1
|
Wu S, Pan JW, Citartan M, Tang TH, Teo SH, Ch'ng ES. Profiling Precursor microRNAs of Breast Cancer From Total RNA Sequencing Data to Gain Insights Into Their Roles and Prognostic Values. Genes Chromosomes Cancer 2025; 64:e70027. [PMID: 39936877 DOI: 10.1002/gcc.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Breast cancer, a molecularly heterogeneous disease, is classified into hormone receptor-positive luminal breast cancer (LBC), human epidermal growth factor receptor 2-positive breast cancer, and triple-negative breast cancer (TNBC). Precursor microRNAs (pre-miRNAs), typically form hairpin structures with a length from 65 to 80 bases, are shown to play crucial roles in breast cancer carcinogenesis. We hypothesized that these pre-miRNAs could have been sequenced in total RNA sequencing (RNA-seq) and developed a novel algorithm to profile pre-miRNAs from raw total RNA-seq data. A total of 907 breast cancer samples curated by Malaysian Breast Cancer Genetic Study (MyBrCa) were profiled using this algorithm and a comparison was made between pre-miRNA profiles and mature miRNA profiles obtained from The Cancer Genome Atlas (TCGA) dataset. We explored differentially expressed pre-miRNAs in TNBC in comparison to LBC and conducted downstream functional analyses of the target genes. A prognostic signature was built by LASSO-Cox regression on selected pre-miRNAs and validated internally and externally by MyBrCa and TCGA datasets, respectively. As a result, 10 common differentially expressed pre-miRNAs were identified. Functional analyses of these pre-miRNAs captured certain aggressive TNBC behaviors. Importantly, a pre-miRNA signature composed of 4 out of these 10 pre-miRNAs significantly prognosticated the breast cancer patients in the MyBrCa cohort and TCGA cohort, independent of conventional prognostic factors. In conclusion, this novel algorithm allows profiling pre-miRNAs from raw total RNA-seq data, which could be cross-validated with mature miRNA profiles for cross-platform comparison. The findings of this study underscore the importance of pre-miRNAs in breast cancer carcinogenesis and as prognostic factors.
Collapse
Affiliation(s)
- Sen Wu
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
2
|
Ngo AL, Ahmad CM, Gharavi Alkhansari N, Nguyen L, Zhang H. Epigenetic Insights into Substance Use Disorder and Associated Psychiatric Conditions. Complex Psychiatry 2025; 11:12-36. [PMID: 40201238 PMCID: PMC11975344 DOI: 10.1159/000544912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Background Substance use disorder (SUD) is closely associated with epigenetic modifications that significantly impact mental health outcomes. Alcohol and drug misuse induce widespread changes in the epigenome and transcriptome of the central nervous system, disrupting critical processes such as reward signaling and emotional regulation. These alterations in epigenetic regulation and gene expression often persist even after substance cessation, potentially contributing to the onset or worsening of psychiatric conditions, including schizophrenia, depression, stress, and anxiety. Summary This review delves into key epigenetic mechanisms underlying SUD and its comorbid psychiatric disorders, with a focus on DNA methylation, histone modifications, and noncoding RNA regulation. Additionally, it examines the influence of environmental and biological factors on the epigenome and evaluates emerging epigenetic-based therapeutic strategies aimed at treating SUD and related psychiatric conditions. Key Messages Gaining a deeper understanding of the epigenetic mechanisms driving SUD and its associated psychiatric disorders is crucial for the development of effective therapeutic interventions. This review highlights the potential of epigenetic-based pharmacological strategies to mitigate the societal and personal burdens linked to SUD and its mental health complications.
