1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Lim SY, Boyd SC, Diefenbach RJ, Rizos H. Circulating MicroRNAs: functional biomarkers for melanoma prognosis and treatment. Mol Cancer 2025; 24:99. [PMID: 40156012 PMCID: PMC11951542 DOI: 10.1186/s12943-025-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
MicroRNAs (miRNAs) hold significant promise as circulating cancer biomarkers and unlike many other molecular markers, they can provide valuable insights that extend beyond tumour biology. The expression of circulating miRNAs may parallel the cellular composition and dynamic activity within the tumour microenvironment and reveal systemic immune responses. The functional complexity of miRNAs-where a single miRNA can regulate multiple messenger RNAs (mRNAs) to fine tune fundamental processes, and a single mRNA can be targeted by multiple miRNAs-underscores their broad significance and impact. However, this complexity poses significant challenges for translating miRNA research into clinical practice. In melanoma, specific miRNA signatures have shown notable diagnostic, prognostic and predictive value, with lineage-specific and immune-related miRNAs frequently identified as valuable markers. In this review, we explore the role of circulating miRNAs as potential biomarkers in melanoma, and highlight the current status and advances required to translate miRNA research into therapeutic opportunities.
Collapse
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Suzanah C Boyd
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Vivek AT, Arya A, Swain SP, Kumar S. athisomiRDB: A comprehensive database of Arabidopsis isomiRs. Database (Oxford) 2024; 2024:baae115. [PMID: 39514415 PMCID: PMC11544919 DOI: 10.1093/database/baae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Several pieces of evidence challenge the traditional view of miRNAs as static molecules, revealing dynamic isomiRs originating from each miRNA precursor arm. In plants, isomiRs, which result from imprecise cleavage during pre-miRNA processing and post-transcriptional alterations, serve as crucial regulators of target microRNAs (miRNAs). Despite numerous studies on Arabidopsis miRNAs, the systematic identification and annotation of isomiRs across various tissues and conditions remain limited. Due to the lack of systematically collected isomiR information, we introduce the athisomiRDB database, which houses 20 764 isomiRs from Arabidopsis small RNA-sequencing (sRNA-seq) libraries. It comprises >2700 diverse samples and allows exploration at the sample, miRNA, or isomiR levels, offering insights into the presence or absence of isomiRs. The athisomiRDB includes exclusive and ambiguous isomiRs, each with features such as transcriptional origin, variant-containing isomiRs, and identifiers for frequent single-nucleotide polymorphisms from the 1001 Genomes Project. It also provides 3' nontemplated post-transcriptional additions, isomiR-target interactions, and trait associations for each isomiR. We anticipate that athisomiRDB will play a pivotal role in unraveling the regulatory nature of the Arabidopsis miRNAome and enhancing sRNA research by leveraging isomiR profiles from extensive sRNA-seq datasets. Database URL: https://www.nipgr.ac.in/athisomiRDB.
Collapse
Grants
- BT/PR40160/BTIS/137/64/2023 BT/PR40169/BTIS/137/71/2023 BT/PR40261/ BTIS/137/55/2023 PR40146/BTIS/137/4/2020 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40160/BTIS/137/64/2023 BT/PR40169/BTIS/137/71/2023 BT/PR40261/ BTIS/137/55/2023 PR40146/BTIS/137/4/2020 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40146/BTIS/137/4/2020 DBT, Government of India, and NIPGR, laboratory of S.K.
- BT/PR40169/BTIS/137/71/2023 DBT, Government of India, and NIPGR, laboratory of S.K.
- BT/PR40160/BTIS/137/64/2023 DBT, Government of India, and NIPGR, laboratory of S.K.
- BT/PR40261/BTIS/137/55/2023 DBT, Government of India, and NIPGR, laboratory of S.K.
Collapse
Affiliation(s)
- A T Vivek
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajay Arya
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Supriya P Swain
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
4
|
Wang L, Zhang S. Investigating the Causal Effects of Exercise-Induced Genes on Sarcopenia. Int J Mol Sci 2024; 25:10773. [PMID: 39409102 PMCID: PMC11476887 DOI: 10.3390/ijms251910773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Exercise is increasingly recognized as an effective strategy to counteract skeletal muscle aging and conditions such as sarcopenia. However, the specific exercise-induced genes responsible for these protective effects remain unclear. To address this, we conducted an eight-week aerobic exercise regimen on late-middle-aged mice and developed an integrated approach that combines mouse exercise-induced genes with human GWAS datasets to identify causal genes for sarcopenia. This approach led to significant improvements in the skeletal muscle phenotype of the mice and the identification of exercise-induced genes and miRNAs. By constructing a miRNA regulatory network enriched with transcription factors and GWAS signals related to muscle function and traits, we focused on 896 exercise-induced genes. Using human skeletal muscle cis-eQTLs as instrumental variables, 250 of these exercise-induced genes underwent two-sample Mendelian randomization analysis, identifying 40, 68, and 62 causal genes associated with sarcopenia and its clinical indicators-appendicular lean mass (ALM) and hand grip strength (HGS), respectively. Sensitivity analyses and cross-phenotype validation confirmed the robustness of our findings. Consistently across the three outcomes, RXRA, MDM1, RBL2, KCNJ2, and ADHFE1 were identified as risk factors, while NMB, TECPR2, MGAT3, ECHDC2, and GINM1 were identified as protective factors, all with potential as biomarkers for sarcopenia progression. Biological activity and disease association analyses suggested that exercise exerts its anti-sarcopenia effects primarily through the regulation of fatty acid oxidation. Based on available drug-gene interaction data, 21 of the causal genes are druggable, offering potential therapeutic targets. Our findings highlight key genes and molecular pathways potentially responsible for the anti-sarcopenia benefits of exercise, offering insights into future therapeutic strategies that could mimic the safe and mild protective effects of exercise on age-related skeletal muscle degeneration.
Collapse
Affiliation(s)
- Li Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
5
|
Kathuria-Prakash N, Dave P, Garcia L, Brown P, Drakaki A. MicroRNAs in Genitourinary Malignancies: An Exciting Frontier of Cancer Diagnostics and Therapeutics. Int J Mol Sci 2024; 25:9499. [PMID: 39273446 PMCID: PMC11394927 DOI: 10.3390/ijms25179499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Genitourinary (GU) malignancies, including prostate, urothelial, kidney, testicular, penile, and adrenocortical cancers, comprise a significant burden of cancers worldwide. While many practice-changing advances have been made in the management of GU malignancies in the last decade, there is still significant room for improvement. MicroRNAs (miRNAs) are noncoding RNAs that regulate post-transcription gene expression and which have been implicated in multiple mechanisms of carcinogenesis. Therefore, they have the potential to revolutionize personalized cancer therapy, with several ongoing preclinical and clinical studies underway to investigate their efficacy. In this review, we describe the current landscape of miRNAs as diagnostics, therapeutics, and biomarkers of response for GU malignancies, reflecting a novel frontier in cancer treatment.
