1
|
Knittel TL, Montgomery BE, Tate AJ, Deihl EW, Nawrocki AS, Hoerndli FJ, Montgomery TA. A low-abundance class of Dicer-dependent siRNAs produced from a variety of features in C. elegans. Genome Res 2024; 34:2203-2216. [PMID: 39622635 PMCID: PMC11694761 DOI: 10.1101/gr.279083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In Caenorhabditis elegans, 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates. To identify canonical siRNAs in C. elegans, we first characterized the siRNAs produced via the exogenous RNA interference (RNAi) pathway. During RNAi, dsRNA is processed into ∼23 nt duplexes with ∼2 nt, 3'-overhangs, ultimately yielding siRNAs devoid of 5'G-containing sequences that bind with high affinity to the Argonaute RDE-1, but also to the microRNA (miRNA) pathway Argonaute, ALG-1. Using these characteristics, we searched for their endogenous counterparts and identified thousands of endogenous loci representing dozens of unique elements that give rise to mostly low to moderate levels of siRNAs, called 23H-RNAs. These loci include repetitive elements, putative coding genes, pseudogenes, noncoding RNAs, and unannotated features, many of which adopt hairpin (hp) structures reminiscent of the hpRNA/RNAi pathway in flies and mice. RDE-1 competes with other Argonautes for binding to 23H-RNAs. When RDE-1 is depleted, these siRNAs are enriched in ALG-1 and ALG-2 complexes. Our results expand the known repertoire of C. elegans small RNAs and their Argonaute interactors, and demonstrate that key features of the endogenous siRNA pathway are relatively unchanged in animals.
Collapse
Affiliation(s)
- Thiago L Knittel
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ennis W Deihl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anastasia S Nawrocki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
2
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
3
|
Zhang H, Gao J, Chen J, Peng Y, Han Z. RNA-dependent RNA polymerase could extend the lasting validity period of exogenous dsRNA. PEST MANAGEMENT SCIENCE 2022; 78:4569-4578. [PMID: 35831266 DOI: 10.1002/ps.7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Davis MB, Jash E, Chawla B, Haines RA, Tushman LE, Troll R, Csankovszki G. Dual roles for nuclear RNAi Argonautes in Caenorhabditis elegans dosage compensation. Genetics 2022; 221:iyac033. [PMID: 35234908 PMCID: PMC9071528 DOI: 10.1093/genetics/iyac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the dosage compensation complex which binds to both hermaphrodite X chromosomes and reduces transcriptional output by half. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probes and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3, as well as mutants for the piRNA Argonaute prg-1, exhibit derepression of xol-1 transcripts, they also affect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and found that hrde-1 and nrde-3 contribute to healthy dosage compensation both upstream and downstream of xol-1.
Collapse
Affiliation(s)
- Michael B Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lillian E Tushman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Troll
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
6
|
Abstract
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail:
| |
Collapse
|
7
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
8
|
Wahba L, Hansen L, Fire AZ. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev Cell 2021; 56:2295-2312.e6. [PMID: 34388368 PMCID: PMC8387450 DOI: 10.1016/j.devcel.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are RNA effectors with key roles in maintaining genome integrity and promoting fertility in metazoans. In Caenorhabditis elegans loss of piRNAs leads to a transgenerational sterility phenotype. The plethora of piRNAs and their ability to silence transcripts with imperfect complementarity have raised several (non-exclusive) models for the underlying drivers of sterility. Here, we report the extranuclear and transferable nature of the sterility driver, its suppression via mutations disrupting the endogenous RNAi and poly-uridylation machinery, and copy-number amplification at the ribosomal DNA locus. In piRNA-deficient animals, several small interfering RNA (siRNA) populations become increasingly overabundant in the generations preceding loss of germline function, including ribosomal siRNAs (risiRNAs). A concomitant increase in uridylated sense rRNA fragments suggests that poly-uridylation may potentiate RNAi-mediated gene silencing of rRNAs. We conclude that loss of the piRNA machinery allows for unchecked amplification of siRNA populations, originating from abundant highly structured RNAs, to deleterious levels.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Abstract
Memories encoded in the parent's brain should not be able to transfer to the progeny. This assumption, which is compatible with the tenets of modern neuroscience and genetics, is challenged by new insights regarding inheritance of transgenerational epigenetic responses. Here we reflect on new discoveries regarding "molecular memories" in light of older and scandalous work on "Memory transfer" spearheaded by James V. McConnell and Georges Ungar. While the history of this field is filled with controversies, mechanisms for transmission of information across generations are being elucidated in different organisms. Most strikingly, it is now clear that in Caenorhabditis elegans nematodes, somatic responses can control gene activity in descendants via heritable small RNA molecules, and that this type of inheritance is tightly regulated by dedicated machinery. In this perspective we will focus mostly on studies conducted using C. elegans, and examine recent work on the connection between small RNAs in the nervous system and germline. We will discuss the evidence for the inheritance of brain-orchestrated behavior, and its possible significance.
