1
|
Ouyang Q, He W, Guo Y, Li L, Mao Y, Li X, Xiang S, Hu X, He J. Downregulation of hnRNPA1 inhibits hepatocellular carcinoma cell progression by modulating alternative splicing of ZNF207 exon 9. Front Oncol 2025; 14:1517459. [PMID: 39834948 PMCID: PMC11743940 DOI: 10.3389/fonc.2024.1517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most prevalent liver cancer and a leading cause of cancer-related deaths worldwide. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays a critical role in RNA metabolism, including alternative splicing, which is linked to cancer progression. Our study investigated the role of hnRNPA1 in HCC and its potential as a therapeutic target. Methods We analyzed hnRNPA1 expression in HCC tissues compared to non-tumor tissues using RNA-seq and immunohistochemistry. hnRNPA1 was knocked down in Hep G2 cells to assess its impact on cell proliferation, migration, and apoptosis using scratch assays, flow cytometry, qPCR, and Western blot. We also explored the interaction between hnRNPA1 and ZNF207, as well as its splicing effects and downstream signaling pathways by RIP assay, bioinformatics, qPCR and Western blot. Results hnRNPA1 was significantly upregulated in HCC tissues compared to normal tissues, correlating with poor patient survival. hnRNPA1 knockdown reduced Hep G2 cell proliferation and migration while increasing apoptosis. We identified that hnRNPA1 bound to ZNF207 and regulated its exon 9 skipping, influencing ZNF207 splicing and the PI3K/Akt/mTOR pathway, key regulators of cell growth and survival. Conclusion Our findings demonstrate that hnRNPA1 promotes HCC progression by regulating ZNF207 splicing and the PI3K/Akt/mTOR pathway. hnRNPA1-ZNF207 interaction represents a potential therapeutic target for HCC, providing insights into the molecular mechanisms underlying HCC progression.
Collapse
Affiliation(s)
- Qi Ouyang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenhui He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiping Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Pieterse L, McDonald M, Abraham R, Griffin DE. Heterogeneous Ribonucleoprotein K Is a Host Regulatory Factor of Chikungunya Virus Replication in Astrocytes. Viruses 2024; 16:1918. [PMID: 39772225 PMCID: PMC11680317 DOI: 10.3390/v16121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target. Heterogeneous ribonucleoprotein K (hnRNP K), an RNA-binding protein involved in RNA splicing, trafficking, and translation, is a regulatory component of alphavirus replicase assembly complexes, but has yet to be thoroughly studied in the context of CHIKV infection. We identified the hnRNP K CHIKV viral RNA (vRNA) binding site via sequence alignment and performed site-directed mutagenesis to generate a mutant, ΔhnRNPK-BS1, with disrupted hnRNPK-vRNA binding, as verified through RNA coimmunoprecipitation and RT-qPCR. CHIKV ΔhnRNPK-BS1 demonstrated hampered replication in both NSC-34 neuronal and C8-D1A astrocytic cultures. In astrocytes, disruption of the hnRNPK-vRNA interaction curtailed viral RNA transcription and shut down subgenomic RNA translation. Our study demonstrates that hnRNP K serves as a crucial RNA-binding host factor that regulates CHIKV replication through the modulation of subgenomic RNA translation.
Collapse
Affiliation(s)
- Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| | - Maranda McDonald
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| |
Collapse
|
3
|
Bakhtina AA, Wippel HH, Chavez JD, Bruce JE. Combining Quantitative Proteomics and Interactomics for a Deeper Insight into Molecular Differences between Human Cell Lines. J Proteome Res 2024; 23:5360-5371. [PMID: 39453897 PMCID: PMC11867029 DOI: 10.1021/acs.jproteome.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
In modern biomedical research, cultivable cell lines are an indispensable tool, and the selection of cell lines that exhibit specific functional profiles is often critical to success. Cellular functional pathways have evolved through the selection of protein intra- and intermolecular interactions collectively referred to as the interactome. In the present work, quantitative in vivo protein cross-linking and mass spectrometry were used to probe large-scale protein interactome differences among three commonly employed human cell lines, namely, HEK293, MCF-7, and HeLa cells. These data illustrated highly reproducible quantitative interactome levels with R2 values larger than 0.8 for all biological replicates. Proteome abundance levels were also measured using data-independent acquisition quantitative proteomics methods. Combining quantitative interactome and proteome information allowed the visualization of cell type-specific interactome changes mediated by proteome level adaptations and independently regulated interactome changes to gain deeper insight into possible drivers of these changes. Among the largest detected alterations in protein interactions and conformations are changes in cytoskeletal proteins, RNA-binding proteins, chromatin remodeling complexes, mitochondrial proteins, and others. Overall, these data demonstrate the utility and reproducibility of quantitative cross-linking to study system-level interactome variations. Moreover, these results illustrate how combined quantitative interactomics and proteomics can provide unique insight into cellular functional landscapes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Pascual A, Taibo C, Rivera-Pomar R. Central role of squid gene during oocyte development in the Hemiptera Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104719. [PMID: 39489393 DOI: 10.1016/j.jinsphys.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oocyte polarity establishment is a conserved and crucial phenomenon for embryonic development. It relies on the precise spatial localization of maternal factors deposited during oocyte development, which is essential for establishing and maintaining cell polarity and subsequently specifying embryonic axes. The heterogeneous nuclear ribonucleoprotein (hnRNP) encoded by the squid (sqd) gene has been implicated in mRNA localization and embryonic axis establishment in Drosophila melanogaster. Comparative genomics allowed for the identification of a homologue in Rhodnius prolixus. In this study, we investigated the function of Rp-sqd during oogenesis and early embryonic development. We observed persistent expression of Rp-sqd during oocyte development, with localization in the cytoplasm of ovary germarium and growing oocytes in previtellogenic and vitellogenic stages. A Parental RNA interference (RNAi) experiment targeting Rp-sqd resulted in female sterility. The ovaries showed disrupted oocyte development, disarray of follicular epithelium, and affected nurse cells integrity. Immunostaining and microscopic techniques revealed microtubule disarray and a reduction in the presence of organelles in the trophic cords that connect the germarium with the oocytes. The Rp-sqd depletion impacted the transcript expression of maternal mRNAs involved in apoptosis, axis formation, oogenesis, and cytoskeleton maintenance, indicating a pleiotropic function of Rp-sqd during oogenesis. This study provides new insights into the genetic basis of R. prolixus oogenesis, highlighting the crucial role of Rp-sqd in oocyte development, fertility, and germarium integrity. These findings contribute to our understanding of insect developmental processes, provide a foundation for future investigations into reproduction, and reveal the regulatory mechanisms governing the process.