Collapse
Affiliation(s)
- Nikhita Kathuria-Prakash
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Pranali Dave
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Lizette Garcia
- Division of Hospice and Palliative Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Paige Brown
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Alexandra Drakaki
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Aravind VA, Kouznetsova VL, Kesari S, Tsigelny IF. Using Machine Learning and miRNA for the Diagnosis of Esophageal Cancer. J Appl Lab Med 2024; 9:684-695. [PMID: 38721901 DOI: 10.1093/jalm/jfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Esophageal cancer (EC) remains a global health challenge, often diagnosed at advanced stages, leading to high mortality rates. Current diagnostic tools for EC are limited in their efficacy. This study aims to harness the potential of microRNAs (miRNAs) as novel, noninvasive diagnostic biomarkers for EC. Our objective was to determine the diagnostic accuracy of miRNAs, particularly in distinguishing miRNAs associated with EC from control miRNAs. METHODS We applied machine learning (ML) techniques in WEKA (Waikato Environment for Knowledge Analysis) and TensorFlow Keras to a dataset of miRNA sequences and gene targets, assessing the predictive power of several classifiers: naïve Bayes, multilayer perceptron, Hoeffding tree, random forest, and random tree. The data were further subjected to InfoGain feature selection to identify the most informative miRNA sequence and gene target descriptors. The ML models' abilities to distinguish between miRNA implicated in EC and control group miRNA was then tested. RESULTS Of the tested WEKA classifiers, the top 3 performing ones were random forest, Hoeffding tree, and naïve Bayes. The TensorFlow Keras neural network model was subsequently trained and tested, the model's predictive power was further validated using an independent dataset. The TensorFlow Keras gave an accuracy 0.91. The WEKA best algorithm (naïve Bayes) model yielded an accuracy of 0.94. CONCLUSIONS The results demonstrate the potential of ML-based miRNA classifiers in diagnosing EC. However, further studies are necessary to validate these findings and explore the full clinical potential of this approach.
Collapse
Affiliation(s)
- Vishnu A Aravind
- REHS program, San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
- BiAna, La Jolla, CA, United States
- CureScience Institute, San Diego, CA, United States
| | - Santosh Kesari
- Pacific Neuroscience Institute, Department of Translational Neurosciences, Santa Monica, United States
| | - Igor F Tsigelny
- San Diego Supercomputer Center, UC San Diego, San Diego, CA, United States
- BiAna, La Jolla, CA, United States
- CureScience Institute, San Diego, CA, United States
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Sensitivity and Specificity of Selected Biomarkers and Their Combinations in the Diagnosis of Ovarian Cancer. Diagnostics (Basel) 2024; 14:949. [PMID: 38732363 PMCID: PMC11083226 DOI: 10.3390/diagnostics14090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
One of the greatest challenges in modern gynecological oncology is ovarian cancer. Despite the numerous studies currently being conducted, it is still sometimes detected at late clinical stages, where the prognosis is unfavorable. One significant contributing factor is the absence of sensitive and specific parameters that could aid in early diagnosis. An ideal screening test, in view of the low incidence of ovarian cancer, should have a sensitivity of greater than 75% and a specificity of at least 99.6%. To enhance sensitivity and specificity, diagnostic panels are being created by combining individual markers. The drive to develop better screening tests for ovarian cancer focuses on modern diagnostic methods based on molecular testing, which in turn aims to find increasingly effective biomarkers. Currently, researchers' efforts are focused on the search for a complementary parameter to those most commonly used that would satisfactorily enhance the sensitivity and specificity of assays. Several biomarkers, including microRNA molecules, autoantibodies, cDNA, adipocytokines, and galectins, are currently being investigated by researchers. This article reviews recent studies comparing the sensitivity and specificity of selected parameters used alone and in combination to increase detection of ovarian cancer at an early stage.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Liu J, Ren Y, Sun Y, Yin Y, Han B, Zhang L, Song Y, Zhang Z, Xu Y, Fan D, Li J, Liu H, Ma C. Identification and Analysis of the MIR399 Gene Family in Grapevine Reveal Their Potential Functions in Abiotic Stress. Int J Mol Sci 2024; 25:2979. [PMID: 38474225 PMCID: PMC10931670 DOI: 10.3390/ijms25052979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Sun
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Yonggang Yin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Bin Han
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli 066600, China
| | - Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China; (J.L.)
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
10
|
Murata M, Bilim V, Shirono Y, Kazama A, Hiruma K, Tasaki M, Tomita Y. MicroRNAs as Potential Regulators of GSK-3β in Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:7432-7448. [PMID: 37754254 PMCID: PMC10529713 DOI: 10.3390/cimb45090470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The prognosis of patients with advanced renal cell carcinoma (RCC) has improved with newer therapies, including molecular-targeted therapies and immuno-oncology agents. Despite these therapeutic advances, many patients with metastatic disease remain uncured. Inhibition of glycogen synthase kinase-3β (GSK-3β) is a promising new therapeutic strategy for RCC; however, the precise regulatory mechanism has not yet been fully elucidated. MicroRNAs (miRNAs) act as post-translational regulators of target genes, and we investigated the potential regulation of miRNAs on GSK-3β in RCC. We selected nine candidate miRNAs from three databases that could potentially regulate GSK-3β. Among these, hsa-miR-4465 (miR-4465) was downregulated in RCC cell lines and renal cancer tissues. Furthermore, luciferase assays revealed that miR-4465 directly interacted with the 3' untranslated region of GSK-3β, and Western blot analysis showed that overexpression of miR-4465 significantly decreased GSK-3β protein expression. Functional assays showed that miR-4465 overexpression significantly suppressed cell invasion of A498 and Caki-1 cells; however, cell proliferation and migration were suppressed only in Caki-1 and A498 cells, respectively, with no effect on cell cycle and apoptosis. In conclusion, miR-4465 regulates GSK-3β expression but does not consistently affect RCC cell function as a single molecule. Further comprehensive investigation of regulatory networks is required in this field.
Collapse
Affiliation(s)
- Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kaede Hiruma
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
| | - Masayuki Tasaki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.); (Y.S.); (A.K.); (K.H.); (M.T.); (Y.T.)
| |
Collapse
|
11
|
Jiang G, Reiter JL, Dong C, Wang Y, Fang F, Jiang Z, Liu Y. Genetic Regulation of Human isomiR Biogenesis. Cancers (Basel) 2023; 15:4411. [PMID: 37686687 PMCID: PMC10486453 DOI: 10.3390/cancers15174411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
MicroRNAs play a critical role in regulating gene expression post-transcriptionally. Variations in mature microRNA sequences, known as isomiRs, arise from imprecise cleavage and nucleotide substitution or addition. These isomiRs can target different mRNAs or compete with their canonical counterparts, thereby expanding the scope of miRNA post-transcriptional regulation. Our study investigated the relationship between cis-acting single-nucleotide polymorphisms (SNPs) in precursor miRNA regions and isomiR composition, represented by the ratio of a specific 5'-isomiR subtype to all isomiRs identified for a particular mature miRNA. Significant associations between 95 SNP-isomiR pairs were identified. Of note, rs6505162 was significantly associated with both the 5'-extension of hsa-miR-423-3p and the 5'-trimming of hsa-miR-423-5p. Comparison of breast cancer and normal samples revealed that the expression of both isomiRs was significantly higher in tumors than in normal tissues. This study sheds light on the genetic regulation of isomiR maturation and advances our understanding of post-transcriptional regulation by microRNAs.