Collapse
Affiliation(s)
- Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052373. [PMID: 33673453 PMCID: PMC7956838 DOI: 10.3390/ijms22052373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and translation, sncRNAs are becoming vital to many cellular processes. Within the past decade, a novel class of sncRNAs called PIWI-interacting RNAs (piRNAs) have been implicated in various diseases, and understanding their complete function is of vital importance. Historically, piRNAs have been shown to be indispensable in germline integrity and stem cell development. Accumulating research evidence continue to reveal the many arms of piRNA function. Although piRNA function and biogenesis has been extensively studied in Drosophila, it is thought that they play similar roles in vertebrate species, including humans. Compounding evidence suggests that piRNAs encompass a wider functional range than small interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been studied more in terms of cellular homeostasis and disease. This review aims to summarize contemporary knowledge regarding biogenesis, and homeostatic function of piRNAs and their emerging roles in the development of pathologies related to cardiomyopathies, cancer, and infectious diseases.
Collapse
|
11
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
12
|
Chaves DA, Dai H, Li L, Moresco JJ, Oh ME, Conte D, Yates JR, Mello CC, Gu W. The RNA phosphatase PIR-1 regulates endogenous small RNA pathways in C. elegans. Mol Cell 2020; 81:546-557.e5. [PMID: 33378643 DOI: 10.1016/j.molcel.2020.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the β and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.
Collapse
Affiliation(s)
- Daniel A Chaves
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hui Dai
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, USA
| | - Lichao Li
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, USA
| | - James J Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Myung Eun Oh
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, USA
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Craig C Mello
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
13
|
Lev I, Rechavi O. Germ Granules Allow Transmission of Small RNA-Based Parental Responses in the "Germ Plasm". iScience 2020; 23:101831. [PMID: 33305186 PMCID: PMC7718480 DOI: 10.1016/j.isci.2020.101831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the recent decade small RNA-based inheritance has been implicated in a variety of transmitted physiological responses to the environment. In Caenorhabditis elegans, heritable small RNAs rely on RNA-dependent RNA polymerases, RNA-processing machinery, chromatin modifiers, and argonauts for their biogenesis and gene-regulatory effects. Importantly, many of these factors reside in evolutionary conserved germ granules that are required for maintaining germ cell identity and gene expression. Recent literature demonstrated that transient disturbance to the stability of the germ granules leads to changes in the pools of heritable small RNAs and the physiology of the progeny. In this piece, we discuss the heritable consequences of transient destabilization of germ granules and elaborate on the various small RNA-related processes that act in the germ granules. We further propose that germ granules may serve as environment sensors that translate environmental changes to inheritable small RNA-based responses.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Dai H, Gu W. Small RNA Plays Important Roles in Virus-Host Interactions. Viruses 2020; 12:E1271. [PMID: 33171824 PMCID: PMC7695165 DOI: 10.3390/v12111271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding small RNAs play important roles in virus-host interactions. For hosts, small RNAs can serve as sensors in antiviral pathways including RNAi and CRISPR; for viruses, small RNAs can be involved in viral transcription and replication. This paper covers several recent discoveries on small RNA mediated virus-host interactions, and focuses on influenza virus cap-snatching and a few important virus sensors including PIR-1, RIG-I like protein DRH-1 and piRNAs. The paper also discusses recent advances in mammalian antiviral RNAi.
Collapse
Affiliation(s)
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside 900 University Avenue, Riverside, CA 92521, USA;
| |
Collapse
|
15
|
C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 2020; 586:445-451. [PMID: 32908307 PMCID: PMC8547118 DOI: 10.1038/s41586-020-2699-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
C. elegans must distinguish pathogenic from nutritious bacterial food sources among the many bacteria it is exposed to in its environment1. Here we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance, both in the treated animals and in four subsequent generations of progeny. The RNA interference and piRNA pathways, the germline, and the ASI neuron are required for bacterial small RNA-induced avoidance behavior and transgenerational inheritance. A single P. aeruginosa non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Our results suggest that this ncRNA-dependent mechanism evolved to survey the worm’s microbial environment, use this information to make appropriate behavioral decisions, and pass this information on to its progeny.
