1
|
Mou R, Niu R, Yang R, Xu G. Engineering crop performance with upstream open reading frames. TRENDS IN PLANT SCIENCE 2025; 30:311-323. [PMID: 39472218 DOI: 10.1016/j.tplants.2024.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 03/08/2025]
Abstract
Plants intricately regulate the expression of protein-coding genes at multiple stages - including mRNA transcription, translation, decay, and protein degradation - to control growth, development, and responses to environmental challenges. Recent research highlights the importance of translational reprogramming as a pivotal mechanism in regulating gene expression across diverse physiological scenarios. This regulatory mechanism bears practical implications, particularly in bolstering crop productivity by manipulating RNA regulatory elements (RREs) to modulate heterologous gene expression through transgene and endogenous gene expression through gene editing. Here, we elucidate the potential of upstream open reading frames (uORFs), a prominent and stringent class of RREs, in optimizing crop performance, exemplifying the efficacy of translational control in enhancing agricultural yields.
Collapse
Affiliation(s)
- Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruoying Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms. Life Sci Alliance 2024; 7:e202302501. [PMID: 38803235 PMCID: PMC11109482 DOI: 10.26508/lsa.202302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Samantha G Fernandez
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
5
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
6
|
Wang L, Xu F, Yu F. Two environmental signal-driven RNA metabolic processes: Alternative splicing and translation. PLANT, CELL & ENVIRONMENT 2023; 46:718-732. [PMID: 36609800 DOI: 10.1111/pce.14537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants live in fixed locations and have evolved adaptation mechanisms that integrate multiple responses to various environmental signals. Among the different components of these response pathways, receptors/sensors represent nodes that recognise environmental signals. Additionally, RNA metabolism plays an essential role in the regulation of gene expression and protein synthesis. With the development of RNA biotechnology, recent advances have been made in determining the roles of RNA metabolism in response to different environmental signals-especially the roles of alternative splicing and translation. In this review, we discuss recent progress in research on how the environmental adaptation mechanisms in plants are affected at the posttranscriptional level. These findings improve our understanding of the mechanism through which plants adapt to environmental changes by regulating the posttranscriptional level and are conducive for breeding stress-tolerant plants to cope with dynamic and rapidly changing environments.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
7
|
Lokdarshi A, von Arnim AG. Review: Emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111280. [PMID: 35643606 PMCID: PMC9197246 DOI: 10.1016/j.plantsci.2022.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The pan-eukaryotic protein kinase GCN2 (General Control Nonderepressible2) regulates the translation of mRNAs in response to external and metabolic conditions. Although GCN2 and its substrate, translation initiation factor 2 (eIF2) α, and several partner proteins are substantially conserved in plants, this kinase has assumed novel functions in plants, including in innate immunity and retrograde signaling between the chloroplast and cytosol. How exactly some of the biochemical paradigms of the GCN2 system have diverged in the green plant lineage is only partially resolved. Specifically, conflicting data underscore and cast doubt on whether GCN2 regulates amino acid biosynthesis; also whether phosphorylation of eIF2α can in fact repress global translation or activate mRNA specific translation via upstream open reading frames; and whether GCN2 is controlled in vivo by the level of uncharged tRNA. This review examines the status of research on the eIF2α kinase, GCN2, its function in the response to xenobiotics, pathogens, and abiotic stress conditions, and its rather tenuous role in the translational control of mRNAs.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-1939, USA; UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-1939, USA.
| |
Collapse
|
8
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
Probabilistic models of uORF-mediated ATF4 translation control. Math Biosci 2021; 343:108762. [PMID: 34883107 DOI: 10.1016/j.mbs.2021.108762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
ATF4 is a key transcription factor that activates transcription of genes needed to respond to cellular stress. Although the mRNA encoding ATF4 is present at constant levels in the cell during the initial response, translation of ATF4 increases under conditions of cellular stress while the global translation rate decreases. We study two models for the control system that regulates the translation of ATF4, both based on the Vattem-Wek hypothesis. This hypothesis is based on a race to reload, following the translation of a small upstream open reading frame (uORF), the ternary complex that brings the initiator tRNA to the ribosome as the 40S subunit scans along the mRNA, encountering first a start codon for an inhibitory uORF whose reading frame overlaps the start of the ATF4 coding sequence. We develop a pair of simple, analytic, probabilistic models, one of which assumes all nucleotide triplets have identical kinetic properties, while the other recognizes the existence of triplets at which the ternary complex loads more efficiently. We also consider two different functions representing the dependence of the rate of initiation at uORF1 on the ternary complex concentration. In keeping with the theme of this Special Issue, we studied the properties of these models in a Maple document, which can easily be modified to consider different parameters, translation rate initiation functions, and so on.