Collapse
Affiliation(s)
- Agustina Pascual
- Centro de BioInvestigaciones (CeBio‑CICBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CITNOBA‑CONICET), Pergamino, Argentina
| | - Catalina Taibo
- Laboratorio de Microscopia Integral (LIM), (CICVyA, INTA), Hurlingham, Argentina
| | - Rolando Rivera-Pomar
- Centro de BioInvestigaciones (CeBio‑CICBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CITNOBA‑CONICET), Pergamino, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina; Max Planck Institute for Multidisciplinary Sciences, Dept. Tissue Dynamics and Regeneration, Göttingen, Germany.
| |
Collapse
|
5
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Li C, Lu T, Chen H, Yu Z, Chen C. The up-regulation of SYNCRIP promotes the proliferation and tumorigenesis via DNMT3A/p16 in colorectal cancer. Sci Rep 2024; 14:21570. [PMID: 39284825 PMCID: PMC11405714 DOI: 10.1038/s41598-024-59575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/12/2024] [Indexed: 09/20/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), a group of proteins that control gene expression, have been implicated in many post-transcriptional processes. SYNCRIP (also known as hnRNP Q), a subtype of hnRNPs, has been reported to be involved in mRNA splicing and translation. In addition, the deregulation of SYNCRIP was found in colorectal cancer (CRC). However, the role of SYNCRIP in regulating CRC growth remains largely unknown. Here, we found that SYNCRIP was highly expressed in colorectal cancer by analyzing TCGA and GEPIA database. Furthermore, we confirmed the expression of SYNCRIP expression in CRC tumor and CRC cell lines. Functionally, SYNCRIP depletion using shRNA in CRC cell lines (SW480 and HCT 116) resulted in increased caspase3/7 activity and decreased cell proliferation, as well as migration. Meanwhile, overexpression of SYNCRIP showed opposite results. Mechanistically, SYNCRIP regulated the expression of DNA methyltransferases (DNMT) 3A, but not DNMT1 or DNMT3B, which affected the expression of tumor suppressor, p16. More importantly, our in vivo experiments showed that SYNCRIP depletion significantly inhibited colorectal tumor growth. Taken all together, our results suggest SYNCRIP as a potent therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Tailiang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Hongxi Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Zhige Yu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| |
Collapse
|
8
|
Liu C, Wang Y, Shi M, Tao X, Man D, Zhang J, Han B. hnRNPA0 promotes MYB expression by interacting with enhancer lncRNA MY34UE-AS in human leukemia cells. Biochem Biophys Res Commun 2024; 724:150221. [PMID: 38865811 DOI: 10.1016/j.bbrc.2024.150221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Yucheng Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Mengjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Xiaoxiao Tao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Da Man
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
9
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Bakhtina AA, Wippel HH, Chavez JD, Bruce JE. Combining quantitative proteomics and interactomics for a deeper insight into molecular differences between human cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598691. [PMID: 38915502 PMCID: PMC11195184 DOI: 10.1101/2024.06.12.598691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cellular functional pathways have evolved through selection based on fitness benefits conferred through protein intra- and inter-molecular interactions that comprise all protein conformational features and protein-protein interactions, collectively referred to as the interactome. While the interactome is regulated by proteome levels, it is also regulated independently by, post translational modification, co-factor, and ligand levels, as well as local protein environmental factors, such as osmolyte concentration, pH, ionic strength, temperature and others. In modern biomedical research, cultivatable cell lines have become an indispensable tool, with selection of optimal cell lines that exhibit specific functional profiles being critical for success in many cases. While it is clear that cell lines derived from different cell types have differential proteome levels, increased understanding of large-scale functional differences requires additional information beyond abundance level measurements, including how protein conformations and interactions are altered in certain cell types to shape functional landscapes. Here, we employed quantitative in vivo protein cross-linking coupled to mass spectrometry to probe large-scale protein conformational and interaction changes among three commonly employed human cell lines, HEK293, MCF-7, and HeLa cells. Isobaric quantitative Protein Interaction Reporter (iqPIR) technologies were used to obtain quantitative values of cross-linked peptides across three cell lines. These data illustrated highly reproducible (R2 values larger than 0.8 for all biological replicates) quantitative interactome levels across multiple biological replicates. We also measured protein abundance levels in these cells using data independent acquisition quantitative proteomics methods. Combining quantitative interactome and proteomics information allowed visualization of cell type-specific interactome changes mediated by proteome level adaptations as well as independently regulated interactome changes to gain deeper insight into possible drivers of these changes. Among the biggest detected alterations in protein interactions and conformations are changes in cytoskeletal proteins, RNA-binding proteins, chromatin remodeling complexes, mitochondrial proteins, and others. Overall, these data demonstrate the utility and reproducibility of quantitative cross-linking to study systems-level interactome variations. Moreover, these results illustrate how combined quantitative interactomics and proteomics can provide unique insight on cellular functional landscapes.
Collapse
Affiliation(s)
- Anna A. Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Helisa H. Wippel
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Juan D. Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Li Y, Zhang S, Li Y, Liu J, Li Q, Zang W, Pan Y. The Regulatory Network of hnRNPs Underlying Regulating PKM Alternative Splicing in Tumor Progression. Biomolecules 2024; 14:566. [PMID: 38785973 PMCID: PMC11117501 DOI: 10.3390/biom14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis. Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are produced in various tissues or illness situations, and the post-translational modifications are linked to numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also summarize the drug targets retarding tumorous splicing events, which may be critical to improving the specificity and effectiveness of current therapeutic interventions.