Collapse
|
16
|
Cohen-Berkman M, Dudkevich R, Ben-Hamo S, Fishman A, Salzberg Y, Waldman Ben-Asher H, Lamm AT, Henis-Korenblit S. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 2020; 9:e50896. [PMID: 32213289 PMCID: PMC7136021 DOI: 10.7554/elife.50896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Collapse
Affiliation(s)
- Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Shani Ben-Hamo
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of ScienceRehovotIsrael
| | | | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| |
Collapse
|
17
|
Hansen SR, Aderounmu AM, Donelick HM, Bass BL. Dicer's Helicase Domain: A Meeting Place for Regulatory Proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:185-193. [PMID: 32179591 PMCID: PMC7384945 DOI: 10.1101/sqb.2019.84.039750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The function of Dicer’s helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Adedeji M Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
18
|
Moura MO, Fausto AKS, Fanelli A, Guedes FADF, Silva TDF, Romanel E, Vaslin MFS. Genome-wide identification of the Dicer-like family in cotton and analysis of the DCL expression modulation in response to biotic stress in two contrasting commercial cultivars. BMC PLANT BIOLOGY 2019; 19:503. [PMID: 31729948 PMCID: PMC6858778 DOI: 10.1186/s12870-019-2112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dicer-like proteins (DCLs) are essential players in RNA-silencing mechanisms, acting in gene regulation via miRNAs and in antiviral protection in plants and have also been associated to other biotic and abiotic stresses. To the best of our knowledge, despite being identified in some crops, cotton DCLs haven't been characterized until now. In this work, we characterized the DCLs of three cotton species and analyzed their expression profiles during biotic stress. RESULTS As main results, 11 DCLs in the allotetraploid cotton Gossypium hirsutum, 7 and 6 in the diploid G. arboreum and G. raimondii, were identified, respectively. Among some DCLs duplications observed in these genomes, the presence of an extra DCL3 in the three cotton species were detected, which haven't been found in others eudicots. All the DCL types identified by in silico analysis in the allotetraploid cotton genome were able to generate transcripts, as observed by gene expression analysis in distinct tissues. Based on the importance of DCLs for plant defense against virus, responses of cotton DCLs to virus infection and/or herbivore attack using two commercial cotton cultivars (cv.), one susceptible (FM966) and another resistant (DO) to polerovirus CLRDV infection, were analyzed. Both cvs. Responded differently to virus infection. At the inoculation site, the resistant cv. showed strong induction of DCL2a and b, while the susceptible cv. showed a down-regulation of these genes, wherever DCL4 expression was highly induced. A time course of DCL expression in aerial parts far from inoculation site along infection showed that DCL2b and DCL4 were repressed 24 h after infection in the susceptible cotton. As CLRDV is aphid-transmitted, herbivore attack was also checked. Opposite expression pattern of DCL2a and b and DCL4 was observed for R and S cottons, showing that aphid feeding alone may induce DCL modulation. CONCLUSIONS Almost all the DCLs of the allotetraploide G. hirsutum cotton were found in their relative diploids. Duplications of DCL2 and DCL3 were found in the three species. All four classes of DCL responded to aphid attack and virus infection in G. hirsutum. DCLs initial responses against the virus itself and/or herbivore attack may be contributing towards virus resistance.
Collapse
Affiliation(s)
- Marianna O. Moura
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Anna Karoline S. Fausto
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Amanda Fanelli
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Fernanda A. de F. Guedes
- Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Tatiane da F. Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Maite F. S. Vaslin
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| |
Collapse
|
19
|
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019; 177:1814-1826.e15. [PMID: 31178120 PMCID: PMC6579485 DOI: 10.1016/j.cell.2019.04.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally. C. elegans neuronal small RNAs are characterized by RNA sequencing RDE-4-dependent neuronal endogenous small RNAs communicate with the germline Germline HRDE-1 mediates transgenerational regulation by neuronal small RNAs Neuronal small RNAs regulate germline genes to control behavior transgenerationally
Collapse
Affiliation(s)
- Rachel Posner
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ekaterina Star
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Azmon
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Hendricks
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shahar Bracha
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
20
|
Almeida MV, Andrade-Navarro MA, Ketting RF. Function and Evolution of Nematode RNAi Pathways. Noncoding RNA 2019; 5:E8. [PMID: 30650636 PMCID: PMC6468775 DOI: 10.3390/ncrna5010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.
Collapse
Affiliation(s)
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
- Faculty of Biology, Johannes Gutenberg Universität, 55122 Mainz, Germany.
| | - René F Ketting
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Zhang R, Jing Y, Zhang H, Niu Y, Liu C, Wang J, Zen K, Zhang CY, Li D. Comprehensive Evolutionary Analysis of the Major RNA-Induced Silencing Complex Members. Sci Rep 2018; 8:14189. [PMID: 30242207 PMCID: PMC6155107 DOI: 10.1038/s41598-018-32635-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023] Open
Abstract
RNA-induced silencing complex (RISC) plays a critical role in small interfering RNA (siRNA) and microRNAs (miRNA) pathways. Accumulating evidence has demonstrated that the major RISC members (AGO, DICER, TRBP, PACT and GW182) represent expression discrepancies or multiple orthologues/paralogues in different species. To elucidate their evolutionary characteristics, an integrated evolutionary analysis was performed. Here, animal and plant AGOs were divided into three classes (multifunctional AGOs, siRNA-associated AGOs and piRNA-associated AGOs for animal AGOs and multifunctional AGOs, siRNA-associated AGOs and complementary functioning AGOs for plant AGOs). Animal and plant DICERs were grouped into one class (multifunctional DICERs) and two classes (multifunctional DICERs and siRNA-associated DICERs), respectively. Protista/fungi AGOs or DICERs were specifically associated with the siRNA pathway. Additionally, TRBP/PACT/GW182 were identified only in animals, and all of them functioned in the miRNA pathway. Mammalian AGOs, animal DICERs and chordate TRBP/PACT were found to be monophyletic. A large number of gene duplications were identified in AGO and DICER groups. Taken together, we provide a comprehensive evolutionary analysis, describe a phylogenetic tree-based classification of the major RISC members and quantify their gene duplication events. These findings are potentially useful for classifying RISCs, optimizing species-specific RISCs and developing research model organisms.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Ying Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yahan Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China.
| |
Collapse
|
22
|
Montavon T, Kwon Y, Zimmermann A, Hammann P, Vincent T, Cognat V, Bergdoll M, Michel F, Dunoyer P. Characterization of DCL4 missense alleles provides insights into its ability to process distinct classes of dsRNA substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:204-218. [PMID: 29682831 DOI: 10.1111/tpj.13941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
In the model plant Arabidopsis thaliana, four Dicer-like proteins (DCL1-4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII-like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4-dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4-dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold-back double-stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR-dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.