Collapse
|
10
|
Mancera-Martínez E, Dong Y, Makarian J, Srour O, Thiébeauld O, Jamsheer M, Chicher J, Hammann P, Schepetilnikov M, Ryabova LA. Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Res 2021; 49:6908-6924. [PMID: 34133725 PMCID: PMC8266674 DOI: 10.1093/nar/gkab501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.
Collapse
Affiliation(s)
- Eder Mancera-Martínez
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Yihan Dong
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Joelle Makarian
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ola Srour
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Odon Thiébeauld
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Muhammed Jamsheer
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mikhail Schepetilnikov
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Uzair M, Long H, Zafar SA, Patil SB, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. PLANT PHYSIOLOGY 2021; 186:497-518. [PMID: 33591317 PMCID: PMC8154097 DOI: 10.1093/plphys/kiab075] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 05/19/2023]
Abstract
Leaf morphology influences photosynthesis, transpiration, and ultimately crop yield. However, the molecular mechanism of leaf development is still not fully understood. Here, we identified and characterized the narrow leaf21 (nal21) mutant in rice (Oryza sativa), showing a significant reduction in leaf width, leaf length and plant height, and increased tiller number. Microscopic observation revealed defects in the vascular system and reduced epidermal cell size and number in the nal21 leaf blade. Map-based cloning revealed that NAL21 encodes a ribosomal small subunit protein RPS3A. Ribosome-targeting antibiotics resistance assay and ribosome profiling showed a significant reduction in the free 40S ribosome subunit in the nal21 mutant. The nal21 mutant showed aberrant auxin responses in which multiple auxin response factors (ARFs) harboring upstream open-reading frames (uORFs) in their 5'-untranslated region were repressed at the translational level. The WUSCHEL-related homeobox 3A (OsWOX3A) gene, a key transcription factor involved in leaf blade lateral outgrowth, is also under the translational regulation by RPS3A. Transformation with modified OsARF11, OsARF16, and OsWOX3A genomic DNA (gDNA) lacking uORFs rescued the narrow leaf phenotype of nal21 to a better extent than transformation with their native gDNA, implying that RPS3A could regulate translation of ARFs and WOX3A through uORFs. Our results demonstrate that proper translational regulation of key factors involved in leaf development is essential to maintain normal leaf morphology.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Long
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
12
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
13
|
Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology 2020; 147:1100-1113. [DOI: 10.1017/s0031182020000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe genome of Plasmodium falciparum has one of the most skewed base-pair compositions of any eukaryote, with an AT content of 80–90%. As start and stop codons are AT-rich, the probability of finding upstream open reading frames (uORFs) in messenger RNAs (mRNAs) is high and parasite mRNAs have an average of 11 uORFs in their leader sequences. Similar to other eukaryotes, uORFs repress the translation of the downstream open reading frame (dORF) in P. falciparum, yet the parasite translation machinery is able to bypass these uORFs and reach the dORF to initiate translation. This can happen by leaky scanning and/or reinitiation.In this report, we assessed leaky scanning and reinitiation by studying the effect of uORFs on the translation of a dORF, in this case, the luciferase reporter gene, and showed that both mechanisms are employed in the asexual blood stages of P. falciparum. Furthermore, in addition to the codon usage of the uORF, translation of the dORF is governed by the Kozak sequence and length of the uORF, and inter-cistronic distance between the uORF and dORF. Based on these features whole-genome data was analysed to uncover classes of genes that might be regulated by uORFs. This study indicates that leaky scanning and reinitiation appear to be widespread in asexual stages of P. falciparum, which may require modifications of existing factors that are involved in translation initiation in addition to novel, parasite-specific proteins.
Collapse
|
14
|
Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029-1042. [PMID: 31504789 DOI: 10.1093/nar/gkz734] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.