Collapse
Affiliation(s)
- Yuchao Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yuexian Li
- Department of Radiation Oncology Gastrointestinal and Urinary and Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China;
| | - Junchao Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Wenli Zang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| |
Collapse
|
13
|
Zhu Z, Li M, Weng J, Li S, Guo T, Guo Y, Xu Y. LncRNA GAS6-AS1 contributes to 5-fluorouracil resistance in colorectal cancer by facilitating the binding of PCBP1 with MCM3. Cancer Lett 2024; 589:216828. [PMID: 38521199 DOI: 10.1016/j.canlet.2024.216828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
14
|
Alemi F, Poornajaf Y, Hosseini F, Vahedian V, Gharekhani M, Shoorei H, Taheri M. Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance. Mol Biol Rep 2024; 51:308. [PMID: 38366290 DOI: 10.1007/s11033-024-09288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Foroogh Hosseini
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Vahid Vahedian
- Department of Medical Clinic, Division of Hematology/Oncology and Cellular Therapy, Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Mahdi Gharekhani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Evans EP, Helbing CC. Defining components of early thyroid hormone signalling through temperature-mediated activation of molecular memory in cultured Rana [lithobates] catesbeiana tadpole back skin. Gen Comp Endocrinol 2024; 347:114440. [PMID: 38159870 DOI: 10.1016/j.ygcen.2023.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Thyroid hormones (THs) are essential signalling molecules for the postembryonic development of all vertebrates. THs are necessary for the metamorphosis from tadpole to froglet and exogenous TH administration precociously induces metamorphosis. In American bullfrog (Rana [Lithobates] catesbeiana) tadpoles, the TH-induced metamorphosis observed at a warm temperature (24 °C) is arrested at a cold temperature (4 °C) even in the presence of exogenous THs. However, when TH-exposed tadpoles are shifted from cold to warm temperatures (4 → 24 °C), they undergo TH-dependent metamorphosis at an accelerated rate even when the initial TH signal is no longer present. Thus, they possess a "molecular memory" of TH exposure that establishes the TH-induced response program at the cold temperature and prompts accelerated metamorphosis after a shift to a warmer temperature. The components of the molecular memory that allow the uncoupling of initiation from the execution of the metamorphic program are not understood. To investigate this, we used cultured tadpole back skin (C-Skin) in a repeated measures experiment under 24 °C only, 4 °C only, and 4 → 24 °C temperature shifted regimes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA-sequencing (RNA-seq) analyses. RNA-seq identified 570, 44, and 890 transcripts, respectively, that were significantly changed by TH treatment. These included transcripts encoding transcription factors and proteins involved in mRNA structure and stability. Notably, transcripts associated with molecular memory do not overlap with those identified previously in cultured tail fin (C-fin) except for TH-induced basic leucine zipper-containing protein (thibz) suggesting that thibz may have a central role in molecular memory that works with tissue-specific factors to establish TH-induced gene expression programs.
Collapse
Affiliation(s)
- E P Evans
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - C C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
16
|
Song Y, Wang L, Xu M, Lu X, Wang Y, Zhang L. Molecular and functional characterization of porcine poly C binding protein 1 (PCBP1). BMC Vet Res 2024; 20:25. [PMID: 38218813 PMCID: PMC10787444 DOI: 10.1186/s12917-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Poly C Binding Protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family. It is a multifunctional protein that participates in several functional circuits and plays a variety of roles in cellular processes. Although PCBP1 has been identified in several mammals, its function in porcine was unclear. RESULTS In this study, we cloned the gene of porcine PCBP1 and analyzed its evolutionary relationships among different species. We found porcine PCBP1 protein sequence was similar to that of other animals. The subcellular localization of PCBP1 in porcine kidney cells 15 (PK-15) cells was analyzed by immunofluorescence assay (IFA) and revealed that PCBP1 was mainly localized to the nucleus. Reverse transcription-quantitative PCR (RT-qPCR) was used to compare PCBP1 mRNA levels in different tissues of 30-day-old pigs. Results indicated that PCBP1 was expressed in various tissues and was most abundant in the liver. Finally, the effects of PCBP1 on cell cycle and apoptosis were investigated following its overexpression or knockdown in PK-15 cells. The findings demonstrated that PCBP1 knockdown arrested cell cycle in G0/G1 phase, and enhanced cell apoptosis. CONCLUSIONS Porcine PCBP1 is a highly conserved protein, plays an important role in determining cell fate, and its functions need further study.
Collapse
Affiliation(s)
- Yue Song
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Linqing Wang
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China.
| | - Menglong Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiuxiang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yumin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Limeng Zhang
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China
| |
Collapse
|
17
|
Diao X, Guo C, Zheng H, Zhao K, Luo Y, An M, Lin Y, Chen J, Li Y, Li Y, Gao X, Zhang J, Zhou M, Bai W, Liu L, Wang G, Zhang L, He X, Zhang R, Li Z, Chen C, Li S. SUMOylation-triggered ALIX activation modulates extracellular vesicles circTLCD4-RWDD3 to promote lymphatic metastasis of non-small cell lung cancer. Signal Transduct Target Ther 2023; 8:426. [PMID: 37925421 PMCID: PMC10625632 DOI: 10.1038/s41392-023-01685-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023] Open
Abstract
Lymph node (LN) metastasis is one of the predominant metastatic routes of non-small cell lung cancer (NSCLC) and is considered as a leading cause for the unsatisfactory prognosis of patients. Although lymphangiogenesis is well-recognized as a crucial process in mediating LN metastasis, the regulatory mechanism involving lymphangiogenesis and LN metastasis in NSCLC remains unclear. In this study, we employed high-throughput sequencing to identify a novel circular RNA (circRNA), circTLCD4-RWDD3, which was significantly upregulated in extracellular vesicles (EVs) from LN metastatic NSCLC and was positively associated with deteriorated OS and DFS of patients with NSCLC from multicenter clinical cohort. Downregulating the expression of EV-packaged circTLCD4-RWDD3 inhibited lymphangiogenesis and LN metastasis of NSCLC both in vitro and in vivo. Mechanically, circTLCD4-RWDD3 physically interacted with hnRNPA2B1 and mediated the SUMO2 modification at K108 residue of hnRNPA2B1 by upregulating UBC9. Subsequently, circTLCD4-RWDD3-induced SUMOylated hnRNPA2B1 was recognized by the SUMO interaction motif (SIM) of ALIX and activated ALIX to recruit ESCRT-III, thereby facilitating the sorting of circTLCD4-RWDD3 into NSCLC cell-derived EVs. Moreover, EV-packaged circTLCD4-RWDD3 was internalized by lymphatic endothelial cells to activate the transcription of PROX1, resulting in the lymphangiogenesis and LN metastasis of NSCLC. Importantly, blocking EV-mediated transmission of circTLCD4-RWDD3 via mutating SIM in ALIX or K108 residue of hnRNPA2B1 inhibited the lymphangiogenesis and LN metastasis of NSCLC in vivo. Our findings reveal a precise mechanism underlying SUMOylated hnRNPA2B1-induced EV packaging of circTLCD4-RWDD3 in facilitating LN metastasis of NSCLC, suggesting that EV-packaged circTLCD4-RWDD3 could be a potential therapeutic target against LN metastatic NSCLC.