Collapse
Affiliation(s)
- Guanglong Jiang
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill L. Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University, New Haven, CT 06510, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhaoyang Jiang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yunlong Liu
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Immunological and Molecular Parameters in Patients with Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13101714. [PMID: 37238197 DOI: 10.3390/diagnostics13101714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ovarian cancer is one of the most serious challenges in modern gynaecological oncology. Due to its non-specific symptoms and the lack of an effective screening procedure to detect the disease at an early stage, ovarian cancer is still marked by a high mortality rate among women. For this reason, a great deal of research is being carried out to find new markers that can be used in the detection of ovarian cancer to improve early diagnosis and survival rates of women with ovarian cancer. Our study focuses on presenting the currently used diagnostic markers and the latest selected immunological and molecular parameters being currently investigated for their potential use in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
13
|
Asad S, Mehdi AM, Pujhari S, Rückert C, Ebel GD, Rasgon JL. Identification of MicroRNAs in the West Nile Virus Vector Culex tarsalis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:182-293. [PMID: 36477983 PMCID: PMC10216877 DOI: 10.1093/jme/tjac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate gene expression during important biological processes including development and pathogen defense in most living organisms. Presently, no miRNAs have been identified in the mosquito Culex tarsalis (Diptera: Culicidae), one of the most important vectors of West Nile virus (WNV) in North America. We used small RNA sequencing data and in vitro and in vivo experiments to identify and validate a repertoire of miRNAs in Cx. tarsalis mosquitoes. Using bioinformatic approaches we analyzed small RNA sequences from the Cx. tarsalis CT embryonic cell line to discover orthologs for 86 miRNAs. Consistent with other mosquitoes such as Aedes albopictus and Culex quinquefasciatus, miR-184 was found to be the most abundant miRNA in Cx. tarsalis. We also identified 20 novel miRNAs from the recently sequenced Cx. tarsalis genome, for a total of 106 miRNAs identified in this study. The presence of selected miRNAs was biologically validated in both the CT cell line and in adult Cx. tarsalis mosquitoes using RT-qPCR and sequencing. These results will open new avenues of research into the role of miRNAs in Cx. tarsalis biology, including development, metabolism, immunity, and pathogen infection.
Collapse
Affiliation(s)
- Sultan Asad
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Ahmed M Mehdi
- The University of Queensland, Brisbane, Australia Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sujit Pujhari
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, 89557, USA
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Orbán TI. One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. Biol Futur 2023:10.1007/s42977-023-00154-7. [PMID: 36847925 DOI: 10.1007/s42977-023-00154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.
Collapse
Affiliation(s)
- Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
15
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
16
|
Distefano R, Tomasello L, Rampioni Vinciguerra GL, Gasparini P, Xiang Y, Bagnoli M, Marceca GP, Fadda P, Laganà A, Acunzo M, Ma Q, Nigita G, Croce CM. Pan-Cancer Analysis of Canonical and Modified miRNAs Enhances the Resolution of the Functional miRNAome in Cancer. Cancer Res 2022; 82:3687-3700. [PMID: 36040379 PMCID: PMC9574374 DOI: 10.1158/0008-5472.can-22-0240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Epitranscriptomic studies of miRNAs have added a new layer of complexity to the cancer field. Although there is fast-growing interest in adenosine-to-inosine (A-to-I) miRNA editing and alternative cleavage that shifts miRNA isoforms, simultaneous evaluation of both modifications in cancer is still missing. Here, we concurrently profiled multiple miRNA modification types, including A-to-I miRNA editing and shifted miRNA isoforms, in >13,000 adult and pediatric tumor samples across 38 distinct cancer cohorts from The Cancer Genome Atlas and The Therapeutically Applicable Research to Generate Effective Treatments data sets. The differences between canonical miRNAs and the wider miRNAome in terms of expression, clustering, dysregulation, and prognostic standpoint were investigated. The combination of canonical miRNAs and modified miRNAs boosted the quality of clustering results, outlining unique clinicopathologic features among cohorts. Certain modified miRNAs showed opposite expression from their canonical counterparts in cancer, potentially impacting their targets and function. Finally, a shifted and edited miRNA isoform was experimentally validated to directly bind and suppress a unique target. These findings outline the importance of going beyond the well-established paradigm of one mature miRNA per miRNA arm to elucidate novel mechanisms related to cancer progression. SIGNIFICANCE Modified miRNAs may act as cancer biomarkers and function as allies or antagonists of their canonical counterparts in gene regulation, suggesting the concurrent consideration of canonical and modified miRNAs can boost patient stratification.
Collapse
Affiliation(s)
- Rosario Distefano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “Sapienza,” Santo Andrea Hospital, Rome, Italy
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Yujia Xiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marina Bagnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Talukder A, Zhang W, Li X, Hu H. A deep learning method for miRNA/isomiR target detection. Sci Rep 2022; 12:10618. [PMID: 35739186 PMCID: PMC9226005 DOI: 10.1038/s41598-022-14890-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate identification of microRNA (miRNA) targets at base-pair resolution has been an open problem for over a decade. The recent discovery of miRNA isoforms (isomiRs) adds more complexity to this problem. Despite the existence of many methods, none considers isomiRs, and their performance is still suboptimal. We hypothesize that by taking the isomiR-mRNA interactions into account and applying a deep learning model to study miRNA-mRNA interaction features, we may improve the accuracy of miRNA target predictions. We developed a deep learning tool called DMISO to capture the intricate features of miRNA/isomiR-mRNA interactions. Based on tenfold cross-validation, DMISO showed high precision (95%) and recall (90%). Evaluated on three independent datasets, DMISO had superior performance to five tools, including three popular conventional tools and two recently developed deep learning-based tools. By applying two popular feature interpretation strategies, we demonstrated the importance of the miRNA regions other than their seeds and the potential contribution of the RNA-binding motifs within miRNAs/isomiRs and mRNAs to the miRNA/isomiR-mRNA interactions.
Collapse
Affiliation(s)
- Amlan Talukder
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Wencai Zhang
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA.