Collapse
Affiliation(s)
- Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Chu Y, Huang J, Ma G, Cui T, Yan X, Li H, Wang N. An Upstream Open Reading Frame Represses Translation of Chicken PPARγ Transcript Variant 1. Front Genet 2020; 11:165. [PMID: 32184808 PMCID: PMC7058706 DOI: 10.3389/fgene.2020.00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipogenesis. The PPARγ gene produces various transcripts with different 5'-untranslated regions (5' UTRs) because of alternative promoter usage and splicing. The 5' UTR plays important roles in posttranscriptional gene regulation. However, to date, the regulatory role and underlying mechanism of 5' UTRs in the posttranscriptional regulation of PPARγ expression remain largely unclear. In this study, we investigated the effects of 5' UTRs on posttranscriptional regulation using reporter assays. Our results showed that the five PPARγ 5' UTRs exerted different effects on reporter gene activity. Bioinformatics analysis showed that chicken PPARγ transcript 1 (PPARγ1) possessed an upstream open reading frame (uORF) in its 5' UTR. Mutation analysis showed that a mutation in the uORF led to increased Renilla luciferase activity and PPARγ protein expression, but decreased Renilla luciferase and PPARγ1 mRNA expression. mRNA stability analysis using real-time RT-PCR showed that the uORF mutation did not interfere with mRNA stability, but promoter activity analysis of the cloned 5' UTR showed that the uORF mutation reduced promoter activity. Furthermore, in vitro transcription/translation assays demonstrated that the uORF mutation markedly increased the translation of PPARγ1 mRNA. Collectively, our results indicate that the uORF represses the translation of chicken PPARγ1 mRNA.
Collapse
Affiliation(s)
- Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Raabe K, Honys D, Michailidis C. The role of eukaryotic initiation factor 3 in plant translation regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:75-83. [PMID: 31665669 DOI: 10.1016/j.plaphy.2019.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Regulation of translation represents a critical step in the regulation of gene expression. In plants, the translation regulation plays an important role at all stages of development and, during stress responses, functions as a fast and flexible tool which not only modulates the global translation rate but also controls the production of specific proteins. Regulation of translation is mostly focused on the initiation phase. There, one of essential initiation factors is the large multisubunit protein complex of eukaryotic translation initiation factor 3 (eIF3). In all eukaryotes, the general eIF3 function is to scaffold the formation of the translation initiation complex and to enhance the accuracy of scanning mechanism for start codon selection. Over the past decades, additional eIF3 functions were described as necessary for development in various eukaryotic organisms, including plants. The importance of the eIF3 complex lies not only at the global level of initiation event, but also in the precise translation regulation of specific transcripts. This review gathers the available information on functions of the plant eIF3 complex.
Collapse
Affiliation(s)
- Karel Raabe
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic.
| |
Collapse
|
17
|
Nürenberg-Goloub E, Tampé R. Ribosome recycling in mRNA translation, quality control, and homeostasis. Biol Chem 2019; 401:47-61. [DOI: 10.1515/hsz-2019-0279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Protein biosynthesis is a conserved process, essential for life. Ongoing research for four decades has revealed the structural basis and mechanistic details of most protein biosynthesis steps. Numerous pathways and their regulation have recently been added to the translation system describing protein quality control and messenger ribonucleic acid (mRNA) surveillance, ribosome-associated protein folding and post-translational modification as well as human disorders associated with mRNA and ribosome homeostasis. Thus, translation constitutes a key regulatory process placing the ribosome as a central hub at the crossover of numerous cellular pathways. Here, we describe the role of ribosome recycling by ATP-binding cassette sub-family E member 1 (ABCE1) as a crucial regulatory step controlling the biogenesis of functional proteins and the degradation of aberrant nascent chains in quality control processes.
Collapse
Affiliation(s)
- Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| |
Collapse
|
18
|
Chen K, Guo T, Li XM, Zhang YM, Yang YB, Ye WW, Dong NQ, Shi CL, Kan Y, Xiang YH, Zhang H, Li YC, Gao JP, Huang X, Zhao Q, Han B, Shan JX, Lin HX. Translational Regulation of Plant Response to High Temperature by a Dual-Function tRNA His Guanylyltransferase in Rice. MOLECULAR PLANT 2019; 12:1123-1142. [PMID: 31075443 DOI: 10.1016/j.molp.2019.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 05/23/2023]
Abstract
As sessile organisms, plants have evolved numerous strategies to acclimate to changes in environmental temperature. However, the molecular basis of this acclimation remains largely unclear. In this study we identified a tRNAHis guanylyltransferase, AET1, which contributes to the modification of pre-tRNAHis and is required for normal growth under high-temperature conditions in rice. Interestingly, AET1 possibly interacts with both RACK1A and eIF3h in the endoplasmic reticulum. Notably, AET1 can directly bind to OsARF mRNAs including the uORFs of OsARF19 and OsARF23, indicating that AET1 is associated with translation regulation. Furthermore, polysome profiling assays suggest that the translational status remains unaffected in the aet1 mutant, but that the translational efficiency of OsARF19 and OsARF23 is reduced; moreover, OsARF23 protein levels are obviously decreased in the aet1 mutant under high temperature, implying that AET1 regulates auxin signaling in response to high temperature. Our findings provide new insights into the molecular mechanisms whereby AET1 regulates the environmental temperature response in rice by playing a dual role in tRNA modification and translational control.