Collapse
Affiliation(s)
- Thomas Montavon
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Yerim Kwon
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Aude Zimmermann
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, FRC1589, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, F-67000, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Fabrice Michel
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| |
Collapse
|
23
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
24
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
25
|
Lim MYT, Okamura K. Switches in Dicer Activity During Oogenesis and Early Development. Results Probl Cell Differ 2017; 63:325-351. [PMID: 28779324 DOI: 10.1007/978-3-319-60855-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dicer is a versatile protein regulating diverse biological processes via the production of multiple classes of small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs). In this chapter, we will discuss roles for Dicer in driving temporal changes in activity of individual small RNA classes to support oogenesis and early embryogenesis. Genetic strategies that perturb particular functions of Dicer family proteins, such as ablation of individual Dicer paralogs or their binding partners as well as introduction of point mutations to individual domains, allowed the dissection of Dicer functions in diverse small RNA pathways. Evolutionary conservation and divergence of the mechanisms highlight the importance of Dicer versatility in supporting rapid changes in gene expression during oogenesis and early development. Furthermore, we will discuss potential roles of Dicer in transgenerational inheritance of small RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore.
| |
Collapse
|
26
|
Fukudome A, Fukuhara T. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. JOURNAL OF PLANT RESEARCH 2017; 130:33-44. [PMID: 27885504 DOI: 10.1007/s10265-016-0877-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/08/2016] [Indexed: 05/20/2023]
Abstract
Dicer, a double-stranded RNA (dsRNA)-specific endoribonuclease, plays an essential role in triggering both transcriptional and post-transcriptional gene silencing in eukaryotes by cleaving dsRNAs or single-stranded RNAs bearing stem-loop structures such as microRNA precursor transcripts into 21- to 24-nt small RNAs. Unlike animals, plants have evolved to utilize at least four Dicer-like (DCL) proteins. Extensive genetic studies have revealed that each DCL protein participates in a specific gene silencing pathway, with some redundancy. However, a mechanistic understanding of how the specific action of each DCL protein is regulated in its respective pathway is still in its infancy due to the limited number of biochemical studies on plant DCL proteins. In this review, we summarize and discuss the biochemical properties of plant DCL proteins revealed by studies using highly purified recombinant proteins, crude extracts, and immunoprecipitates. With help from co-factor proteins and an ATPase/DExH-box RNA-helicase domain, the microRNA-producing enzyme DCL1 recognizes bulges and terminal loop structures in its substrate transcripts to ensure accurate and efficient processing. DCL4 prefers long dsRNA substrates and requires the dsRNA-binding protein DRB4 for its activity. The short-dsRNA preference of DCL3 is well suited for short-RNA transcription and subsequent dsRNA formation by coupling between a plant-specific DNA-dependent RNA-polymerase IV and RNA-dependent RNA-polymerase 2 in the transcriptional gene silencing pathway. Inorganic phosphate also seems to play a role in differential regulation of DCL3 and DCL4 activities. Further development of biochemical approaches will be necessary for better understanding of how plant DCL proteins are fine-tuned in each small RNA biogenesis pathway under various physiological conditions.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Department of Horticultural Sciences, Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX, 77843, USA
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
27
|
Fu Y, Zhang J, Shi Z, Wang G, Li W, Jia L. A key gene of the small RNA pathway in the flounder, Paralichthys olivaceus: identification and functional characterization of dicer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1221-1231. [PMID: 26045159 DOI: 10.1007/s10695-015-0081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Dicer is critical for producing mature microRNAs (miRNAs) from precursor molecules and small interfering RNAs and plays an important role in controlling development and metabolism. In the present study, we cloned the flounder dicer gene, which is 6585 nucleotides (nt), including a 5'-untranslated region (UTR) of 231 nt, a 3'-UTR of 663 nt and an open reading frame of 5691 nt encoding a polypeptide of 1897 amino acids, and analyzed the conservation and expression pattern of dicer. The tissue distribution analysis indicated that dicer is abundantly expressed in the brain, heart, liver, spleen, stomach, kidney, gill, muscle, intestine and gonad of adult fish. Temporal expression analysis indicated that dicer mRNA is highly expressed during the embryonic and early larval stages, and exhibits low expression during the metamorphic stages. Treatment with thyroid hormone (TH) or thiourea indirectly or directly up-regulated dicer mRNA levels at 17 and 23 dph, whereas treatment with TH down-regulated dicer mRNA levels at 36 dph. The dicer-specific siRNA significantly down-regulated dicer mRNA and pol-let-7d levels, while pol-let-7d precursor levels were not differentially changed compared with the control (NC). These results demonstrated that dicer plays a key role in development and metabolism through the production of mature miRNAs, providing basic information for further studies concerning the role of dicer in Paralichthys olivaceus development.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China.