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs) belong to a class of endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, through both translational repression and mRNA destabilization. They are key regulators of kidney morphogenesis, modulating diverse biological processes in different renal cell lineages. Dysregulation of miRNA expression disrupts early kidney development and has been implicated in the pathogenesis of developmental kidney diseases. In this Review, we summarize current knowledge of miRNA biogenesis and function and discuss in detail the role of miRNAs in kidney morphogenesis and developmental kidney diseases, including congenital anomalies of the kidney and urinary tract and Wilms tumor. We conclude by discussing the utility of miRNAs as potentially novel biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Débora Malta Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maliha Tayeb
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int J Mol Sci 2022; 23:4998. [PMID: 35563387 PMCID: PMC9103799 DOI: 10.3390/ijms23094998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic vascular disease is a cardiovascular continuum in which the main role is attributed to atherosclerosis, from its appearance to its associated complications. The increasing prevalence of cardiovascular risk factors, population ageing, and burden on both the economy and the healthcare system have led to the development of new diagnostic and therapeutic strategies in the field. The better understanding or discovery of new pathophysiological mechanisms and molecules modulating various signaling pathways involved in atherosclerosis have led to the development of potential new biomarkers, with key role in early, subclinical diagnosis. The evolution of technological processes in medicine has shifted the attention of researchers from the profiling of classical risk factors to the identification of new biomarkers such as midregional pro-adrenomedullin, midkine, stromelysin-2, pentraxin 3, inflammasomes, or endothelial cell-derived extracellular vesicles. These molecules are seen as future therapeutic targets associated with decreased morbidity and mortality through early diagnosis of atherosclerotic lesions and future research directions.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
| | - Delia Lidia Șalaru
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristina Prisacariu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Dragoș Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Radu Andy Sascău
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristian Stătescu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| |
Collapse
|
20
|
Alsop E, Meechoovet B, Kitchen R, Sweeney T, Beach TG, Serrano GE, Hutchins E, Ghiran I, Reiman R, Syring M, Hsieh M, Courtright-Lim A, Valkov N, Whitsett TG, Rakela J, Pockros P, Rozowsky J, Gallego J, Huentelman MJ, Shah R, Nakaji P, Kalani MYS, Laurent L, Das S, Van Keuren-Jensen K. A Novel Tissue Atlas and Online Tool for the Interrogation of Small RNA Expression in Human Tissues and Biofluids. Front Cell Dev Biol 2022; 10:804164. [PMID: 35317387 PMCID: PMC8934391 DOI: 10.3389/fcell.2022.804164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.
Collapse
Affiliation(s)
- Eric Alsop
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Bessie Meechoovet
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thadryan Sweeney
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Rebecca Reiman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Syring
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Hsieh
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Amanda Courtright-Lim
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Timothy G. Whitsett
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | | | - Paul Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, United States
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Juan Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health, Phoenix, AZ, United States
| | - M. Yashar S. Kalani
- Department of Neurosurgery, St. John Medical Center, Tulsa, OK, United States
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, San Diego, CA, United States
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
21
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
22
|
Vilímová I, Chourpa I, David S, Soucé M, Hervé-Aubert K. Two-step formulation of magnetic nanoprobes for microRNA capture. RSC Adv 2022; 12:7179-7188. [PMID: 35424703 PMCID: PMC8982131 DOI: 10.1039/d1ra09016j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRs) belong to a family of short non-coding endogenous RNAs. Their over-expression correlates with various pathologies: for instance, miRNA-155 (miR-155) is over-expressed upon the development of breast cancers. However, the detection of miRs as disease biomarkers suffers from insufficient sensitivity. In the present study, we propose a protocol for a rapid and efficient generation of magnetic nanoprobes able to capture miR-155, with the aim of increasing its concentration. As a nanoprobe precursor, we first synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coated with covalently attached polyethylene glycol carrying a free biotin terminus (PEG-bi). Using streptavidin–biotin interactions, the nanoprobes were formulated by functionalizing the surface of the nanoparticles with the miR sequence (CmiR) complementary to the target miR-155 (TmiR). The two-step formulation was optimized and validated using several analytical techniques, in particular with Size-Exclusion High Performance Liquid Chromatography (SE-HPLC). Finally, the proof of the nanoprobe affinity to TmiR was made by demonstrating the TmiR capture on model solutions, with the estimated ratio of 18 : 22 TmiR : CmiR per nanoprobe. The nanoprobes were confirmed to be stable after incubation in serum. Two-step formulation of magnetic nanoprobes for microRNA capture.![]()
Collapse
Affiliation(s)
- Iveta Vilímová
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | | |
Collapse
|
23
|
Factors influencing circulating microRNAs as biomarkers for liver diseases. Mol Biol Rep 2022; 49:4999-5016. [DOI: 10.1007/s11033-022-07170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
|
24
|
Distefano R, Nigita G, Le P, Romano G, Acunzo M, Nana-Sinkam P. Disparities in Lung Cancer: miRNA Isoform Characterization in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:773. [PMID: 35159038 PMCID: PMC8833952 DOI: 10.3390/cancers14030773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the development of targeted therapeutics, immunotherapy, and strategies for early detection, lung cancer carries a high mortality. Further, significant racial disparities in outcomes exist for which the molecular drivers have yet to be fully elucidated. The growing field of Epitranscriptomics has introduced a new layer of complexity to the molecular pathogenesis of cancer. RNA modifications can occur in coding and non-coding RNAs, such as miRNAs, possibly altering their gene regulatory function. The potential role for such modifications as clinically informative biomarkers remains largely unknown. Here, we concurrently profiled canonical miRNAs, shifted isomiRs (templated and non-templated), and miRNAs with single-point modification events (RNA and DNA) in White American (W) and Black or African American (B/AA) lung adenocarcinoma (LUAD) patients. We found that while most deregulated miRNA isoforms were similar in W and B/AA LUAD tissues compared to normal adjacent tissues, there was a subgroup of isoforms with deregulation according to race. We specifically investigated an edited miRNA, miR-151a-3p with an A-to-I editing event at position 3, to determine how its altered expression may be associated with activation of divergent biological pathways between W and B/AA LUAD patients. Finally, we identified distinct race-specific miRNA isoforms that correlated with prognosis for both Ws and B/AAs. Our results suggested that concurrently profiling canonical and non-canonical miRNAs may have potential as a strategy for identifying additional distinct biological pathways and biomarkers in lung cancer.
Collapse
Affiliation(s)
- Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (R.D.); (G.N.)
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (R.D.); (G.N.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (P.L.); (G.R.)
| |
Collapse
|
25
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
26
|
Panzade G, Li L, Hebbar S, Veksler-Lublinsky I, Zinovyeva A. Global profiling and annotation of templated isomiRs dynamics across Caenorhabditis elegans development. RNA Biol 2022; 19:928-942. [PMID: 35848953 PMCID: PMC9298154 DOI: 10.1080/15476286.2022.2099646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through translational repression and mRNA destabilization. During canonical miRNA biogenesis, several miRNA isoforms, or isomiRs, are produced from a single precursor miRNA. Templated isomiRs are generated through Drosha or Dicer cleavage at alternate positions on either the primary or the precursor miRNAs, generating truncated or extended 5' and/or 3' miRNA ends. As changes to the mature miRNA sequence can alter miRNA gene target repertoire, we investigated the extent of templated isomiR prevalence, providing a profiling map for templated isomiRs across stages of C. elegans development. While most miRNA loci did not produce abundant templated isomiRs, a substantial number of miRNA loci produced isomiRs were just as, or more, abundant than their annotated canonical mature miRNAs. 3' end miRNA alterations were more frequent than the seed-altering 5' end extensions or truncations. However, we identified several miRNA loci that produced a considerable amount of isomiRs with 5' end alterations, predicted to target new, distinct sets of genes. Overall, the presented annotation of templated isomiR dynamics across C. elegans developmental stages provides a basis for further studies into miRNA biogenesis and the intriguing potential of functional miRNA diversification through isomiR production.