Collapse
Affiliation(s)
- Ke Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Yi-Min Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Chuan-Lin Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Ping Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Xuehui Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Zhao
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Bin Han
- University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
19
|
Johnson AG, Petrov AN, Fuchs G, Majzoub K, Grosely R, Choi J, Puglisi JD. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res 2019; 46:e8. [PMID: 29136179 PMCID: PMC5778468 DOI: 10.1093/nar/gkx1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, NY 12222, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Chen HH, Tarn WY. uORF-mediated translational control: recently elucidated mechanisms and implications in cancer. RNA Biol 2019; 16:1327-1338. [PMID: 31234713 DOI: 10.1080/15476286.2019.1632634] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein synthesis is tightly regulated, and its dysregulation can contribute to the pathology of various diseases, including cancer. Increased or selective translation of mRNAs can promote cancer cell proliferation, metastasis and tumor expansion. Translational control is one of the most important means for cells to quickly adapt to environmental stresses. Adaptive translation involves various alternative mechanisms of translation initiation. Upstream open reading frames (uORFs) serve as a major regulator of stress-responsive translational control. Since recent advances in omics technologies including ribo-seq have expanded our knowledge of translation, we discuss emerging mechanisms for uORF-mediated translation regulation and its impact on cancer cell biology. A better understanding of dysregulated translational control of uORFs in cancer would facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
21
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
23
|
Aibara I, Hirai T, Kasai K, Takano J, Onouchi H, Naito S, Fujiwara T, Miwa K. Boron-Dependent Translational Suppression of the Borate Exporter BOR1 Contributes to the Avoidance of Boron Toxicity. PLANT PHYSIOLOGY 2018; 177:759-774. [PMID: 29728453 PMCID: PMC6001339 DOI: 10.1104/pp.18.00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential element for plants; however, as high B concentrations are toxic, B transport must be tightly regulated. BOR1 is a borate exporter in Arabidopsis (Arabidopsis thaliana) that facilitates B translocation into shoots under B deficiency conditions. When the B supply is sufficient, BOR1 expression is down-regulated by selective degradation of BOR1 protein, while additional BOR1 regulatory mechanisms are proposed to exist. In this study, we identified a novel B-dependent BOR1 translational suppression mechanism. In vivo and in vitro reporter assays demonstrated that BOR1 translation was reduced in a B-dependent manner and that the 5'-untranslated region was both necessary and sufficient for this process. Mutational analysis revealed that multiple upstream open reading frames in the 5'-untranslated region were required for BOR1 translational suppression, and this process depended on the efficiency of translational reinitiation at the BOR1 open reading frame after translation of the upstream open reading frames. To understand the physiological significance of BOR1 regulation, we characterized transgenic plants defective in either one or both of the BOR1 regulation mechanisms. BOR1 translational suppression was induced at higher B concentrations than those triggering BOR1 degradation. Plants lacking both regulation mechanisms exhibited more severe shoot growth reduction under high-B conditions than did plants lacking BOR1 degradation alone, thus demonstrating the importance of BOR1 translational suppression. This study demonstrates that two mechanisms of posttranscriptional BOR1 regulation, each induced under different B concentrations, contribute to the avoidance of B toxicity in plants.
Collapse
Affiliation(s)
- Izumi Aibara
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tatsuya Hirai
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kasai
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Hong S, Liu Y, Xiong H, Cai D, Fan Q. Eukaryotic translation initiation factor 3H suppression inhibits osteocarcinoma cell growth and tumorigenesis. Exp Ther Med 2018; 15:4925-4931. [PMID: 29805516 PMCID: PMC5952081 DOI: 10.3892/etm.2018.6031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/07/2018] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation initiation factor 3H subunit (EIF3H) is a member of the EIF3 family and exhibits a central role in translation initiation in higher eukaryotes. Although EIF3H expression is upregulated in numerous tumour types, its potential role in human osteosarcoma (OS) has not yet been investigated. In the present study, it was demonstrated that EIF3H mRNA expression was upregulated in the human OS cell lines Saos-2 and U2OS. A recombinant lentivirus harbouring short hairpin RNA targeting EIF3H was constructed and successfully infected human OS Saos-2 and U2OS cells, resulting in 95% downregulated EIF3H expression compared with the respective control groups. Knockdown of EIF3H significantly inhibited the proliferation and colony formation of OS cells in vitro, and tumour growth in nude mice in vivo. Flow cytometry analysis revealed cell cycle arrest and promotion of apoptosis in OS cells with EIF3H knocked down. In conclusion, the results strongly suggested that EIF3H is a critical factor mediating the growth of OS cells and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Song Hong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yi Liu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Huazhang Xiong
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Dongfeng Cai
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qinghong Fan
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
25
|
Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, Valášek LS. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev 2018; 42:165-192. [PMID: 29281028 PMCID: PMC5972666 DOI: 10.1093/femsre/fux059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| |
Collapse
|
26
|
Schepetilnikov M, Ryabova LA. Recent Discoveries on the Role of TOR (Target of Rapamycin) Signaling in Translation in Plants. PLANT PHYSIOLOGY 2018; 176:1095-1105. [PMID: 29122989 PMCID: PMC5813564 DOI: 10.1104/pp.17.01243] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
TOR signaling regulates plant translation via a specific translation initiation mechanism: reinitiation.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
27
|
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res 2017; 45:10948-10968. [PMID: 28981723 PMCID: PMC5737393 DOI: 10.1093/nar/gkx805] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream—in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3–40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3’s impact on translational control in eukaryotic cells.