Collapse
Affiliation(s)
- Ambrose Loc Ngo
- College of Medicine, Kansas City University, Kansas City, MO, USA
| | | | | | - Linda Nguyen
- College of Pharmacy, Western University, Pomona, CA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Wang R, Zhu L, Fan Y, Du H, Han W, Guan F, Zhu Y, Ni T, Chen T. Dopamine D3 receptor mediates natural and methamphetamine rewards via regulating the expression of miR-29c in the nucleus accumbens of mice. Neuropharmacology 2025; 262:110200. [PMID: 39490406 DOI: 10.1016/j.neuropharm.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The dopamine D3 receptor (D3R), principally confined to the nucleus accumbens (NAc), is involved in regulating natural and drug rewards; however, the molecular mechanisms underlying the associated process remain unclear. Earlier research has reported the concurrent influence of D3R and miR-29c expressed in the NAc on methamphetamine (METH)-induced reward behaviors and microglial activation, hinting at regulatory roles in reward processing. Herein, we performed viral manipulation-mediating D3R/miR-29c overexpression and inhibition in the whole NAc in male D3R knockout and wild-type mice to investigate this potential relationship. Behavioral responses to the rewarding stimuli were assessed using sucrose preference score, METH-induced locomotor sensitization, and METH-induced conditioned place preference tests. Overall, we observed a notable decrease in the behavioral response to sucrose and METH in D3R-deficient mice, accompanied by the downregulation of miR-29c expression in the NAc. Diminished responses to those rewarding stimuli in D3R-deficient mice primarily stemmed from the reduction of GSK3β activity and subsequent down-regulation of miR-29c in the NAc. Microglial activation in the NAc mediates the effect of D3R-miR-29c deficiency on the reward effects of sucrose and METH. Pharmacological suppression of microglial activity rescued the reduced response in mice lacking D3R-miR-29c in the NAc. Overall, this study revealed the mechanism by which D3R regulates both natural and drug rewards via miR-29c in the murine NAc, highlighting the role of the NAc D3R-miR-29c pathway as a critical regulator of rewards, and providing new insights into the role of NAc D3R-miR-29c in encoding rewarding experiences.
Collapse
Affiliation(s)
- Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yunting Fan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huiqing Du
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Fanglin Guan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China
| | - Tong Ni
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Silenzi V, D'Ambra E, Santini T, D'Uva S, Setti A, Salvi N, Nicoletti C, Scarfò R, Cordella F, Mongiardi B, Cavezza D, Liessi N, Ferrucci L, Ragozzino D, Armirotti A, Di Angelantonio S, De Leonibus E, Bozzoni I, Morlando M. A tripartite circRNA/mRNA/miRNA interaction regulates glutamatergic signaling in the mouse brain. Cell Rep 2024; 43:114766. [PMID: 39321023 DOI: 10.1016/j.celrep.2024.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Functional studies of circular RNAs (circRNAs) began quite recently, and few data exist on their function in vivo. Here, we have generated a knockout (KO) mouse model to study circDlc1(2), a circRNA highly expressed in the prefrontal cortex and striatum. The loss of circDlc1(2) led to the upregulation of glutamatergic-response-associated genes in the striatal tissue, enhanced excitatory synaptic transmission in neuronal cultures, and hyperactivity and increased stereotypies in mice. Mechanistically, we found that circDlc1(2) physically interacts with some mRNAs, associated with glutamate receptor signaling (gluRNAs), and with miR-130b-5p, a translational regulator of these transcripts. Notably, differently from canonical microRNA (miRNA) "sponges," circDlc1(2) synergizes with miR-130b-5p to repress gluRNA expression. We found that circDlc1(2) is required to spatially control miR-130b-5p localization at synaptic regions where gluRNA is localized, indicating a different layer of regulation where circRNAs ensure robust control of gene expression via the correct subcellular compartmentalization of functionally linked interacting partners.
Collapse
Affiliation(s)
- Valentina Silenzi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Eleonora D'Ambra
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Sara D'Uva
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Nicolò Salvi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Scarfò
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Cordella
- Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Mongiardi
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, 00015 Rome, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, 00015 Rome, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; D-Tails srl BC, 00165 Rome, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy; Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy.
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
5
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
6
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
8
|
Marie N, Noble F. Oxycodone, an opioid like the others? Front Psychiatry 2023; 14:1229439. [PMID: 38152360 PMCID: PMC10751306 DOI: 10.3389/fpsyt.2023.1229439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 12/29/2023] Open
Abstract
The over-prescription of opioid analgesics is a growing problem in the field of addiction, which has reached epidemic-like proportions in North America. Over the past decade, oxycodone has gained attention as the leading opioid responsible for the North America opioid crisis. Oxycodone is the most incriminated drug in the early years of the epidemic of opioid use disorder in USA (roughly 1999-2016). The number of preclinical articles on oxycodone is rapidly increasing. Several publications have already compared oxycodone with other opioids, focusing mainly on their analgesic properties. The aim of this review is to focus on the genomic and epigenetic regulatory features of oxycodone compared with other opioid agonists. Our aim is to initiate a discussion of perceptible differences in the pharmacological response observed with these various opioids, particularly after repeated administration in preclinical models commonly used to study drug dependence potential.