| | - Guyue Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Wejuan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 999, Hu-Cheng-Huan Road, Lingang New City, Shangai, 201306, China
| |
Collapse
|
28
|
Whipple JM, Youssef OA, Aruscavage PJ, Nix DA, Hong C, Johnson WE, Bass BL. Genome-wide profiling of the C. elegans dsRNAome. RNA (NEW YORK, N.Y.) 2015; 21:786-800. [PMID: 25805852 PMCID: PMC4408787 DOI: 10.1261/rna.048801.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/23/2014] [Indexed: 06/01/2023]
Abstract
Recent studies hint that endogenous dsRNA plays an unexpected role in cellular signaling. However, a complete understanding of endogenous dsRNA signaling is hindered by an incomplete annotation of dsRNA-producing genes. To identify dsRNAs expressed in Caenorhabditis elegans, we developed a bioinformatics pipeline that identifies dsRNA by detecting clustered RNA editing sites, which are strictly limited to long dsRNA substrates of Adenosine Deaminases that act on RNA (ADAR). We compared two alignment algorithms for mapping both unique and repetitive reads and detected as many as 664 editing-enriched regions (EERs) indicative of dsRNA loci. EERs are visually enriched on the distal arms of autosomes and are predicted to possess strong internal secondary structures as well as sequence complementarity with other EERs, indicative of both intramolecular and intermolecular duplexes. Most EERs were associated with protein-coding genes, with ∼1.7% of all C. elegans mRNAs containing an EER, located primarily in very long introns and in annotated, as well as unannotated, 3' UTRs. In addition to numerous EERs associated with coding genes, we identified a population of prospective noncoding EERs that were distant from protein-coding genes and that had little or no coding potential. Finally, subsets of EERs are differentially expressed during development as well as during starvation and infection with bacterial or fungal pathogens. By combining RNA-seq with freely available bioinformatics tools, our workflow provides an easily accessible approach for the identification of dsRNAs, and more importantly, a catalog of the C. elegans dsRNAome.
Collapse
Affiliation(s)
- Joseph M Whipple
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Osama A Youssef
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - David A Nix
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112-5775, USA
| | - Changjin Hong
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - W Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
29
|
Carradec Q, Götz U, Arnaiz O, Pouch J, Simon M, Meyer E, Marker S. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Res 2015; 43:1818-33. [PMID: 25593325 PMCID: PMC4330347 DOI: 10.1093/nar/gku1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.
Collapse
Affiliation(s)
- Quentin Carradec
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France UPMC, IFD, Sorbonne Universités, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ulrike Götz
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS UPR3404, 91198 Gif-sur-Yvette cedex, France
| | - Juliette Pouch
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Martin Simon
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Eric Meyer
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Simone Marker
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
30
|
Drake M, Furuta T, Man KS, Gonzalez G, Liu B, Kalia A, Ladbury J, Fire AZ, Skeath JB, Arur S. A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev Cell 2014; 31:614-28. [PMID: 25490268 PMCID: PMC4261158 DOI: 10.1016/j.devcel.2014.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
Signaling pathways and small RNAs direct diverse cellular events, but few examples are known of defined signaling pathways directly regulating small RNA biogenesis. We show that ERK phosphorylates Dicer on two conserved residues in its RNase IIIb and double-stranded RNA (dsRNA)-binding domains and that phosphorylation of these residues is necessary and sufficient to trigger Dicer's nuclear translocation in worms, mice, and human cells. Phosphorylation of Dicer on either site inhibits Dicer function in the female germline and dampens small RNA repertoire. Our data demonstrate that ERK phosphorylates and inhibits Dicer during meiosis I for oogenesis to proceed normally in Caenorhabditis elegans and that this inhibition is released before fertilization for embryogenesis to proceed normally. The conserved Dicer residues, their phosphorylation by ERK, and the consequences of the resulting modifications implicate an ERK-Dicer nexus as a fundamental component of the oocyte-to-embryo transition and an underlying mechanism coupling extracellular cues to small RNA production.
Collapse
Affiliation(s)
- Melanie Drake
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tokiko Furuta
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kin Suen Man
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Gabriel Gonzalez
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Bin Liu
- Center for Genetics and Genomics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Ladbury
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Andrew Z. Fire
- Department of Pathology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, Scott Avenue, Saint Louis, MO, 63110, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA,Center for Genetics and Genomics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Address correspondence to: Swathi Arur, Ph.D, Department of Genetics, Unit 1010, UT MD Anderson Cancer Center, Houston, 77030, Phone: 713-745-8424,
| |
Collapse
|
31
|
Kidwell MA, Chan JM, Doudna JA. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing. J Biol Chem 2014; 289:28352-62. [PMID: 25135636 DOI: 10.1074/jbc.m114.589051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The enzyme Dicer generates 21-25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans.
Collapse
Affiliation(s)
| | | | - Jennifer A Doudna
- From the Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and Department of Chemistry, University of California at Berkeley and the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
32
|
Marker S, Carradec Q, Tanty V, Arnaiz O, Meyer E. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res 2014; 42:7268-80. [PMID: 24860163 PMCID: PMC4066745 DOI: 10.1093/nar/gku223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.