Collapse
Affiliation(s)
- Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Ke Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuting Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xuehan Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jiaqi Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Mengxin Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Wenliang Bai
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lanjun Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaotian He
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Rusi Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
18
|
Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H, Zhang L. Research Progress on the Structural and Functional Roles of hnRNPs in Muscle Development. Biomolecules 2023; 13:1434. [PMID: 37892116 PMCID: PMC10604023 DOI: 10.3390/biom13101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China; (Z.L.); (H.W.); (D.H.); (X.L.); (Y.G.); (X.D.); (H.G.)
| |
Collapse
|
19
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
20
|
Chu WH, Yang N, Zhang JH, Li Y, Song JL, Deng ZP, Meng N, Zhang J, Zhu KK, Jiang CS. Discovery of tetrahydroisoquinolineindole derivatives as first dual PRMT5 inhibitors/hnRNP E1 upregulators: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 258:115625. [PMID: 37429083 DOI: 10.1016/j.ejmech.2023.115625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as an important therapeutic target for treating various types of cancer. Upregulation of tumor suppressor hnRNP E1 has also been considered as an effective antitumor therapy. In this study, a series of tetrahydroisoquinolineindole hybrids were designed and prepared, and compounds 3m and 3s4 were found to be selective inhibitors of PRMT5 and upregulators of hnRNP E1. Molecular docking studies indicated that compounds 3m occupied the substrate site of PRMT5 and formed essential interactions with amino acid residues. Furthermore, compounds 3m and 3s4 exerted antiproliferative effects against A549 cells by inducing apoptosis and inhibiting cell migration. Importantly, silencing of hnRNP E1 eliminated the antitumor effect of 3m and 3s4 on the apoptosis and migration in A549 cells, suggesting a regulatory relationship between PRMT5 and hnRNP E1. Additionally, compound 3m exhibited high metabolic stability on human liver microsomes (T1/2 = 132.4 min). In SD rats, the bioavailability of 3m was 31.4%, and its PK profiles showed satisfactory AUC and Cmax values compared to the positive control. These results suggest that compound 3m is the first class of dual PRMT5 inhibitor and hnRNP E1 upregulator that deserves further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Wen-Hui Chu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Zhi-Peng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
21
|
Finger DS, Williams AE, Holt VV, Ables ET. Novel roles for RNA binding proteins squid, hephaesteus, and Hrb27C in Drosophila oogenesis. Dev Dyn 2023; 252:415-428. [PMID: 36308715 PMCID: PMC9991940 DOI: 10.1002/dvdy.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Reproductive capacity in many organisms is maintained by germline stem cells (GSCs). A complex regulatory network influences stem cell fate, including intrinsic factors, local signals, and hormonal and nutritional cues. Posttranscriptional regulatory mechanisms ensure proper cell fate transitions, promoting germ cell differentiation to oocytes. As essential RNA binding proteins with constitutive functions in RNA metabolism, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been implicated in GSC function and axis specification during oocyte development. HnRNPs support biogenesis, localization, maturation, and translation of nascent transcripts. Whether and individual hnRNPs specifically regulate GSC function has yet to be explored. RESULTS We demonstrate that hnRNPs are expressed in distinct patterns in the Drosophila germarium. We show that three hnRNPs, squid, hephaestus, and Hrb27C are cell-autonomously required in GSCs for their maintenance. Although these hnRNPs do not impact adhesion of GSCs to adjacent cap cells, squid and hephaestus (but not Hrb27C) are necessary for proper bone morphogenetic protein signaling in GSCs. Moreover, Hrb27C promotes proper GSC proliferation, whereas hephaestus promotes cyst division. CONCLUSIONS We find that hnRNPs are independently and intrinsically required in GSCs for their maintenance in adults. Our results support the model that hnRNPs play unique roles in stem cells essential for their self-renewal and proliferation.
Collapse
Affiliation(s)
- Danielle S. Finger
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Vivian V. Holt
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T. Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
22
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
23
|
Dose-related shifts in proteome and function of extracellular vesicles secreted by fetal neural stem cells following chronic alcohol exposure. Heliyon 2022; 8:e11348. [PMID: 36387439 PMCID: PMC9649983 DOI: 10.1016/j.heliyon.2022.e11348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that extracellular vesicles (EVs) mediate endocrine functions and also pathogenic effects of neurodevelopmental perturbagens like ethanol. We performed mass-spectrometry on EVs secreted by fetal murine cerebral cortical neural stem cells (NSCs), cultured ex-vivo as sex-specific neurosphere cultures, to identify overrepresented proteins and signaling pathways in EVs relative to parental NSCs in controls, and following exposure of parental NSCs to a dose range of ethanol. EV proteomes differ substantially from parental NSCs, and though EVs sequester proteins across sub-cellular compartments, they are enriched for distinct morphogenetic signals including the planar cell polarity pathway. Ethanol exposure favored selective protein sequestration in EVs and depletion in parental NSCs, and also resulted in dose-independent overrepresentation of cell-cycle and DNA replication pathways in EVs as well as dose-dependent overrepresentation of rRNA processing and mTor stress pathways. Transfer of untreated EVs to naïve cells resulted in decreased oxidative metabolism and S-phase, while EVs derived from ethanol-treated NSCs exhibited diminished effect. Collectively, these data show that NSCs secrete EVs with a distinct proteome that may have a general growth-inhibitory effect on recipient cells. Moreover, while ethanol results in selective transfer of proteins from NSCs to EVs, the efficacy of these exposure-derived EVs is diminished.