Collapse
Affiliation(s)
| | - Florence Noble
- Université Paris Cité, CNRS, Inserm, Pharmacologie et Thérapies des Addictions, Paris, France
| |
Collapse
|
9
|
Rich MT, Swinford-Jackson SE, Pierce RC. Epigenetic inheritance of phenotypes associated with parental exposure to cocaine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:169-216. [PMID: 38467481 DOI: 10.1016/bs.apha.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Parental exposure to drugs of abuse induces changes in the germline that can be transmitted across subsequent generations, resulting in enduring effects on gene expression and behavior. This transgenerational inheritance involves a dynamic interplay of environmental, genetic, and epigenetic factors that impact an individual's vulnerability to neuropsychiatric disorders. This chapter aims to summarize recent research into the mechanisms underlying the inheritance of gene expression and phenotypic patterns associated with exposure to drugs of abuse, with an emphasis on cocaine. We will first define the epigenetic modifications such as DNA methylation, histone post-translational modifications, and expression of non-coding RNAs that are impacted by parental cocaine use. We will then explore how parental cocaine use induces heritable epigenetic changes that are linked to alterations in neural circuitry and synaptic plasticity within reward-related circuits, ultimately giving rise to potential behavioral vulnerabilities. This discussion will consider phenotypic differences associated with gestational as well as both maternal and paternal preconception drug exposure and will emphasize differences based on offspring sex. In this context, we explore the complex interactions between genetics, epigenetics, environment, and biological sex. Overall, this chapter consolidates the latest developments in the multigenerational effects and long-term consequences of parental substance abuse.
Collapse
Affiliation(s)
- Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States.
| | - Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
10
|
Zanda MT, Floris G, Daws SE. Orbitofrontal cortex microRNAs support long-lasting heroin seeking behavior in male rats. Transl Psychiatry 2023; 13:117. [PMID: 37031193 PMCID: PMC10082780 DOI: 10.1038/s41398-023-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Recovery from opioid use disorder (OUD) and maintenance of abstinence from opioid use is hampered by perseverant drug cravings that may persist for months after cessation of drug use. Drug cravings can intensify during the abstinence period, a phenomenon referred to as the 'incubation of craving' that has been well-described in preclinical studies. We previously reported that animals that self-administered heroin at a dosage of 0.075 mg/kg/infusion (HH) paired with discrete drug cues displayed robust incubation of heroin craving behavior after 21 days (D) of forced abstinence, an effect that was not observed with a lower dosage (0.03 mg/kg/infusion; HL). Here, we sought to elucidate molecular mechanisms underlying long-term heroin seeking behavior by profiling microRNA (miRNA) pathways in the orbitofrontal cortex (OFC), a brain region that modulates incubation of heroin seeking. miRNAs are small noncoding RNAs with long half-lives that have emerged as critical regulators of drug seeking behavior but their expression in the OFC has not been examined in any drug exposure paradigm. We employed next generation sequencing to detect OFC miRNAs differentially expressed after 21D of forced abstinence between HH and HL animals, and proteomics analysis to elucidate miRNA-dependent translational neuroadaptations. We identified 55 OFC miRNAs associated with incubation of heroin craving, including miR-485-5p, which was significantly downregulated following 21D forced abstinence in HH but not HL animals. We bidirectionally manipulated miR-485-5p in the OFC to demonstrate that miR-485-5p can regulate long-lasting heroin seeking behavior after extended forced abstinence. Proteomics analysis identified 45 proteins selectively regulated in the OFC of HH but not HL animals that underwent 21D forced abstinence, of which 7 were putative miR-485-5p target genes. Thus, the miR-485-5p pathway is dysregulated in animals with a phenotype of persistent heroin craving behavior and OFC miR-485-5p pathways may function to support long-lasting heroin seeking.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Demirel G, Tanoglu EG, Aslıyuksek H. Evaluation of microRNA let-7b-3p expression levels in methamphetamine abuse. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221391. [PMID: 37075366 PMCID: PMC10176632 DOI: 10.1590/1806-9282.20221391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE In this study, we aimed to identify a microRNA expression signature that could be used to distinguish methamphetamine from control samples. We also utilized the existing bioinformatics tools in order to predict the candidate microRNAs that could play potential key roles in regulating drug addiction-related genes. METHODS Methamphetamine samples from 21 ventral tegmental area and 21 nucleus accumbens samples and their control regions were obtained from the Council of Forensic Medicine (Istanbul). Quantitative analysis of let-7b-3p was studied using quantitative reverse transcription PCR. Statistical analysis was carried out using Student's t-test. The receiver operating characteristic curves were plotted with Statistical Package for the Social Sciences (SPSS 20.0). RESULTS Our quantitative reverse transcription PCR results revealed that let-7b-3p was significantly overexpressed in brain tissues of the methamphetamine-user group. Let-7b-3p had significant power to discriminate methamphetamine from control samples in the ventral tegmental area (AUC; 0.922) and nucleus accumbens (AUC; 0.899) regions. CONCLUSION We have shown for the first time in the literature the differential expression of let-7b-3p in samples from methamphetamine-addicted individuals. We suggest that let-7b-3p could be a powerful marker for the diagnosis of methamphetamine addiction. Our results showed that differentially expressed let-7b-3p in methamphetamine users could be used as a diagnostic and therapeutic marker.