Collapse
Affiliation(s)
- Simone Marker
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Quentin Carradec
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198 cedex, France; Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| |
Collapse
|
33
|
Fitzgerald ME, Vela A, Pyle AM. Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res 2014; 42:3919-30. [PMID: 24435798 PMCID: PMC3973318 DOI: 10.1093/nar/gkt1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dicer is a specialized nuclease that produces RNA molecules of specific lengths for use in gene silencing pathways. Dicer relies on the correct measurement of RNA target duplexes to generate products of specific lengths. It is thought that Dicer uses its multidomain architecture to calibrate RNA product length. However, this measurement model is derived from structural information from a protozoan Dicer, and does not account for the helicase domain present in higher organisms. The Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) is an ortholog of the Dicer and RIG-I family of double-strand RNA activated ATPases essential for secondary siRNA production. We find that DRH-3 specifies 22 bp RNAs by dimerization of the helicase domain, a process mediated by ATPase activity and the N-terminal domain. This mechanism for RNA length discrimination by a Dicer family protein suggests an alternative model for RNA length measurement by Dicer, with implications for recognition of siRNA and miRNA targets.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
34
|
de Faria IJDS, Olmo RP, Silva EG, Marques JT. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J Interferon Cytokine Res 2013; 33:239-53. [PMID: 23656598 DOI: 10.1089/jir.2013.0026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host defense systems often rely on direct and indirect pattern recognition to sense the presence of invading pathogens. Patterns can be molecules directly produced by the pathogen or indirectly generated by changes in host parameters as a consequence of infection. Viruses are intracellular pathogens that hijack the cellular machinery to synthesize their own molecules making direct recognition of viral molecules a great challenge. Antiviral systems in prokaryotes and eukaryotes commonly exploit aberrant nucleic acid sensing to recognize virus infection as host and viral nucleic acid metabolism can greatly differ. Indeed, the generation of dsRNA is often associated with viral infection. In this review, we discuss current knowledge on the mechanisms of viral dsRNA sensing utilized by 2 important antiviral defense systems, RNA interference (RNAi) and the vertebrate immune system. The major viral sensors of the vertebrate immune systems are RIG-like receptors, while RNAi pathways depend on Dicer proteins. These 2 families of sensors share a similar helicase domain with high specificity for dsRNA, which is necessary, but not sufficient for efficient recognition by these receptors. Additional intrinsic features to the dsRNA molecule are also necessary for activation of antiviral systems. Studies utilizing synthetic ligands, in vitro biochemistry and reporter systems have greatly helped increase our knowledge on intrinsic features of dsRNA recognition. However, characteristics such as subcellular localization are extrinsic to the dsRNA itself, but certainly influence the recognition in vivo. Thus, mechanisms of viral dsRNA recognition must address how cellular sensors are recruited to nucleic acids or vice versa. Accessory proteins are likely important for in vivo recognition of extrinsic features of viral RNA, but have mostly remained undiscovered due to the limitations of previous strategies. Hence, the identification of novel components of antiviral systems must take into account the complexities involved in viral recognition in vivo.
Collapse
|
35
|
MacKay CR, Wang JP, Kurt-Jones EA. Dicer's role as an antiviral: still an enigma. Curr Opin Immunol 2013; 26:49-55. [PMID: 24556400 DOI: 10.1016/j.coi.2013.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Dicer is a multifunctional protein that is essential across species for the generation of microRNAs, a function that is highly conserved across the plant and animal kingdoms. Intriguingly, Dicer exhibits antiviral functions in lower organisms including Drosophila melanogaster and Caenorhabditis elegans. Antiviral activity occurs via small interfering RNA production following cytoplasmic sensing of viral dsRNA. Notably, such antiviral activity has not yet been clearly demonstrated in higher organisms such as mammals. Here, we review the evidence for Dicer as an innate antiviral across species.
Collapse
Affiliation(s)
- Christopher R MacKay
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jennifer P Wang
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Evelyn A Kurt-Jones
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res 2013; 23:1258-70. [PMID: 23811144 PMCID: PMC3730100 DOI: 10.1101/gr.153296.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.
Collapse
Affiliation(s)
- Peter Sarkies
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The Caenorhabditis elegans nuclear RNA interference defective (Nrde) mutants were identified by their inability to silence polycistronic transcripts in enhanced RNAi (Eri) mutant backgrounds. Here, we report additional nrde-3-dependent RNAi phenomena that extend the mechanisms, roles, and functions of nuclear RNAi. We show that nrde-3 mutants are broadly RNAi deficient and that overexpressing NRDE-3 enhances RNAi. Consistent with NRDE-3 being a dose-dependent limiting resource for effective RNAi, we find that NRDE-3 is required for eri-dependent enhanced RNAi phenotypes, although only for a subset of target genes. We then identify pgl-1 as an additional limiting RNAi resource important for eri-dependent silencing of a nonoverlapping subset of target genes, so that an nrde-3; pgl-1; eri-1 triple mutant fails to show enhanced RNAi for any tested gene. These results suggest that nrde-3 and pgl-1 define separate and independent limiting RNAi resource pathways. Limiting RNAi resources are proposed to primarily act via endogenous RNA silencing pathways. Consistent with this, we find that nrde-3 mutants misexpress genes regulated by endogenous siRNAs and incompletely silence repetitive transgene arrays. Finally, we find that nrde-3 contributes to transitive RNAi, whereby amplified silencing triggers act in trans to silence sequence-similar genes. Because nrde-dependent silencing is thought to act in cis to limit the production of primary transcripts, this result reveals an unexpected role for nuclear processes in RNAi silencing.