Collapse
Affiliation(s)
- Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Li Li
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-sheva, Israel
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
27
|
Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs). Stem Cells Int 2021; 2021:7232773. [PMID: 34667479 PMCID: PMC8520657 DOI: 10.1155/2021/7232773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.
Collapse
|
28
|
Hsieh FM, Lai ST, Wu MF, Lin CC. Identification and Elucidation of the Protective isomiRs in Lung Cancer Patient Prognosis. Front Genet 2021; 12:702695. [PMID: 34589114 PMCID: PMC8474875 DOI: 10.3389/fgene.2021.702695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 20–22 nucleotides in length, which are well known to participate in the post-transcriptional modification. The mature miRNAs were observed to be varied on 5′ or 3′ that raise another term—the isoforms of mature miRNAs (isomiRs), which have been proven not the artifacts and discussed widely recently. In our research, we focused on studying the 5′ isomiRs in lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA). We characterized 75 isomiRs significantly associated with better prognosis and 43 isomiRs with poor prognosis. The 75 protective isomiRs can successfully distinguish tumors from normal samples and are expressed differently between patients of early and late stages. We also found that most of the protective isomiRs tend to be with downstream shift and upregulated compared with those with upstream shift, implying that a possible selection occurs during cancer development. Among these protective isomiRs, we observed a highly positive and significant correlation, as well as in harmful isomiRs, suggesting cooperation within the group. However, between protective and harmful, there is no such a concordance but conversely more negative correlation, suggesting the possible antagonistic effect between protective and harmful isomiRs. We also identified that two isomiRs miR-181a-3p|-3 and miR-181a-3p|2, respectively, belong to the harmful and protective groups, suggesting a bidirectional regulation of their originated archetype—miR-181a-3p. Additionally, we found that the protective isomiRs of miR-21-5p, which is an oncomiR, may be evolved as the tumor suppressors through producing isomiRs to hinder metastasis. In summary, these results displayed the characteristics of the protective isomiRs and their potential for developing the treatment of lung cancer.
Collapse
Affiliation(s)
- Fu-Mei Hsieh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Ting Lai
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Fong Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
29
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
30
|
Rodríguez-Galán A, Dosil SG, Gómez MJ, Fernández-Delgado I, Fernández-Messina L, Sánchez-Cabo F, Sánchez-Madrid F. MiRNA post-transcriptional modification dynamics in T cell activation. iScience 2021; 24:102530. [PMID: 34142042 PMCID: PMC8188497 DOI: 10.1016/j.isci.2021.102530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
T cell activation leads to extensive changes in the miRNA repertoire. Although overall miRNA expression decreases within a few hours of T cell activation, some individual miRNAs are specifically upregulated. Using next-generation sequencing, we assessed miRNA expression and post-transcriptional modification kinetics in human primary CD4+ T cells upon T cell receptor (TCR) or type I interferon stimulation. This analysis identified differential expression of multiple miRNAs not previously linked to T cell activation. Remarkably, upregulated miRNAs showed a higher frequency of 3' adenylation. TCR stimulation was followed by increased expression of RNA modifying enzymes and the RNA degrading enzymes Dis3L2 and Eri1. In the midst of this adverse environment, 3' adenylation may serve a protective function that could be exploited to improve miRNA stability for T cell-targeted therapy.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Servicio de Inmunología. Hospital Universitario La Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sara G. Dosil
- Servicio de Inmunología. Hospital Universitario La Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Manuel José Gómez
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Fernández-Delgado
- Servicio de Inmunología. Hospital Universitario La Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Lola Fernández-Messina
- Servicio de Inmunología. Hospital Universitario La Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares. Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fátima Sánchez-Cabo
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología. Hospital Universitario La Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Vascular Pathophysiology Area. Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares. Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
32
|
Barley Seeds miRNome Stability during Long-Term Storage and Aging. Int J Mol Sci 2021; 22:ijms22094315. [PMID: 33919202 PMCID: PMC8122619 DOI: 10.3390/ijms22094315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022] Open
Abstract
Seed aging is a complex biological process that has been attracting scientists’ attention for many years. High-throughput small RNA sequencing was applied to examine microRNAs contribution in barley seeds senescence. Unique samples of seeds that, despite having the same genetic makeup, differed in viability after over 45 years of storage in a dry state were investigated. In total, 61 known and 81 novel miRNA were identified in dry seeds. The highest level of expression was found in four conserved miRNA families, i.e., miR159, miR156, miR166, and miR168. However, the most astonishing result was the lack of significant differences in the level of almost all miRNAs in seed samples with significantly different viability. This result reveals that miRNAs in dry seeds are extremely stable. This is also the first identified RNA fraction that is not deteriorating along with the loss of seed viability. Moreover, the novel miRNA hvu-new41, with higher expression in seeds with the lowest viability as detected by RT-qPCR, has the potential to become an indicator of the decreasing viability of seeds during storage in a dry state.
Collapse
|
33
|
Conde E, Earl J, Crespo-Toro L, Blanco-Agudo C, Ramos-Muñoz E, Rodríguez-Serrano EM, Martínez Ávila JC, Salinas-Muñoz L, Serrano-Huertas S, Ferreiro R, Rodriguez-Garrote M, Sainz B, Massuti B, Alfonso PG, Benavides M, Aranda E, García-Bermejo ML, Carrato A. Biomarkers Associated with Regorafenib First-Line Treatment Benefits in Metastatic Colorectal Cancer Patients: REFRAME Molecular Study. Cancers (Basel) 2021; 13:cancers13071710. [PMID: 33916610 PMCID: PMC8038427 DOI: 10.3390/cancers13071710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Biomarkers able to predict response and toxicity upon regorafenib therapy for colorectal cancer (CRC) are critical for treatment choice, particularly relevant in fragile patients. Here, we validated for the first time 18 distinct microRNAs (miRNAs) detected in serum and primary tumor samples, three germline single-nucleotide polymorphisms (SNPs) in vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) genes, and low levels of Notch 1 expression in the primary tumor as predictive biomarkers of different features. Specifically, these markers were associated with a favorable response to treatment, disease stage, and relapse, as well as the appearance of asthenia. Therefore, these markers can be potentially useful biomarkers for patient stratification and for providing a more personalized and effective therapeutic strategy in fragile patients, while limiting the appearance of adverse effects. Abstract First-line treatment with regorafenib in frail metastatic colorectal cancer (mCRC) patients has shown some benefit. To accurately identify such patients before treatment, we studied blood biomarkers and primary tumor molecules. We unveiled serum microRNAs (miRNAs), single-nucleotide polymorphisms (SNPs) in angiogenic-related genes, and Notch 1 expression as biomarkers associated with response or toxicity. MicroRNA array profiling and genotyping of selected SNPs were performed in the blood of fragile mCRC patients treated with regorafenib. Notch 1 and CRC-associated miRNA expression was also analyzed in tumors. High levels of miR-185-5p in serum, rs7993418 in the vascular endothelial growth factor receptor 1 (VEGFR1) gene, and Notch 1 expression in biopsies were associated with a favorable response to treatment. Serum levels of miR-126-3p and miR-152-3p and tumor expression of miR-92a-1-5p were associated with treatment toxicity, particularly interesting in patients exhibiting comorbidities, and high levels of miR-362-3p were associated with asthenia. Additionally, several miRNAs were associated with the presence of metastasis, local recurrence, and peritoneal metastasis. Besides, miRNAs determined in primary tumors were associated with tumor-node-metastasis (TNM) staging. The rs2305948 and rs699947 SNPs in VEGFR2 and VEGFA, respectively, were markers of poor prognosis correlating with locoregional relapse, a higher N stage, and metastatic shedding. In conclusion, VEGF and VEGFR SNPs, miRNAs, and Notch 1 levels are potential useful biomarkers for the management of advanced CRC under regorafenib treatment.