Collapse
|
24
|
Liu XY, Gao Y, Kui XY, Liu XS, Zhang YH, Zhang Y, Ke CB, Pei ZJ. High expression of HNRNPR in ESCA combined with 18F-FDG PET/CT metabolic parameters are novel biomarkers for preoperative diagnosis of ESCA. Lab Invest 2022; 20:450. [PMID: 36195940 PMCID: PMC9533615 DOI: 10.1186/s12967-022-03665-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 01/17/2023]
Abstract
Background The aim of this study was to determine the expression and function of heterogeneous nuclear ribonucleoprotein R (HNRNPR) in esophageal carcinoma (ESCA), the correlation between its expression and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerized tomography scan (PET/CT)-related parameters. We also investigated whether 18F-FDG PET/CT can be used to predict the expression of HNRNPR in ESCA. Methods We analyzed patients with ESCA who underwent 18F-FDG PET/CT before surgery, and their tissues were stained with HNRNPR IHC. The associated parameters were derived using the 18F-FDG PET imaging data, and the correlation with the IHC score was evaluated. The Oncomine, TCGA, and GEO datasets were used to investigate HNRNPR expression in the pan- and esophageal cancers, as well as its relationship with N6-methyladenosine (m6A) modification and glycolysis. The R software, LinkedOmics, GeneMANIA, and StringOnline tools were used to perform GO/KEGG, GGI, and PPI analyses on the HNRNPR. Results HNRNPR is highly expressed in the majority of pan-cancers, including ESCA, and is associated with BMI, weight, and history of reflux in patients with ESCA. HNRNPR is somewhat accurate in predicting the clinical prognosis of ESCA. HNRNPR expression was positively correlated with SUVmax, SUVmean, and TLG in ESCA (p < 0.05). The combination of these three variables provides a strong predictive value for HNRNPR expression in ESCA. GO/KEGG analysis showed that HNRNPR played a role in the regulation of cell cycle, DNA replication, and the Fannie anemia pathway. The analysis of the TCGA and GEO data sets revealed a significant correlation between HNRNPR expression and m6A and glycolysis-related genes. GSEA analysis revealed that HNRNPR was involved in various m6A and glycolysis related-pathways. Conclusion HNRNPR overexpression correlates with 18F-FDG uptake in ESCA and may be involved in the regulation of the cell cycle, m6A modification, and cell glycolysis. 18F-FDG PET/CT-related parameters can predict the diagnostic accuracy of HNRNPR expression in ESCA.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Taihe Hospital, Postgraduate Training Basement of Jinzhou Medical University, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chang-Bin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei, China.
| |
Collapse
|
25
|
Lee J, Cho H, Kwon I. Phase separation of low-complexity domains in cellular function and disease. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1412-1422. [PMID: 36175485 PMCID: PMC9534829 DOI: 10.1038/s12276-022-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the ways in which recent studies of low-complexity (LC) domains have challenged our understanding of the mechanisms underlying cellular organization. LC sequences, long believed to function in the absence of a molecular structure, are abundant in the proteomes of all eukaryotic organisms. Over the past decade, the phase separation of LC domains has emerged as a fundamental mechanism driving dynamic multivalent interactions of many cellular processes. We review the key evidence showing the role of phase separation of individual proteins in organizing cellular assemblies and facilitating biological function while implicating the dynamics of phase separation as a key to biological validity and functional utility. We also highlight the evidence showing that pathogenic LC proteins alter various phase separation-dependent interactions to elicit debilitating human diseases, including cancer and neurodegenerative diseases. Progress in understanding the biology of phase separation may offer useful hints toward possible therapeutic interventions to combat the toxicity of pathogenic proteins.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
26
|
Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N. An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level. J Genet Eng Biotechnol 2022; 20:129. [PMID: 36066672 PMCID: PMC9446605 DOI: 10.1186/s43141-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.
Collapse
Affiliation(s)
- Massimiliano Chetta
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy.
| | - Marina Tarsitano
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Oro
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Rivieccio
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Nenad Bukvic
- AOUC "Policlinico di Bari"-UOC Lab. di Genetica Medica, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
27
|
Kong W, Yin G, Zheng S, Liu X, Zhu A, Yu P, Zhang J, Shan Y, Ying R, Jin H. Long noncoding RNA (lncRNA) HOTAIR: Pathogenic roles and therapeutic opportunities in gastric cancer. Genes Dis 2022; 9:1269-1280. [PMID: 35873034 PMCID: PMC9293693 DOI: 10.1016/j.gendis.2021.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the first malignant cancers in the world and a large number of people die every year due to this disease. Many genetic and epigenetic risk factors have been identified that play a major role in gastric cancer. HOTAIR is an effective epigenetic agent known as long noncoding RNA (lncRNA). HOTAIR has been described to have biological functions in biochemical and cellular processes through interactions with many factors, leading to genomic stability, proliferation, survival, invasion, migration, metastasis, and drug resistance. In the present article, we reviewed the prognostic value of the molecular mechanisms underlying the HOTAIR regulation and its function in the development of Gastric Cancer, whereas elucidation of HOTAIR–protein and HOTAIR–DNA interactions can be helpful in the identification of cancer processes, leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Sixin Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Huicheng Jin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
28
|
Chen Y, Dou Z, Chen X, Zhao D, Che T, Su W, Qu T, Zhang T, Xu C, Lei H, Li Q, Zhang H, Di C. Overexpression of splicing factor poly(rC)-binding protein 1 elicits cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells. J Cancer Res Clin Oncol 2022; 148:3475-3484. [PMID: 35896897 DOI: 10.1007/s00432-022-04170-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Splicing factor poly(rC)-binding protein 1 (PCBP1) is a novel tumor suppressor that is downregulated in several cancers thereby regulating tumor formation and metastasis. However, the involvement of PCBP1 in apoptosis of cancer cells and the molecular mechanism remains elusive. On this basis, we sought to investigate the role of splicing factor PCBP1 in the apoptosis in human cervical cancer cells. METHODS To investigate PCBP1 functions in vitro, we overexpressed PCBP1 in human cervical cancer cells. A series of cytological function assays were employed to study to the role of PCBP1 in cell proliferation, cell cycle arrest and apoptosis. RESULTS Overexpression of PCBP1 was found to greatly repress proliferation of HeLa cells in a time-dependent manner. It also induced a significant increase in G2/M phase arrest and apoptosis. Furthermore, overexpressed PCBP1 favored the production of long isoforms of p73, thereby inducing upregulated ratio of Bax/Bcl-2, the release of cytochrome c and the expression of caspase-3. CONCLUSION Our results revealed that PCBP1 played a vital role in p73 splicing, cycle arrest and apoptosis induction in human cervical carcinoma cells. Targeting PCBP1 may be a potential therapeutic strategy for cervical cancer therapy.
