gene of interest. Besides mono RNAi strategies that involve single shRNAs or amiRNAs, combinatorial RNAi approaches have been developed that allow the simultaneous expression of multiple siRNAs or amiRNAs by using polycistrons, extended shRNAs (e-shRNAs), or long hairpin RNAs (lhRNAs). Here, we provide practical information for the construction of single shRNA or amiRNA vectors, but also multi-shRNA/amiRNA constructs. Furthermore, we summarize the advantages and limitations of the most commonly used viral vectors for the expression of RNAi inducers.
Collapse
|
43
|
Cambon K, Déglon N. Lentiviral-mediated gene transfer of siRNAs for the treatment of Huntington's disease. Methods Mol Biol 2013; 1010:95-109. [PMID: 23754221 DOI: 10.1007/978-1-62703-411-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.
Collapse
Affiliation(s)
- Karine Cambon
- Molecular Imaging Research Center, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | | |
Collapse
|
44
|
Suerth JD, Schambach A, Baum C. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012; 24:598-608. [PMID: 22995202 DOI: 10.1016/j.coi.2012.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/23/2012] [Indexed: 01/02/2023]
Abstract
The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use.
Collapse
Affiliation(s)
- Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
45
|
Rosario FJ, Sadovsky Y, Jansson T. Gene targeting in primary human trophoblasts. Placenta 2012; 33:754-62. [PMID: 22831880 DOI: 10.1016/j.placenta.2012.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts.
Collapse
Affiliation(s)
- F J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
46
|
Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 2012; 1:79-90. [PMID: 24175213 PMCID: PMC3782270 DOI: 10.5501/wjv.v1.i3.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/16/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Klase Z, Houzet L, Jeang KT. Replication competent HIV-1 viruses that express intragenomic microRNA reveal discrete RNA-interference mechanisms that affect viral replication. Cell Biosci 2011; 1:38. [PMID: 22112720 PMCID: PMC3256098 DOI: 10.1186/2045-3701-1-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/23/2011] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication of a lentivirus such as HIV-1 after the deliberate intragenomic insertion of a bona fide miRNA. RESULTS We have constructed several HIV-1 molecular clones, each containing a discrete cellular miRNA positioned in Nef. These retroviral genomes express the inserted miRNA and are generally replication competent in T-cells. The inserted intragenomic miRNA was observed to elicit two different consequences for HIV-1 replication. First, the expression of miRNAs with predicted target sequences in the HIV-1 genome was found to reduce viral replication. Second, in one case, where an inserted miRNA was unusually well-processed by Drosha, this processing event inhibited viral replication. CONCLUSION This is the first study to examine in detail the replication competence of HIV-1 genomes that express cis-embedded miRNAs. The results indicate that a replication competent retroviral genome is not precluded from encoding and expressing a viral miRNA.
Collapse
Affiliation(s)
- Zachary Klase
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda MD, 20892, USA.
| | | | | |
Collapse
|
48
|
Houzet L, Jeang KT. MicroRNAs and human retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:686-93. [PMID: 21640212 PMCID: PMC3177989 DOI: 10.1016/j.bbagrm.2011.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Laurent Houzet
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| |
Collapse
|
49
|
Abstract
RNA interference (RNAi) is a powerful approach for reducing expression of endogenously expressed proteins. It is widely used for biological applications and is being harnessed to silence mRNAs encoding pathogenic proteins for therapy. Various methods - including delivering RNA oligonucleotides and expressing RNAi triggers from viral vectors - have been developed for successful RNAi in cell culture and in vivo. Recently, RNAi-based gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating fatal disorders or providing alternatives to traditional small molecule therapies. Here we describe the broad range of approaches to achieve targeted gene silencing for therapy, discuss important considerations when developing RNAi triggers for use in humans, and review the current status of clinical trials.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
50
|
Liu YP, Berkhout B. miRNA cassettes in viral vectors: problems and solutions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:732-45. [PMID: 21679781 DOI: 10.1016/j.bbagrm.2011.05.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023]
Abstract
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Ying Poi Liu
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|