Collapse
Affiliation(s)
- Elisa Conde
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Alcalá University, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (R.F.); (M.R.-G.); (A.C.)
- Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Lorena Crespo-Toro
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Carolina Blanco-Agudo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Edurne Ramos-Muñoz
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - E. Macarena Rodríguez-Serrano
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Jose Carlos Martínez Ávila
- Departamento de Matemática Aplicada y Estadística, Facultad de Ciencias Económicas y Empresariales, Universidad San Pablo CEU, C/Julián Romea, 23, 28003 Madrid, Spain;
| | - Laura Salinas-Muñoz
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Silvia Serrano-Huertas
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
| | - Reyes Ferreiro
- Molecular Epidemiology and Predictive Tumor Markers Group, Alcalá University, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (R.F.); (M.R.-G.); (A.C.)
- Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Mercedes Rodriguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Alcalá University, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (R.F.); (M.R.-G.); (A.C.)
- Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Bruno Sainz
- Department of Biochemistry, Ramón y Cajal Health Research Institute (IRYCIS) and Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Universidad Autónoma de Madrid (UAM), CSIC-UAM, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain;
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3-IRYCIS, 28034 Madrid, Spain
| | - Bartomeu Massuti
- Oncology Department, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, Universidad Miguel Hernández, Pintor Baeza, 11, 03010 Alicante, Spain;
| | - Pilar García Alfonso
- Oncology Department, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Universitario Gregorio Marañón, Doctor Esquerdo 46, 28028 Madrid, Spain;
| | - Manuel Benavides
- Oncology Department, Hospital Universitario Regional y Virgen de la Victoria, IBIMA, 29010 Málaga, Spain;
| | - Enrique Aranda
- Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
- Oncology Department, Instituto Maimonides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, University of Córdoba, IMIBIC, Av. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Health Research Institute, (IRYCIS), 28034 Madrid, RedinRen, Spain; (E.C.); (L.C.-T.); (C.B.-A.); (E.R.-M.); (E.M.R.-S.); (L.S.-M.); (S.S.-H.)
- Correspondence: ; Tel.: +34-913-368-075
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Alcalá University, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (R.F.); (M.R.-G.); (A.C.)
- Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| |
Collapse
|
34
|
Matsuzaki K, Fujita K, Tomiyama E, Hatano K, Hayashi Y, Wang C, Ishizuya Y, Yamamoto Y, Hayashi T, Kato T, Jingushi K, Kawashima A, Ujike T, Nagahara A, Uemura M, Tsujikawa K, Nonomura N. MiR-30b-3p and miR-126-3p of urinary extracellular vesicles could be new biomarkers for prostate cancer. Transl Androl Urol 2021; 10:1918-1927. [PMID: 33968679 PMCID: PMC8100845 DOI: 10.21037/tau-20-421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Extracellular vesicles (EVs) including exosomes are present in blood, urine, and saliva and contain proteins, microRNAs, and messenger RNAs. We investigated microRNAs in urinary EVs to discover new biomarkers of prostate cancer (PCa). Methods We isolated EVs from urine obtained following digital rectal examination (DRE) of 14 men with elevated levels of serum prostate-specific antigen (PSA) [negative biopsy (n=4) and PCa with Gleason scores of 6 (n=3), 7 (n=3), and 8-9 (n=4)]. MicroRNAs extracted from EVs were analyzed by microRNA microarray. Results MicroRNAs miR-30b-3p and miR-126-3p were identified as being overexpressed in urinary EVs of the PCa patients versus the biopsy-negative men, but no microRNAs were associated with the Gleason score. In the independent cohort as well, these two microRNAs were overexpressed in urinary EVs from the PCa patients versus the negative-biopsy men. Logistic regression analysis adjusted by age and PSA showed that these two microRNAs were significantly associated with the prediction of PCa in biopsy specimens. Sensitivity and specificity of miR-30b-3p and miR-126-3p for the prediction of PCa were 46.4% and 88.0% and 60.7% and 80.0%, respectively, which were better than those of serum PSA (53.5% and 64.0%, respectively). Conclusions MiR-30b-3p and miR-126-3p in urinary EVs could be potential biomarkers of PCa.
Collapse
Affiliation(s)
- Kyosuke Matsuzaki
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Jingushi
- Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Osaka University Graduate School of Pharmaceutical Science, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
35
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
36
|
isomiRs-Hidden Soldiers in the miRNA Regulatory Army, and How to Find Them? Biomolecules 2020; 11:biom11010041. [PMID: 33396892 PMCID: PMC7823672 DOI: 10.3390/biom11010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies on microRNAs (miRNA) in cancer and other diseases have been accompanied by diverse computational approaches and experimental methods to predict and validate miRNA biological and clinical significance as easily accessible disease biomarkers. In recent years, the application of the next-generation deep sequencing for the analysis and discovery of novel RNA biomarkers has clearly shown an expanding repertoire of diverse sequence variants of mature miRNAs, or isomiRs, resulting from alternative post-transcriptional processing events, and affected by (patho)physiological changes, population origin, individual's gender, and age. Here, we provide an in-depth overview of currently available bioinformatics approaches for the detection and visualization of both mature miRNA and cognate isomiR sequences. An attempt has been made to present in a systematic way the advantages and downsides of in silico approaches in terms of their sensitivity and accuracy performance, as well as used methods, workflows, and processing steps, and end output dataset overlapping issues. The focus is given to the challenges and pitfalls of isomiR expression analysis. Specifically, we address the availability of tools enabling research without extensive bioinformatics background to explore this fascinating corner of the small RNAome universe that may facilitate the discovery of new and more reliable disease biomarkers.