Collapse
|
38
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
39
|
Vetukuri RR, Åsman AKM, Tellgren-Roth C, Jahan SN, Reimegård J, Fogelqvist J, Savenkov E, Söderbom F, Avrova AO, Whisson SC, Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One 2012; 7:e51399. [PMID: 23272103 PMCID: PMC3522703 DOI: 10.1371/journal.pone.0051399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022] Open
Abstract
Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Luo D, Kohlway A, Pyle AM. Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. RNA Biol 2012; 10:111-20. [PMID: 23228901 PMCID: PMC3590228 DOI: 10.4161/rna.22706] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Double-stranded RNAs are an important class of functional macromolecules in living systems. They are usually found as part of highly specialized intracellular machines that control diverse cellular events, ranging from virus replication, antiviral defense, RNA interference, to regulation of gene activities and genomic integrity. Within different intracellular machines, the RNA duplex is often found in association with specific RNA-dependent ATPases, including Dicer, RIG-I and DRH-3 proteins. These duplex RNA-activated ATPases represent an emerging group of motor proteins within the large and diverse super family 2 nucleic acid-dependent ATPases (which are historically defined as SF2 helicases). The duplex RNA-activated ATPases share characteristic molecular features for duplex RNA recognition, including motifs (e.g., motifs IIa and Vc) and an insertion domain (HEL2i), and they require double-strand RNA binding for their enzymatic activities. Proteins in this family undergo large conformational changes concomitant with RNA binding, ATP binding and ATP hydrolysis in order to achieve their functions, which include the release of signaling domains and the recruitment of partner proteins. The duplex RNA-activated ATPases represent a distinct and fascinating group of nanomechanical molecular motors that are essential for duplex RNA sensing and processing in diverse cellular pathways.
Collapse
Affiliation(s)
- Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | | | | |
Collapse
|
41
|
LeGendre JB, Campbell ZT, Kroll-Conner P, Anderson P, Kimble J, Wickens M. RNA targets and specificity of Staufen, a double-stranded RNA-binding protein in Caenorhabditis elegans. J Biol Chem 2012. [PMID: 23195953 DOI: 10.1074/jbc.m112.397349] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Staufen family consists of proteins that possess double-stranded RNA-binding domains (dsRBDs). Staufen proteins of Drosophila and mammals regulate mRNA localization, translation, and decay. We report analysis of Staufen in Caenorhabditis elegans, which we have designated STAU-1. We focus on its biochemical properties, mRNA targets, and possible role in RNAi. We show that STAU-1 is expressed as mRNA and protein at all stages of C. elegans development. The wild-type, full-length protein, purified from bacteria, binds duplex RNA with high affinity in vitro. Purified, mutant proteins lacking single dsRBDs still bind RNA efficiently, demonstrating that no single domain is required for binding to duplex RNA (although dsRBD2 could not be tested). STAU-1 mRNA targets were identified via immunoprecipitation with specific anti-STAU-1 antibodies, followed by microarray analysis (RIP-Chip). These studies define a set of 418 likely STAU-1 mRNA targets. Finally, we demonstrate that stau-1 mutants enhance exogenous RNAi and that stau-1;eri-1 double mutants exhibit sterility and synthetic germ line defects.
Collapse
Affiliation(s)
- Jacqueline Baca LeGendre
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Small RNAs play a variety of regulatory roles, including highly conserved developmental functions. Caenorhabditis elegans not only possesses most known small RNA pathways, it is also an easy system to study their roles and interactions during development. It has been proposed that in C. elegans, some small RNA pathways compete for access to common limiting resources. The strongest evidence supporting this model is that disrupting the production or stability of endogenous short interfering RNAs (endo-siRNAs) enhances sensitivity to experimentally induced exogenous RNA interference (exo-RNAi). Here, we examine the relationship between the endo-siRNA and microRNA (miRNA) pathways, and find that, consistent with competition among these endogenous small RNA pathways, endo-siRNA pathway mutants may enhance miRNA efficacy. Furthermore, we show that exo-RNAi may also compete with both endo-siRNAs and miRNAs. Our data thus provide support that all known Dicer-dependent small RNA pathways may compete for limiting common resources. Finally, we observed that both endo-siRNA mutants and animals experiencing exo-RNAi have increased expression of miRNA-regulated stage-specific developmental genes. These observations suggest that perturbing the small RNA flux and/or the induction of exo-RNAi, even in wild-type animals, may impact development via effects on the endo-RNAi and microRNA pathways.
Collapse
Affiliation(s)
| | - Craig P. Hunter
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-495-8309; Fax: +1-617-496-0132
| |
Collapse
|
43
|
Warf MB, Shepherd BA, Johnson WE, Bass BL. Effects of ADARs on small RNA processing pathways in C. elegans. Genome Res 2012; 22:1488-98. [PMID: 22673872 PMCID: PMC3409262 DOI: 10.1101/gr.134841.111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). To evaluate effects of ADARs on small RNAs that derive from dsRNA precursors, we performed deep-sequencing, comparing small RNAs from wild-type and ADAR mutant Caenorhabditis elegans. While editing in small RNAs was rare, at least 40% of microRNAs had altered levels in at least one ADAR mutant strain, and miRNAs with significantly altered levels had mRNA targets with correspondingly affected levels. About 40% of siRNAs derived from endogenous genes (endo-siRNAs) also had altered levels in at least one mutant strain, including 63% of Dicer-dependent endo-siRNAs. The 26G class of endo-siRNAs was significantly affected by ADARs, and many altered 26G loci had intronic reads and histone modifications associated with transcriptional silencing. Our data indicate that ADARs, through both direct and indirect mechanisms, are important for maintaining wild-type levels of many small RNAs in C. elegans.