Collapse
Affiliation(s)
- Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Zuzana Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| |
Collapse
|
28
|
Hronová V, Mohammad MP, Wagner S, Pánek J, Gunišová S, Zeman J, Poncová K, Valášek LS. Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells? RNA Biol 2017; 14:1660-1667. [PMID: 28745933 DOI: 10.1080/15476286.2017.1353863] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reinitiation after translation of short upstream ORFs (uORFs) represents one of the means of regulation of gene expression on the mRNA-specific level in response to changing environmental conditions. Over the years it has been shown-mainly in budding yeast-that its efficiency depends on cis-acting features occurring in sequences flanking reinitiation-permissive uORFs, the nature of their coding sequences, as well as protein factors acting in trans. We earlier demonstrated that the first two uORFs from the reinitiation-regulated yeast GCN4 mRNA leader carry specific structural elements in their 5' sequences that interact with the translation initiation factor eIF3 to prevent full ribosomal recycling post their translation. Actually, this interaction turned out to be instrumental in stabilizing the mRNA·40S post-termination complex, which is thus capable to eventually resume scanning and reinitiate on the next AUG start site downstream. Recently, we also provided important in vivo evidence strongly supporting the long-standing idea that to stimulate reinitiation, eIF3 has to remain bound to ribosomes elongating these uORFs until their stop codon has been reached. Here we examined the importance of eIF3 and sequences flanking uORF1 of the human functional homolog of yeast GCN4, ATF4, in stimulation of efficient reinitiation. We revealed that the molecular basis of the reinitiation mechanism is conserved between yeasts and humans.
Collapse
Affiliation(s)
- Vladislava Hronová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic.,b Department of Genetics and Microbiology, Faculty of Science , Charles University in Prague , Vinicna, Prague , the Czech Republic
| | - Mahabub Pasha Mohammad
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Susan Wagner
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Josef Pánek
- c Laboratory of Bioinformatics , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Stanislava Gunišová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Jakub Zeman
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Kristýna Poncová
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| | - Leoš Shivaya Valášek
- a Laboratory of Regulation of Gene Expression , Institute of Microbiology ASCR , Videnska, Prague , the Czech Republic
| |
Collapse
|
29
|
Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocaña-Calahorro F, Fernández E, Guieysse B. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:45-56. [PMID: 28333392 DOI: 10.1111/tpj.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 05/13/2023]
Abstract
Over the last decades, several studies have reported emissions of nitrous oxide (N2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO2- ) under aerobic conditions can reduce NO2- into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO3- ) is the main Nitrogen source and the intracellular concentration of NO2- is low (i.e. under physiological conditions), microalgal N2 O synthesis involves the reduction of NO3- to NO2- by NR followed by the reduction of NO2- to NO by the dual system involving NR. This microalgal N2 O pathway has broad implications for environmental science and algal biology because the pathway of NO3- assimilation is conserved among microalgae, and because its regulation may involve NO.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Andy Shilton
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Michael A Packer
- Cawthron Institute, 98 Halifax Street, Nelson, 7010, New Zealand
| | - Patricia A McLenachan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Benoit Guieysse
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
30
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
31
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
32
|
Guerrero-González MDLL, Ortega-Amaro MA, Juárez-Montiel M, Jiménez-Bremont JF. Arabidopsis Polyamine oxidase-2 uORF is required for downstream translational regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:381-390. [PMID: 27526386 DOI: 10.1016/j.plaphy.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 05/10/2023]
Abstract
In eukaryotic mRNAs, small upstream open reading frames (uORFs) located in the 5'-untranslated region control the translation of the downstream main ORF. Polyamine oxidase (PAO) enzymes catalyze the oxidation of higher polyamines such as spermidine and spermine, and therefore contribute to the maintenance of intracellular polyamine content and to the regulation of physiological processes through their catabolic products. Recently, we reported that the Arabidopsis thaliana Polyamine Oxidase 2 (AtPAO2) is post-transcriptionally regulated by its 5'-UTR region through an uORF. In the present study, we analyzed whether the translation of the uORF is needed for the translational repression of the main ORF, and whether the inactivation of the uORF had an effect on the translational control mediated by polyamines. To this aim, we generated diverse single mutations in the uORF sequence; these mutant 5'-UTRs were fused to the GUS reporter gene, and tested in onion monolayer cells and A. thaliana transgenic seedlings. Removal of the start codon or introduction of a premature stop codon in the AtPAO2 uORF sequence abolished the negative regulation of the GUS expression exerted by the wild-type AtPAO2 uORF. An artificial uORF (32 amino acids in length) generated by the addition of a single nucleotide in AtPAO2 uORF proved to be less repressive than the wild-type uORF. Thus, our findings suggest that translation of the AtPAO2 uORF is necessary for the translational repression of the main ORF.