Collapse
|
37
|
Pommier A, Varilh J, Bleuse S, Delétang K, Bonini J, Bergougnoux A, Brochiero E, Koenig M, Claustres M, Taulan-Cadars M. miRNA repertoires of cystic fibrosis ex vivo models highlight miR-181a and miR-101 that regulate WISP1 expression. J Pathol 2020; 253:186-197. [PMID: 33095908 DOI: 10.1002/path.5571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/24/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples; for instance, miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e. isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexandra Pommier
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Jessica Varilh
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Solenne Bleuse
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Karine Delétang
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Jennifer Bonini
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Anne Bergougnoux
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France.,CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Michel Koenig
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France.,CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Mireille Claustres
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| | - Magali Taulan-Cadars
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares EA7402, Montpellier, France
| |
Collapse
|
38
|
Fard EM, Moradi S, Salekdeh NN, Bakhshi B, Ghaffari MR, Zeinalabedini M, Salekdeh GH. Plant isomiRs: origins, biogenesis, and biological functions. Genomics 2020; 112:3382-3395. [DOI: 10.1016/j.ygeno.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
|
39
|
Avendaño-Vázquez SE, Flores-Jasso CF. Stumbling on elusive cargo: how isomiRs challenge microRNA detection and quantification, the case of extracellular vesicles. J Extracell Vesicles 2020; 9:1784617. [PMID: 32944171 PMCID: PMC7480573 DOI: 10.1080/20013078.2020.1784617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Eréndira Avendaño-Vázquez
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| | - C Fabián Flores-Jasso
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| |
Collapse
|
40
|
Wang L, Zhang L. Circulating Exosomal miRNA as Diagnostic Biomarkers of Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:53. [PMID: 32351363 PMCID: PMC7174585 DOI: 10.3389/fnmol.2020.00053] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are a group of diseases caused by chronic and progressive degeneration of neural tissue. The main pathological manifestations are neuronal degeneration and loss in the brain and/or spinal cord. Common NDDs include Alzheimer disease (AD), Parkinson disease (PD), Huntington disease (HD), and amyotrophic lateral sclerosis (ALS). The complicated pathological characteristics and different clinical manifestations of NDDs result in a lack of sensitive and efficient diagnostic methods. In addition, no sensitive biomarkers are available to monitor the course of NDDs, predict their prognosis, and monitor the therapeutic response. Despite extensive research in recent years, analysis of amyloid β (Aβ) and α-synuclein has failed to effectively improve NDD diagnosis. Although recent studies have indicated circulating miRNAs as promising diagnostic biomarkers of NDDs, the miRNA in the peripheral circulation is susceptible to interference by other components, making circulating miRNA results less consistent. Exosomes are small membrane vesicles with a diameter of approximately 30-100 nm that transport proteins, lipids, mRNA, and miRNA. Because recent studies have shown that exosomes have a double-membrane structure that can resist ribonuclease in the blood, giving exosomal miRNA high stability and making them resistant to degradation, they may become an ideal biomarker of circulating fluids. In this review, we discuss the applicability of circulating exosomal miRNAs as biomarkers, highlight the technical aspects of exosomal miRNA analysis, and review studies that have used circulating exosomal miRNAs as candidate diagnostic biomarkers of NDDs.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics Chromatin 2020; 13:19. [PMID: 32228651 PMCID: PMC7106649 DOI: 10.1186/s13072-020-00340-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially sncRNAs, are selectively retained during spermiogenesis or specifically transferred during epididymis maturation, and are thus delivered to the oocyte at fertilization, providing resources for embryo development. However , a deep characterization of the sncRNA content of bull sperm and its expression profile across breeds is currently lacking. To fill this gap, we optimized a guanidinium–Trizol total RNA extraction protocol to prepare high-quality RNA from frozen bull sperm collected from 40 representative bulls from six breeds. Deep sequencing was performed (40 M single 50-bp reads per sample) to establish a comprehensive repertoire of cattle sperm sncRNA. Results Our study showed that it comprises mostly piRNAs (26%), rRNA fragments (25%), miRNAs (20%) and tRNA fragments (tsRNA, 14%). We identified 5p-halves as the predominant tsRNA subgroup in bull sperm, originating mostly from Gly and Glu isoacceptors. Our study also increased by ~ 50% the sperm repertoire of known miRNAs and identified 2022 predicted miRNAs. About 20% of sperm miRNAs were located within genomic clusters, expanding the list of known polycistronic pri-miRNA clusters and defining several networks of co-expressed miRNAs. Strikingly, our study highlighted the great diversity of isomiRs, resulting mainly from deletions and non-templated additions (A and U) at the 3p end. Substitutions within miRNA sequence accounted for 40% of isomiRs, with G>A, U>C and C>U substitutions being the most frequent variations. In addition, many sncRNAs were found to be differentially expressed across breeds. Conclusions Our study provides a comprehensive overview of cattle sperm sncRNA, and these findings will pave the way for future work on the role of sncRNAs in embryo development and their relevance as biomarkers of semen fertility.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
42
|
Zaporozhchenko IA, Rykova EY, Laktionov PP. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816202001015x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
López-Longarela B, Morrison EE, Tranter JD, Chahman-Vos L, Léonard JF, Gautier JC, Laurent S, Lartigau A, Boitier E, Sautier L, Carmona-Saez P, Martorell-Marugan J, Mellanby RJ, Pernagallo S, Ilyine H, Rissin DM, Duffy DC, Dear JW, Díaz-Mochón JJ. Direct Detection of miR-122 in Hepatotoxicity Using Dynamic Chemical Labeling Overcomes Stability and isomiR Challenges. Anal Chem 2020; 92:3388-3395. [PMID: 31939284 DOI: 10.1021/acs.analchem.9b05449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circulating microRNAs are biomarkers reported to be stable and translational across species. MicroRNA-122 (miR-122) is a hepatocyte-specific microRNA biomarker for drug-induced liver injury (DILI). We developed a single molecule, dynamic chemical labeling (DCL) assay to directly detect miR-122 in blood. The DCL assay specifically measured miR-122 directly from 10 μL of serum or plasma without any extraction steps, with a limit of detection of 1.32 pM that enabled the identification of DILI. Testing of 192 human serum samples showed that DCL accurately identified patients at risk of DILI after acetaminophen overdose (area under ROC curve 0.98 (95% CI; 0.96-1), P < 0.0001). The DCL assay also identified liver injury in rats and dogs. The use of specific captured beads had the additional benefit of stabilizing miR-122 after sample collection, with no signal loss after 14 days at room temperature, in contrast to PCR that showed significant loss of signal. RNA sequencing demonstrated the presence of multiple miR-122 isomiRs in the serum of patients with DILI that were at low concentration or not present in healthy individuals. Sample degradation over time produced more isomiRs, particularly rapidly with DILI. PCR was inaccurate when analyzing miR-122 isomiRs, whereas the DCL assay demonstrated accurate quantification. We conclude that the DCL assay can accurately measure miR-122 to diagnose liver injury in humans and other species and can overcome microRNA stability and isomiR challenges.