Collapse
Affiliation(s)
- M. Bryan Warf
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brent A. Shepherd
- Department of Statistics, Brigham Young University, Provo, Utah 84602, USA
| | - W. Evan Johnson
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
44
|
Ma E, Zhou K, Kidwell MA, Doudna JA. Coordinated activities of human dicer domains in regulatory RNA processing. J Mol Biol 2012; 422:466-76. [PMID: 22727743 DOI: 10.1016/j.jmb.2012.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/22/2022]
Abstract
The conserved ribonuclease Dicer generates microRNAs and short-interfering RNAs that guide gene silencing in eukaryotes. The specific contributions of human Dicer's structural domains to RNA product length and substrate preference are incompletely understood, due in part to the difficulties of Dicer purification. Here, we show that active forms of human Dicer can be assembled from recombinant polypeptides expressed in bacteria. Using this system, we find that three distinct modes of RNA recognition give rise to Dicer's fidelity and product length specificity. The first involves anchoring one end of a double-stranded RNA helix within the PAZ domain, which can assemble in trans with Dicer's catalytic domains to reconstitute an accurate but non-substrate-selective dicing activity. The second entails nonspecific RNA binding by the double-stranded RNA binding domain, an interaction that is essential for substrate recruitment in the absence of the PAZ domain. The third mode of recognition involves hairpin RNA loop recognition by the helicase domain, which ensures efficient processing of specific substrates. These results reveal distinct interactions of each Dicer domain with different RNA structural features and provide a facile system for investigating the molecular mechanisms of human microRNA biogenesis.
Collapse
Affiliation(s)
- Enbo Ma
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
45
|
Gurtan AM, Lu V, Bhutkar A, Sharp PA. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA (NEW YORK, N.Y.) 2012; 18:1116-22. [PMID: 22546613 PMCID: PMC3358635 DOI: 10.1261/rna.032680.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/23/2012] [Indexed: 05/20/2023]
Abstract
Dicer is an RNase III family endoribonuclease and haploinsufficient tumor suppressor that processes mature miRNAs from the 5' (5p) or 3' (3p) arm of hairpin precursors. In murine Dicer knockout fibroblasts, we expressed human Dicer with point mutations in the RNase III, helicase, and PAZ domains and characterized miRNA expression by Northern blot and massively parallel sequencing of small RNAs. We report that inactivation of the RNase IIIA domain results in complete loss of 3p-derived mature miRNAs, but only partial reduction in 5p-derived mature miRNAs. Conversely, inactivation of the RNase IIIB domain by mutation of D1709, a residue mutated in a subset of nonepithelial ovarian cancers, results in complete loss of 5p-derived mature miRNAs, including the tumor-suppressive let-7 family, but only partial reduction in 3p-derived mature miRNAs. Mutation of the PAZ domain results in global reduction of miRNA processing, while mutation of the Walker A motif in the helicase domain of Dicer does not alter miRNA processing. These results provide insight into the biochemical activity of human Dicer in vivo and, furthermore, suggest that mutation of the clinically relevant residue D1709 within the RNase IIIB results in a uniquely miRNA-haploinsufficient state in which the let-7 family of tumor suppressor miRNAs is lost while a complement of 3p-derived miRNAs remains expressed.
Collapse
Affiliation(s)
- Allan M. Gurtan
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Victoria Lu
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Phillip A. Sharp
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Corresponding author.E-mail .
| |
Collapse
|
46
|
|
47
|
Betancur JG, Tomari Y. Dicer is dispensable for asymmetric RISC loading in mammals. RNA (NEW YORK, N.Y.) 2012; 18:24-30. [PMID: 22106413 PMCID: PMC3261740 DOI: 10.1261/rna.029785.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro.
Collapse
Affiliation(s)
- Juan G. Betancur
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Medical Genome Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Medical Genome Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Corresponding author.E-mail .
| |
Collapse
|
48
|
Dicer Proteins and Their Role in Gene Silencing Pathways. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-404741-9.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
49
|
Thivierge C, Makil N, Flamand M, Vasale JJ, Mello CC, Wohlschlegel J, Conte D, Duchaine TF. Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nat Struct Mol Biol 2011; 19:90-7. [PMID: 22179787 DOI: 10.1038/nsmb.2186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/14/2011] [Indexed: 11/09/2022]
Abstract
Endogenous RNA interference (endo-RNAi) pathways use a variety of mechanisms to generate siRNA and to mediate gene silencing. In Caenorhabditis elegans, DCR-1 is essential for competing RNAi pathways-the ERI endo-RNAi pathway and the exogenous RNAi pathway-to function. Here, we demonstrate that DCR-1 forms exclusive complexes in each pathway and further define the ERI-DCR-1 complex. We show that the tandem tudor protein ERI-5 potentiates ERI endo-RNAi by tethering an RNA-dependent RNA polymerase (RdRP) module to DCR-1. In the absence of ERI-5, the RdRP module is uncoupled from DCR-1. Notably, EKL-1, an ERI-5 paralog that specifies distinct RdRP modules in Dicer-independent endo-RNAi pathways, partially compensates for the loss of ERI-5 without interacting with DCR-1. Our results implicate tudor proteins in the recruitment of RdRP complexes to specific steps within DCR-1-dependent and DCR-1-independent endo-RNAi pathways.
Collapse
|
50
|
Abstract
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.
Collapse
|