Collapse
Affiliation(s)
- Göksun Demirel
- Cukurova University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology - Adana, Turkey
| | - Esra Guzel Tanoglu
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Biology and Genetics - İstanbul, Turkey
- University of Health Sciences, Experimental Medicine Research and Application Center - İstanbul, Turkey
| | - Hızır Aslıyuksek
- Ministry of Justice Council of Forensic Medicine - İstanbul, Turkey
- Istanbul University, Institute of Forensic Sciences, Department of Medical Science - İstanbul, Turkey
| |
Collapse
|
12
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
13
|
Gawliński D, Gawlińska K, Frankowska M, Filip M. Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. Int J Mol Sci 2022; 23:ijms232214011. [PMID: 36430488 PMCID: PMC9693497 DOI: 10.3390/ijms232214011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Recent years have provided more and more evidence confirming the important role of Wnt/β-catenin signaling in the pathophysiology of mental illnesses, including cocaine use disorder. High relapse rates, which is a hallmark of drug addiction, prompt the study of changes in Wnt signaling elements (Wnt5a, Wnt7b, and Ctnnb1) in the motivational aspects of cocaine use and early drug-free period (3 days after the last exposure to cocaine). For this purpose, an animal model of intravenous cocaine self-administration and two types of drug-free period (extinction training and abstinence in the home cage) were used. The studies showed that chronic cocaine self-administration mainly disturbs the expression of Wnt5a and Ctnnb1 (the gene encoding β-catenin) in the examined brain structures (striatum and hippocampus), and the examined types of early abstinence are characterized by a different pattern of changes in the expression of these genes. At the same time, in cocaine self-administrated animals, there were no changes in the level of Wnt5a and β-catenin proteins at the tested time points. Moreover, exposure to cocaine induces a significant reduction in the striatal and hippocampal expression of miR-374 and miR-544, which can regulate Wnt5a levels post-transcriptionally. In summary, previous observations from experimenter-administered cocaine have not been fully validated in the cocaine self-administration model. Yoked cocaine administration appears to disrupt Wnt signaling more than cocaine self-administration. The condition of the cocaine-free period, the routes of drug administration, and the motivational aspect of drug administration play an important role in the type of drug-induced molecular changes observed. Furthermore, in-depth research involving additional brain regions is needed to determine the exact role of Wnt signaling in short-term and long-lasting plasticity as well as in the motivational aspects of cocaine use, and thus to assess its potential as a target for new drug therapy for cocaine use disorder.