Collapse
Affiliation(s)
- Barbara López-Longarela
- DestiNA Genomics Ltd. , 7-11 Melville Street , Edinburgh , U.K.,DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS) , Avenida de la Innovación 1 , Edificio BIC, Armilla, Granada , Spain
| | - Emma E Morrison
- Pharmacology, Therapeutics and Toxicology, Centre for Cardiovascular Science , University of Edinburgh, The Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , U.K
| | - John D Tranter
- Pharmacology, Therapeutics and Toxicology, Centre for Cardiovascular Science , University of Edinburgh, The Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , U.K
| | - Lianne Chahman-Vos
- Pharmacology, Therapeutics and Toxicology, Centre for Cardiovascular Science , University of Edinburgh, The Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , U.K
| | | | | | | | - Aude Lartigau
- Sanofi R&D , 13 Quai Jules Guesde , 94400 Vitry-sur-Seine , France
| | - Eric Boitier
- Sanofi R&D , 13 Quai Jules Guesde , 94400 Vitry-sur-Seine , France
| | - Lucile Sautier
- Sanofi R&D , 371 Rue du Pr. J. Blayac , 34184 Montpellier , France
| | - Pedro Carmona-Saez
- Bioinformatics Unit , Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS , Granada , Spain
| | - Jordi Martorell-Marugan
- Bioinformatics Unit , Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS , Granada , Spain
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals , University of Edinburgh , Edinburgh , U.K
| | - Salvatore Pernagallo
- DestiNA Genomics Ltd. , 7-11 Melville Street , Edinburgh , U.K.,DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS) , Avenida de la Innovación 1 , Edificio BIC, Armilla, Granada , Spain
| | - Hugh Ilyine
- DestiNA Genomics Ltd. , 7-11 Melville Street , Edinburgh , U.K.,DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS) , Avenida de la Innovación 1 , Edificio BIC, Armilla, Granada , Spain
| | - David M Rissin
- Quanterix Corporation , 900 Middlesex Turnpike , Billerica , Massachusetts 01821 , United States
| | - David C Duffy
- Quanterix Corporation , 900 Middlesex Turnpike , Billerica , Massachusetts 01821 , United States
| | - James W Dear
- Pharmacology, Therapeutics and Toxicology, Centre for Cardiovascular Science , University of Edinburgh, The Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , U.K
| | - Juan J Díaz-Mochón
- DestiNA Genomics Ltd. , 7-11 Melville Street , Edinburgh , U.K.,DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS) , Avenida de la Innovación 1 , Edificio BIC, Armilla, Granada , Spain.,Bioinformatics Unit , Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS , Granada , Spain
| |
Collapse
|
44
|
Balyan S, Joseph SV, Jain R, Mutum RD, Raghuvanshi S. Investigation into the miRNA/5' isomiRNAs function and drought-mediated miRNA processing in rice. Funct Integr Genomics 2020; 20:509-522. [DOI: 10.1007/s10142-020-00731-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022]
|
45
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
46
|
Godoy PM, Bhakta NR, Barczak AJ, Cakmak H, Fisher S, MacKenzie TC, Patel T, Price RW, Smith JF, Woodruff PG, Erle DJ. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep 2019; 25:1346-1358. [PMID: 30380423 PMCID: PMC6261476 DOI: 10.1016/j.celrep.2018.10.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular microRNAs (miRNAs) and other small RNAs are implicated in cellular communication and may be useful as disease biomarkers. We systematically compared small RNAs in 12 human biofluid types using RNA sequencing (RNA-seq). miRNAs and tRNA-derived RNAs (tDRs) accounted for the majority of mapped reads in all biofluids, but the ratio of miRNA to tDR reads varied from 72 in plasma to 0.004 in bile. miRNA levels were highly correlated across all biofluids, but levels of some miRNAs differed markedly between biofluids. tDR populations differed extensively between biofluids. Y RNA fragments were seen in all biofluids and accounted for >10% of reads in blood plasma, serum, and cerebrospinal fluid (CSF). Reads mapping exclusively to Piwi-interacting RNAs (piRNAs) were very rare, except in seminal plasma. These results demonstrate extensive differences in small RNAs between human biofluids and provide a useful resource for investigating extracellular RNA biology and developing biomarkers. Using a standardized sequencing-based approach, Godoy et al. characterize small RNAs in 12 normal human biofluids. They find that each biofluid contains an extensive collection of small RNAs that belong to multiple biotypes. The relative abundance of these RNAs varies widely between biofluids.
Collapse
Affiliation(s)
- Paula M Godoy
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA
| | - Andrea J Barczak
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA
| | - Hakan Cakmak
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, UCSF Box 0916, San Francisco, CA 94143, USA
| | - Susan Fisher
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, UCSF Box 0916, San Francisco, CA 94143, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, UCSF Box 0570, San Francisco, CA 94143, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Richard W Price
- Department of Neurology, University of California, San Francisco, UCSF Box 0870, San Francisco, CA 94143, USA
| | - James F Smith
- Department of Urology, University of California, San Francisco, UCSF Box 1695, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
48
|
Lavaee P, Taghdisi SM, Abnous K, Danesh NM, Khayyat LH, Jalalian SH. Fluorescent sensor for detection of miR-141 based on target-induced fluorescence enhancement and PicoGreen. Talanta 2019; 202:349-353. [DOI: 10.1016/j.talanta.2019.04.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
|
49
|
Núñez-Acuña G, Gallardo-Escárate C. Characterization of the salmon louse Lepeophtheirus salmonis miRNome: Sex-biased differences related to the coding and non-coding RNA interplay. Mar Genomics 2019; 45:38-47. [PMID: 30772247 DOI: 10.1016/j.margen.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
The salmon louse Lepeophtheirus salmonis is a marine ectoparasite that has a detrimental impact on salmon farms. Genomic knowledge of adult stages is critical to understand the reproductive success and lifecycle completion of this species. Here, we report a comprehensive characterization of the L. salmonis miRNome with emphasis on the sex-differences of the parasite. Small-RNA sequencing was conducted on males and females, and mRNA-sequencing was also conducted to identify miRNA-targets at these stages. Based on bioinformatics analyses, 3101 putative miRNAs were found in L. salmonis, including precursors and variants. The most abundant and over-expressed miRNAs belonged to the bantam, mir-100, mir-1, mir-263a and mir-276 families, while the most differentially expressed mRNAs corresponded to genes related to reproduction and other biological processes involved in cell-differentiation. Target analyses revealed that the most up-regulated miRNAs in males can act by inhibiting the expression of genes related to female differentiation such as vitellogenin genes. Target prediction and expression patterns suggested a pivotal role of miRNAs in the reproductive development of L. salmonis.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
| |
Collapse
|
50
|
Lin R, Wang Y. Automated smFRET microscope for the quantification of label-free DNA oligos. BIOMEDICAL OPTICS EXPRESS 2019; 10:682-693. [PMID: 30800508 PMCID: PMC6377893 DOI: 10.1364/boe.10.000682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 05/25/2023]
Abstract
Single-molecule FRET (smFRET) spectroscopy is a powerful tool for studying inhomogeneous dynamics in biological systems. However, because of the intrinsic variations that accompany the sample sizes, massive data sets are essential to extract statistically reliable information. In this aspect, a simple motorized stage and autofocusing modification can save time without the expense of a high-end automated microscope. In this report, we describe a simple and economical modification of a commercial inverted microscope with a manual stage to automate the data acquisition and measurement process. We collected 8000 images with a 100 ms exposure time in 1000 fields of view in approximately 13 min, where it would take more than 8 h by manual collection. We demonstrated the method with a DNA oligo quantification experiment. In this experiment, the measurement platform is a FRET signal from a dye-labeled DNA duplex containing unmatched base pairs. The target DNA replaces one of the strands because of the formation of a perfect duplex. This thermodynamically driven exchange reaction causes FRET to disappear, which correlated with the DNA concentration. The data are batch processed with the freeware ImageJ. These modifications are feasible and economical for general smFRET experiments.
Collapse
|