Collapse
Affiliation(s)
- Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Dapeng Zhao
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.,Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, 730030, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tao Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiweng Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Westcott CE, Qazi S, Maiocco AM, Mukhopadhyay S, Sokoloski KJ. Binding of hnRNP I-vRNA Regulates Sindbis Virus Structural Protein Expression to Promote Particle Infectivity. Viruses 2022; 14:v14071423. [PMID: 35891402 PMCID: PMC9318202 DOI: 10.3390/v14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Shefah Qazi
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Anna M. Maiocco
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +1-(502)-852-1249
| |
Collapse
|
30
|
Choi SY, Hong SH, Lee HJ. Differential expression and sorting of exosomal microRNAs upon activation of the human monocyte-like cell line U937. Biochem Biophys Res Commun 2022; 610:147-153. [DOI: 10.1016/j.bbrc.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022]
|
31
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
32
|
Pan C, Wu Q, Feng N. A systematic pan-cancer study demonstrates the oncogenic function of heterogeneous nuclear ribonucleoprotein C. Aging (Albany NY) 2022; 14:2880-2901. [PMID: 35344508 PMCID: PMC9004556 DOI: 10.18632/aging.203981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Although complex links between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and numerous types of cancer have been shown in both cell and animal models, a comprehensive pan-cancer investigation on the features and activities of HNRNPC is still lacking. Based on the Cancer Genome Atlas and Gene Expression Omnibus datasets, we investigated the possible oncogenic effects of HNRNPC in thirty-three cancers. HNRNPC expression was detected in the majority of cancers, and its expression level was shown to be significantly linked with cancer patient prognosis. HNRNPC increased the phosphorylation of S220, which was detected in various cancers, including ovarian cancer and colon cancer. HNRNPC expression was also shown to be related to cancer-associated cell infiltration, most notably in uveal melanoma, testicular germ cell tumors, and thymoma. Additionally, the signaling pathway for vascular endothelial growth factors and RNA transport were implicated in HNRNPC's functioning processes. In short, HNRNPC may further influence cancer progression through gene mutation, protein phosphorylation, cancer associated fibroblasts infiltration and related molecular pathways. This work was intended to provide a relatively thorough knowledge of the oncogenic activities of HNRNPC across a variety of tumor types by performing a systematic pan-cancer investigation.
Collapse
Affiliation(s)
- Chenxi Pan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China.,The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
33
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
34
|
Li JR, Tang M, Li Y, Amos CI, Cheng C. Genetic variants associated mRNA stability in lung. BMC Genomics 2022; 23:196. [PMID: 35272635 PMCID: PMC8915503 DOI: 10.1186/s12864-022-08405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability of genes (stQTLs). Results Here, we presented a computational framework that takes advantage of recently developed methods to infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3942 genes and 186,132 eQTLs for 4751 genes from 15,122,700 genetic variants for 13,476 genes on the autosomes, respectively. Interestingly, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and gene expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08405-y.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Mabel Tang
- Department of BioSciences, Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
A first glimpse into the transcriptomic changes induced by the PaV1 infection in the gut of Caribbean spiny lobsters, Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae). Virus Res 2022; 311:198713. [PMID: 35176328 DOI: 10.1016/j.virusres.2022.198713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) supports important fisheries in the Caribbean region. This species is affected by a deadly virus, Panulirus argus Virus 1 (PaV1), the only known pathogenic virus for this species. As infection progresses, the effects of PaV1 on its host become systemic, with far reaching impacts on the host's physiology, including structural injuries to its gastrointestinal organs, such as the hepatopancreas and the gut. This last one becomes highly compromised in the last stages of infection. Since the gut is a key organ for the physiological stability of lobsters, we compared the transcriptomic changes in the gut of juvenile individuals of Panulirus argus naturally infected with PaV1. In the RNA-Seq analysis, we obtained a total of 485 × 106 raw reads. After cleaning, reads were de novo assembled into 68,842 transcripts and 50,257 unigenes. The length of unigenes ranged from 201 bp to 28,717 bp, with a N50 length of 2079, and a GC content of 40.61%. In the differential gene expression analysis, we identified a total of 3,405 non redundant differential transcripts, of which 1,920 were up-regulated and 1,485 were down-regulated. We found alterations in transcripts encoding for proteins involved in transcriptional regulation, splicing, postraductional regulation, protein signaling, transmembrane transport, cytoskeletal regulation, and proteolysis, among others. This is the first insight into the transcriptomic regulation of PaV1-P. argus interaction. The information generated can help to unravel the molecular mechanisms that may intervene in the gut during PaV1 infection.
Collapse
|
36
|
Lu Y, Qi Y, Li L, Yan Y, Wei J, Yao D, Wu J, Deng H, Deng J, Ye S, Chen H, Chen Q, Gao H, Han L, Lu C. The Gene Expression Analysis of Peripheral Blood Monocytes From Psoriasis Vulgaris Patients With Different Traditional Chinese Medicine Syndromes. Front Pharmacol 2022; 12:759741. [PMID: 35126107 PMCID: PMC8807547 DOI: 10.3389/fphar.2021.759741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is chronic skin disease and an important health concern. Traditional Chinese Medicine (TCM) has shown great promise in the treatment of psoriasis. However, the correlation between TCM Syndromes and genomics of psoriasis has not been evaluated. Here, we analyzed gene expression profiling of monocytes from psoriasis vulgaris patients with different TCM syndrome types to reveal the molecular basis of different psoriasis syndromes. Of the 62 cases of psoriasis vulgaris recruited, 16, 23, and 23 cases were of blood-heat syndrome, blood stasis syndrome, and blood-dryness syndrome, respectively; 10 healthy controls were recruited as controls. Affymertix’s Gene Chip ®clariom D gene chip was used to detect the gene expression profile of peripheral blood monocytes collected from recruited individuals. Compared with the healthy control group, 1570 genes were up-regulated and 977 genes were down-regulated in the psoriasis vulgaris patients group; 798 genes and 108 genes were up- and down-regulated in the blood-heat syndrome group respectively; 319 and 433 genes were up- and down-regulated in the blood-dryness syndrome group, respectively; and 502 and 179 genes were up-and down-regulated in the blood-stasis syndrome group. Our analyses indicated not only common differential genes and pathways between psoriasis syndrome groups and healthy controls, but also syndrome-specific genes and pathways. The results of this study link the three syndromes at the gene level and will be useful for clarifying the molecular basis of TCM syndromes of psoriasis.Clinical Trial Registration: (http://www.chictr.org.cn/showproj.aspx?proj=4390), identifier (ChiCTR-TRC-14005185).
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, China
| | - Li Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianan Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danni Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hengjun Gao
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hengjun Gao, ; Ling Han, ; Chuanjian Lu,
| |
Collapse
|
37
|
Yang Q, Chan P. Skeletal Muscle Metabolic Alternation Develops Sarcopenia. Aging Dis 2022; 13:801-814. [PMID: 35656108 PMCID: PMC9116905 DOI: 10.14336/ad.2021.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a new type of senile syndrome with progressive skeletal muscle mass loss with age, accompanied by decreased muscle strength and/or muscle function. Sarcopenia poses a serious threat to the health of the elderly and increases the burden of family and society. The underlying pathophysiological mechanisms of sarcopenia are still unclear. Recent studies have shown that changes of skeletal muscle metabolism are the risk factors for sarcopenia. Furthermore, the importance of the skeletal muscle metabolic microenvironment in regulating satellite cells (SCs) is gaining significant attention. Skeletal muscle metabolism has intrinsic relationship with the regulation of skeletal muscle mass and regeneration. This review is to discuss recent findings regarding skeletal muscle metabolic alternation and the development of sarcopenia, hoping to contribute better understanding and treatment of sarcopenia.