Collapse
Affiliation(s)
| | - María Azucena Ortega-Amaro
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico
| | - Margarita Juárez-Montiel
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico
| | - Juan Francisco Jiménez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico.
| |
Collapse
|
33
|
Curran JA, Weiss B. What Is the Impact of mRNA 5' TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype? Front Genet 2016; 7:156. [PMID: 27630668 PMCID: PMC5005323 DOI: 10.3389/fgene.2016.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
A major determinant in the efficiency of ribosome loading onto mRNAs is the 5′ TL (transcript leader or 5′ UTR). In addition, elements within this region also impact on start site selection demonstrating that it can modulate the protein readout at both quantitative and qualitative levels. With the increasing wealth of data generated by the mining of the mammalian transcriptome, it has become evident that a genes 5′ TL is not homogeneous but actually exhibits significant heterogeneity. This arises due to the utilization of alternative promoters, and is further compounded by significant variability with regards to the precise transcriptional start sites of each (not to mention alternative splicing). Consequently, the transcript for a protein coding gene is not a unique mRNA, but in-fact a complexed quasi-species of variants whose composition may respond to the changing physiological environment of the cell. Here we examine the potential impact of these events with regards to the protein readout.
Collapse
Affiliation(s)
- Joseph A Curran
- Department of Microbiology and Molecular Medicine, Medical School, University of GenevaGeneva, Switzerland; Institute of Genetics and Genomics of Geneva, University of GenevaGeneva, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Medical School, University of Geneva Geneva, Switzerland
| |
Collapse
|
34
|
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science 2016; 352:1413-6. [PMID: 27313038 DOI: 10.1126/science.aad9868] [Citation(s) in RCA: 748] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivaylo P Ivanov
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
35
|
Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion. Structure 2016; 24:886-96. [PMID: 27210288 DOI: 10.1016/j.str.2016.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 02/05/2023]
Abstract
Eukaryotic initiation factor 3 (eIF3), an essential multi-protein complex involved in translation initiation, is composed of 12 tightly associated subunits in humans. While the overall structure of eIF3 is known, the mechanism of its assembly and structural consequences of dysregulation of eIF3 subunit expression seen in many cancers is largely unknown. Here we show that subunits in eIF3 assemble into eIF3 in an interdependent manner. Assembly of eIF3 is governed primarily by formation of a helical bundle, composed of helices extending C-terminally from PCI-MPN domains in eight subunits. We propose that, while the minimal subcomplex of human-like eIF3 functional for translation initiation in cells consists of subunits a, b, c, f, g, i, and m, numerous other eIF3 subcomplexes exist under circumstances of subunit over- or underexpression. Thus, eIF3 subcomplexes formed or "released" due to dysregulated subunit expression may be determining factors contributing to eIF3-related cancers.
Collapse
|
36
|
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The Emerging World of Small ORFs. TRENDS IN PLANT SCIENCE 2016; 21:317-328. [PMID: 26684391 DOI: 10.1016/j.tplants.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 05/10/2023]
Abstract
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Collapse
Affiliation(s)
- Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew A W Chisnall
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Institute for Plant and Food Research Ltd.
| |
Collapse
|
37
|
Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA (NEW YORK, N.Y.) 2016; 22:542-558. [PMID: 26822200 PMCID: PMC4793210 DOI: 10.1261/rna.055046.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 05/29/2023]
Abstract
Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Vladislava Vlčková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| |
Collapse
|
38
|
Johnstone TG, Bazzini AA, Giraldez AJ. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 2016; 35:706-23. [PMID: 26896445 DOI: 10.15252/embj.201592759] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates.