Collapse
Affiliation(s)
- Qiumei Yang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Piu Chan
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Piu Chan, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Beijing 100053, China. .
| |
Collapse
|
38
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Larizza L, Calzari L, Alari V, Russo S. Genes for RNA-binding proteins involved in neural-specific functions and diseases are downregulated in Rubinstein-Taybi iNeurons. Neural Regen Res 2022; 17:5-14. [PMID: 34100419 PMCID: PMC8451555 DOI: 10.4103/1673-5374.314286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Taking advantage of the fast-growing knowledge of RNA-binding proteins (RBPs) we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons (iNeurons) modelling the neurodevelopmental Rubinstein Taybi Syndrome (RSTS) caused by mutations in the genes encoding CBP/p300 acetyltransferases. We discuss top and functionally connected downregulated genes sorted to “RNA processing” and “Ribonucleoprotein complex biogenesis” Gene Ontology clusters. The first set of downregulated RBPs includes members of hnRNHP (A1, A2B1, D, G, H2-H1, MAGOHB, PAPBC), core subunits of U small nuclear ribonucleoproteins and Serine-Arginine splicing regulators families, acting in precursor messenger RNA alternative splicing and processing. Consistent with literature findings on reduced transcript levels of serine/arginine repetitive matrix 4 (SRRM4) protein, the main regulator of the neural-specific microexons splicing program upon depletion of Ep300 and Crebbp in mouse neurons, RSTS iNeurons show downregulated genes for proteins impacting this network. We link downregulated genes to neurological disorders including the new HNRNPH1-related intellectual disability syndrome with clinical overlap to RSTS. The set of downregulated genes for Ribosome biogenesis includes several components of ribosomal subunits and nucleolar proteins, such NOP58 and fibrillarin that form complexes with snoRNAs with a central role in guiding post-transcriptional modifications needed for rRNA maturation. These nucleolar proteins are “dual” players as fibrillarin is also required for epigenetic regulation of ribosomal genes and conversely NOP58-associated snoRNA levels are under the control of NOP58 interactor BMAL1, a transcriptional regulator of the circadian rhythm. Additional downregulated genes for “dual specificity” RBPs such as RUVBL1 and METTL1 highlight the links between chromatin and the RBP-ome and the contribution of perturbations in their cross-talk to RSTS. We underline the hub position of CBP/p300 in chromatin regulation, the impact of its defect on neurons’ post-transcriptional regulation of gene expression and the potential use of epidrugs in therapeutics of RBP-caused neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lidia Larizza
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Luciano Calzari
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Valentina Alari
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Russo
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
40
|
Distinct roles of hnRNPH1 low-complexity domains in splicing and transcription. Proc Natl Acad Sci U S A 2021; 118:2109668118. [PMID: 34873036 PMCID: PMC8685725 DOI: 10.1073/pnas.2109668118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
Phase separation of low-complexity (LC) domains appended to most RNA-binding proteins (RBPs) emerges as a principle underlying spatiotemporal protein recruitment. Yet, how LC domains regulate the function of RBPs in cells remains unclear. An alternative-splicing regulator, hnRNPH1, contains two LC domains (LC1 and LC2). Here, we show that phase separation of the LC1 can exert control over hnRNPH1 function in RNA-splicing possibly by facilitating interactions between hnRNPH1 and a variety of RBPs. In contrast, the LC2 lacking in vitro phase properties, is required for aberrant transcriptional activation in the context of fusion oncoproteins. These results have broad implications for understanding how phase separation contributes to distinct roles of LC domains in control of physiological as well as oncogenic functions. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins that control key events in RNA biogenesis under both normal and diseased cellular conditions. The low-complexity (LC) domain of hnRNPs can become liquid-like droplets or reversible amyloid-like polymers by phase separation. Yet, whether phase separation of the LC domains contributes to physiological functions of hnRNPs remains unclear. hnRNPH1 contains two LC domains, LC1 and LC2. Here, we show that reversible phase separation of the LC1 domain is critical for both interaction with different kinds of RNA-binding proteins and control of the alternative-splicing activity of hnRNPH1. Interestingly, although not required for phase separation, the LC2 domain contributes to the robust transcriptional activation of hnRNPH1 when fused to the DNA-binding domain, as found recently in acute lymphoblastic leukemia. Our data suggest that the ability of the LC1 domain to phase-separate into reversible polymers or liquid-like droplets is essential for function of hnRNPH1 as an alternative RNA-splicing regulator, whereas the LC2 domain may contribute to the aberrant transcriptional activity responsible for cancer transformation.
Collapse
|
41
|
Structural basis of the interaction between SETD2 methyltransferase and hnRNP L paralogs for governing co-transcriptional splicing. Nat Commun 2021; 12:6452. [PMID: 34750379 PMCID: PMC8575775 DOI: 10.1038/s41467-021-26799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The RNA recognition motif (RRM) binds to nucleic acids as well as proteins. More than one such domain is found in the pre-mRNA processing hnRNP proteins. While the mode of RNA recognition by RRMs is known, the molecular basis of their protein interaction remains obscure. Here we describe the mode of interaction between hnRNP L and LL with the methyltransferase SETD2. We demonstrate that for the interaction to occur, a leucine pair within a highly conserved stretch of SETD2 insert their side chains in hydrophobic pockets formed by hnRNP L RRM2. Notably, the structure also highlights that RRM2 can form a ternary complex with SETD2 and RNA. Remarkably, mutating the leucine pair in SETD2 also results in its reduced interaction with other hnRNPs. Importantly, the similarity that the mode of SETD2-hnRNP L interaction shares with other related protein-protein interactions reveals a conserved design by which splicing regulators interact with one another. Interaction between SETD2 and hnRNP L has previously been shown to be implicated in coupling gene transcription and mRNA processing. Here the authors elucidate the molecular basis of this functional interaction, showing that the RRM domain of hnRNP L possesses non-overlapping binding interfaces for engaging RNA and SETD2.