Collapse
Affiliation(s)
- Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
Tsukumo Y, Tsukahara S, Furuno A, Iemura SI, Natsume T, Tomida A. TBL2 Associates WithATF4mRNA Via Its WD40 Domain and Regulates Its Translation During ER Stress. J Cell Biochem 2015; 117:500-9. [DOI: 10.1002/jcb.25301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshinori Tsukumo
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Satomi Tsukahara
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Aki Furuno
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| | - Shun-ichiro Iemura
- Innovative Drug Development TR Section; Fukushima Medical University; Fukushima City Fukushima 960-1295 Japan
| | - Tohru Natsume
- Biomedicinal Information Research Center; National Institute of Advanced Industrial Science and Technology; Koto-ku Tokyo 135-0064 Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; Koto-ku Tokyo 135-8550 Japan
| |
Collapse
|
40
|
Legrand N, Jaquier-Gubler P, Curran J. The impact of the phosphomimetic eIF2αS/D on global translation, reinitiation and the integrated stress response is attenuated in N2a cells. Nucleic Acids Res 2015; 43:8392-404. [PMID: 26264663 PMCID: PMC4787802 DOI: 10.1093/nar/gkv827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
A plethora of stresses trigger a rapid downregulation of protein synthesis. However, a fraction of mRNAs continue to be recruited onto polysomes and their protein products play a key role in deciding cell fate. These transcripts are characterized by the presence of uORFs within their 5' TL coupling protein expression to reinitiation. The translational brake arises due to the activation of a family of kinases targeting the α subunit of the trimolecular eIF2(αβγ) initiation factor. Phosphorylation of eIF2αSer51 inhibits ternary complex regeneration reducing the pool of 43S ribosomes. It is popular to mimic this event, and hence the integrated stress response (ISR), by the expression of the phosphomimetic eIF2αS51D. However, we report that whereas the ISR is reproduced by eIF2αS51D expression in human HEK293T cells this is not the case in N2a mouse neuroblastoma cells. With regards to translational downregulation, this arises due to the failure of the phosphomimetic protein to assemble an eIF2 complex with endogenous eIF2β/γ. This can be compensated for by the transient co-expression of all three subunits. Curiously, these conditions do not modulate reinitiation and consequently fail to trigger the ISR. This is the first demonstration that the inhibitory and reinitiation functions of eIF2αS/D can be separated.
Collapse
Affiliation(s)
- Noemie Legrand
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Switzerland
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Switzerland
| | - Joseph Curran
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Switzerland Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| |
Collapse
|
41
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
42
|
Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang EL, Verschueren E, Johnson JR, Krogan NJ, Fraser CS, Weissman JS, Renslo AR, Walter P. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 2015; 4:e07314. [PMID: 25875391 PMCID: PMC4426669 DOI: 10.7554/elife.07314] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmela Sidrauski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Martin Kampmann
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Brian R Hearn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Punitha Vedantham
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Aaron S Mendez
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Edward L Tang
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Jeffrey R Johnson
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Nevan J Krogan
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Jonathan S Weissman
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
43
|
Analysis of human upstream open reading frames and impact on gene expression. Hum Genet 2015; 134:605-12. [PMID: 25800702 DOI: 10.1007/s00439-015-1544-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
Abstract
The upstream open reading frame (uORF) is a post-transcriptional regulatory element in the 5' untranslated region (5'UTR), which modulates the translation levels of main open reading frame (mORF). Earlier studies showed that disturbed uORF-mediated translation control can result in drastic changes in translation levels of mORF, leading to genetic disorders. To date, there has been no systematic investigation into the relationship between variations in patients and uORF status. Here, taking the advantage of several datasets, including gene ontology (GO) annotations and sequence feature analysis, we have examined uORF impacts in human transcripts. GO annotations indicate that uORF-containing genes are enriched in certain features such as oncogenes and transcription factors. Sequence feature analysis reveals that uORF is a factor for determination of the translation initiation site (TIS) in human transcripts. We show that genes with uORFs have lower protein expression levels than genes without uORFs in multiple human tissues. Moreover, by examining three disease variation databases, we identified uORF-altering mutations from a total of 3,740,225 variations, which are highly suspected to be associated with changed levels of gene expression. For an experimental validation, we found four mutations with significant effects on protein expression but with only modest changes in transcription levels. These findings will provide researchers on related diseases with new insights into the importance of known mutations.
Collapse
|
44
|
Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex. Nat Struct Mol Biol 2015; 22:269-71. [PMID: 25664723 DOI: 10.1038/nsmb.2963] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/24/2014] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.