Collapse
|
42
|
Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer. Cancer Manag Res 2021; 13:7263-7276. [PMID: 34584453 PMCID: PMC8464311 DOI: 10.2147/cmar.s330713] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The incidence of prostate cancer remains high worldwide, while exploring new therapeutic targets for prostate cancer is essential. Heterogeneous nuclear ribonucleoproteins have been proved to regulate tumorigeneses in various cancers. This study aimed to explore the role of HNRNPC in prostate cancer progression. METHODS HNRNPC expression and its correlation with clinical features and immune infiltration were analyzed by bioinformatics analysis. The effects of HNRNPC on prostate cell proliferation, migration, and invasion were accessed by EdU, colony formation, transwell, and wound-healing assays. RESULTS The expression level of HNRNPC was significantly increased in prostate cancer tissues and was correlated with the T stage, N stage, Gleason score, PSA level, residual tumors, overall survival, disease-specific survival, and progression-free interval of prostate cancer patients. Silencing HNRNPC inhibited the proliferation and metastasis of prostate cancer cells. The expression of HNRNPC was negatively correlated with the infiltration level of most immune cells in prostate cancer. Mechanistically, HNRNPC may function through regulating gene expression at the posttranscriptional level. CONCLUSION HNRNPC could be a potential marker for the treatment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
43
|
Wippel HH, Fioramonte M, Chavez JD, Bruce JE. Deciphering the architecture and interactome of hnRNP proteins and enigmRBPs. Mol Omics 2021; 17:503-516. [PMID: 34017973 PMCID: PMC8355073 DOI: 10.1039/d1mo00024a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA-binding proteins (RBPs) have conserved domains and consensus sequences that interact with RNAs and other proteins forming ribonucleoprotein (RNP) complexes. RNPs are involved in the regulation of several cellular processes, including transcription, pre-mRNA splicing, mRNA transport, localization, degradation and storage, and ultimately control of translation. Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RBPs that mediate transcription control and nuclear processing of transcripts. Some hnRNPs are part of the spliceosome complex, a dynamic machinery formed by RNPs that regulate alternative splicing of pre-mRNAs. Here, chemical crosslinking of proteins was applied to identify specific interacting regions and protein structural features of hnRNPs: hnRNPA1, hnRNPA2/B1, hnRNPC, and RALY. The results reveal interaction of these proteins within RNA-binding domains and conserved motifs, providing evidence of a coordinated action of known regulatory sequences of RBPs. Moreover, these crosslinking data enable structural model generation for RBPs, illustrating how crosslinking mass spectrometry can complement other structural methods.
Collapse
Affiliation(s)
- Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Mariana Fioramonte
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. and University of Campinas, Campinas, SP, Brazil
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Chemical genetic methodologies for identifying protein substrates of PARPs. Trends Biochem Sci 2021; 47:390-402. [PMID: 34366182 DOI: 10.1016/j.tibs.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Poly-ADP-ribose-polymerases (PARPs) are a family of 17 enzymes that regulate a diverse range of cellular processes in mammalian cells. PARPs catalyze the transfer of ADP-ribose from NAD+ to target molecules, most prominently amino acids on protein substrates, in a process known as ADP-ribosylation. Identifying the direct protein substrates of individual PARP family members is an essential first step for elucidating the mechanism by which PARPs regulate a particular pathway in cells. Two distinct chemical genetic (CG) strategies have been developed for identifying the direct protein substrates of individual PARP family members. In this review, we discuss the design principles behind these two strategies and how target identification has provided novel insight into the cellular function of individual PARPs and PARP-mediated ADP-ribosylation.
Collapse
|
45
|
Mohanty BK, Karam JA, Howley BV, Dalton AC, Grelet S, Dincman T, Streitfeld WS, Yoon JH, Balakrishnan L, Chazin WJ, Long DT, Howe PH. Heterogeneous nuclear ribonucleoprotein E1 binds polycytosine DNA and monitors genome integrity. Life Sci Alliance 2021; 4:4/9/e202000995. [PMID: 34272328 PMCID: PMC8321654 DOI: 10.26508/lsa.202000995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
hnRNP E1 binds polycytosine tracts of DNA and monitors genome integrity. Heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) is a tumor suppressor protein that binds site- and structure-specifically to RNA sequences to regulate mRNA stability, facilitate alternative splicing, and suppress protein translation on several metastasis-associated mRNAs. Here, we show that hnRNP E1 binds polycytosine-rich DNA tracts present throughout the genome, including those at promoters of several oncogenes and telomeres and monitors genome integrity. It binds DNA in a site- and structure-specific manner. hnRNP E1-knockdown cells displayed increased DNA damage signals including γ-H2AX at its binding sites and also showed increased mutations. UV and hydroxyurea treatment of hnRNP E1-knockdown cells exacerbated the basal DNA damage signals with increased cell cycle arrest, activation of checkpoint proteins, and monoubiquitination of proliferating cell nuclear antigen despite no changes in deubiquitinating enzymes. DNA damage caused by genotoxin treatment localized to hnRNP E1 binding sites. Our work suggests that hnRNP E1 facilitates functions of DNA integrity proteins at polycytosine tracts and monitors DNA integrity at these sites.
Collapse
Affiliation(s)
- Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph Aq Karam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Simon Grelet
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Toros Dincman
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - William S Streitfeld
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
47
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
48
|
Wang X, Wang J, Tsui YM, Shi C, Wang Y, Zhang X, Yan Q, Chen M, Jiang C, Yuan YF, Wong CM, Liu M, Feng ZY, Chen H, Ng IOL, Jiang L, Guan XY. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nat Commun 2021; 12:1518. [PMID: 33750796 PMCID: PMC7943813 DOI: 10.1038/s41467-021-21828-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Growing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC. RALYL is a liver progenitor cell-specific gene but its role in hepatocellular carcinoma (HCC) remains unknown. Here, the authors demonstrate that RALYL regulates HCC stemness through upregulation of TGF-β2 mRNA stability by decreasing N6-methyladenosine modification.
Collapse
Affiliation(s)
- Xia Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Man Tsui
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Chaoran Shi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Ying Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin Zhang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Miao Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chen Jiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chun-Ming Wong
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zeng-Yu Feng
- Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi Lin Ng
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China. .,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
49
|
The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Nat Commun 2021; 12:1443. [PMID: 33664260 PMCID: PMC7933334 DOI: 10.1038/s41467-021-21663-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery. The methylation of Histone 3 at Lysine 36 (H3K36) has been implicated in the regulation of transcription and coupled processes such as mRNA splicing. Here the authors show that the histone methyltransferase SETD2 interacts with hnRNP L to mediate the crosstalk between the transcription and splicing machineries.
Collapse
|
50
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|