Collapse
|
45
|
Nolte C, Staiger D. RNA around the clock - regulation at the RNA level in biological timing. FRONTIERS IN PLANT SCIENCE 2015; 6:311. [PMID: 25999975 PMCID: PMC4419606 DOI: 10.3389/fpls.2015.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.
Collapse
Affiliation(s)
| | - Dorothee Staiger
- *Correspondence: Dorothee Staiger, Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Universitaetsstrasse 25, Bielefeld D-33615, Germany
| |
Collapse
|
46
|
Henriques R, Bögre L, Horváth B, Magyar Z. Balancing act: matching growth with environment by the TOR signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2691-701. [PMID: 24567496 DOI: 10.1093/jxb/eru049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures.
Collapse
Affiliation(s)
- Rossana Henriques
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - László Bögre
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Beátrix Horváth
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Temesvári kru. 62, POB 521, H-6701, Szeged, Hungary
| |
Collapse
|
47
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
48
|
Zhou F, Roy B, Dunlap JR, Enganti R, von Arnim AG. Translational control of Arabidopsis meristem stability and organogenesis by the eukaryotic translation factor eIF3h. PLoS One 2014; 9:e95396. [PMID: 24736281 PMCID: PMC3988188 DOI: 10.1371/journal.pone.0095396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Essentially all aboveground plant tissues develop from the stem cells in the primary shoot apical meristem. Proliferation of the stem cell population in the Arabidopsis shoot apical meristem is tightly controlled by a feedback loop formed primarily by the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA ligand-receptor system. In this study, it is shown that mutation of a translation initiation factor, eIF3h, causes a tendency to develop a strikingly enlarged shoot apical meristem with elevated and ectopic expression of WUS and CLAVATA3 (CLV3). Many of the mRNAs that function in apical meristem maintenance possess upstream open reading frames (uORFs), translational attenuators that render translation partially dependent on eIF3h. Specifically, the mRNA for the receptor kinase, CLV1, is undertranslated in the eif3h mutant as shown by transient and transgenic expression assays. Concordant phenotypic observations include defects in organ polarity and in translation of another uORF-containing mRNA, ASYMMETRIC LEAVES 1 (AS1), in eif3h. In summary, the expression of developmental regulatory mRNAs is attenuated by uORFs, and this attenuation is balanced in part by the translation initiation factor, eIF3h. Thus, translational control plays a key role in Arabidopsis stem cell regulation and organogenesis.
Collapse
Affiliation(s)
- Fujun Zhou
- Genome Science and Technology Program, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - John R. Dunlap
- Division of Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ramya Enganti
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Albrecht G. von Arnim
- Genome Science and Technology Program, The University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
49
|
Gunišová S, Valášek LS. Fail-safe mechanism of GCN4 translational control--uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res 2014; 42:5880-93. [PMID: 24623812 PMCID: PMC4027193 DOI: 10.1093/nar/gku204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5' reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
50
|
Guerrero-González ML, Rodríguez-Kessler M, Jiménez-Bremont JF. uORF, a regulatory mechanism of the Arabidopsis polyamine oxidase 2. Mol Biol Rep 2014; 41:2427-43. [PMID: 24435979 DOI: 10.1007/s11033-014-3098-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 01/04/2014] [Indexed: 01/01/2023]
Abstract
The translational efficiency of an mRNA can be modulated by elements located in the 5'-untranslated region. The flavin-containing polyamine oxidases catabolize oxidative deamination of spermidine and spermine, thus contributing to polyamine homeostasis as well as diverse biological processes through their reaction products. In this study, we characterized the uORF of AtPAO2 gene using the GUS reporter gene. Transgenic lines harboring the native AtPAO2 promoter or the constitutive CaMV 35S promoter show that the uORF negatively affects GUS expression. Exogenous applications of PAs positively modulate GUS expression, thus alleviating the negative effect of AtPAO2 uORF, while treatments with MGBG inhibitor show an opposite effect. Our data suggest that AtPAO2 uORF regulatory mechanism is modulated by polyamines. In addition, we present a comparative in silico study of the uORFs identified in several plant transcripts encoding polyamine oxidases in both mono- and dicotyledonous plants as well as in the Bryophyte Physcomitrella patens. The polyamine oxidase uORF-encoded peptides are conserved among families and share conserved features such as their position, length, and amino acid sequence. Our findings provide new insights into the regulatory mechanism of polyamine oxidase genes and encourage further exploration to assess the biological significance of uORFs in the polyamine catabolic pathway.
Collapse
Affiliation(s)
- Maria L Guerrero-González
- Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa de San Jose 2055, AP 3-74 Tangamanga, 78216, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|