Collapse
|
14
|
Song SH, Jang WJ, Jang EY, Kim OH, Kim H, Son T, Choi DY, Lee S, Jeong CH. Striatal miR-183-5p inhibits methamphetamine-induced locomotion by regulating glucocorticoid receptor signaling. Front Pharmacol 2022; 13:997701. [PMID: 36225577 PMCID: PMC9549132 DOI: 10.3389/fphar.2022.997701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miRNA)-mediated striatal gene regulation may play an important role in methamphetamine (METH) addiction. This study aimed to identify changes in novel miRNAs and their target genes during METH self-administration and investigate their roles in METH-induced locomotion. RNA sequencing analysis revealed that mir-183-5p was upregulated in the striatum of METH self-administered rats, and target gene prediction revealed that the glucocorticoid receptor (GR) gene, Nr3c1, was a potential target gene for mir-183-5p. We confirmed that single and repeated METH administrations increased METH-induced locomotion and plasma corticosterone levels in rats. Additionally, increased miR-185-5p expression and decreased GR gene expression were observed only in the repeated-METH-injection group but not in the single-injection group. We then investigated the effects of miR-183-5p on METH-induced locomotion using a miR-183-5p mimic and inhibitor. Injection of a mir-183-5p mimic in the striatum of rats attenuated METH-induced locomotion, whereas injection of a miR-183-5p inhibitor enhanced the locomotor activity in METH-administered rats. Furthermore, the miR-183-5p mimic reduced the phosphorylation of tyrosine hydroxylase (TH) whereas the inhibitor increased it. Taken together, these results indicate that repeated METH injections increase striatal miR-183-5p expression and regulate METH-induced locomotion by regulating GR expression in rats, thereby suggesting a potential role of miR-183-5p as a novel regulator of METH-induced locomotion.
Collapse
Affiliation(s)
- Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Oc-Hee Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Haesoo Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, South Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
- *Correspondence: Sooyeun Lee, ; Chul-Ho Jeong,
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
- *Correspondence: Sooyeun Lee, ; Chul-Ho Jeong,
| |
Collapse
|
15
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
16
|
Anderson EM, Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front Mol Neurosci 2022; 15:828055. [PMID: 35813068 PMCID: PMC9260254 DOI: 10.3389/fnmol.2022.828055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Substance use induces long-lasting behavioral changes and drug craving. Increasing evidence suggests that epigenetic gene regulation contributes to the development and expression of these long-lasting behavioral alterations. Here we systematically review extensive evidence from rodent models of drug-induced changes in epigenetic regulation and epigenetic regulator proteins. We focus on histone acetylation and histone methylation in a brain region important for drug-related behaviors: the nucleus accumbens. We also discuss how experimentally altering these epigenetic regulators via systemically administered compounds or nucleus accumbens-specific manipulations demonstrate the importance of these proteins in the behavioral effects of drugs and suggest potential therapeutic value to treat people with substance use disorder. Finally, we discuss limitations and future directions for the field of epigenetic studies in the behavioral effects of addictive drugs and suggest how to use these insights to develop efficacious treatments.
Collapse
|
17
|
Cell-type- and region-specific modulation of cocaine seeking by micro-RNA-1 in striatal projection neurons. Mol Psychiatry 2022; 27:918-928. [PMID: 34785784 PMCID: PMC9054679 DOI: 10.1038/s41380-021-01328-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
The persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express, respectively, the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially upregulated in the NAc. We focused on miR-1 considering the important role of some of its predicted mRNA targets, Fosb and Npas4, in the effects of cocaine. We validated these targets in vitro and in vivo. We explored the potential of miR-1 to regulate cocaine-induced behavior by overexpressing it in specific striatal cell populations. In DS D1-SPNs miR-1 overexpression downregulated Fosb and Npas4 and reduced cocaine-induced CPP reinstatement, but increased cue-induced cocaine seeking. In DS D2-SPNs miR-1 overexpression reduced the motivation to self-administer cocaine. Our results indicate a role of miR1 and its target genes, Fosb and Npas4, in these behaviors and highlight a precise cell-type- and region-specific modulatory role of miR-1, illustrating the importance of cell-specific investigations.
Collapse
|
18
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
19
|
HIV-1 Tat and cocaine impact astrocytic energy reservoir influence on miRNA epigenetic regulation. Genomics 2021; 113:3461-3475. [PMID: 34418497 DOI: 10.1016/j.ygeno.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
Astrocytes are the primary regulator of energy metabolism in the central nervous system (CNS), and impairment of astrocyte's energy resource may trigger neurodegeneration. HIV infections and cocaine use are known to alter epigenetic modification, including miRNAs, which can target gene expression post-transcriptionally. However, miRNA-mediated astrocyte energy metabolism has not been delineated in HIV infection and cocaine abuse. Using next-generation sequencing (NGS), we identified a total of 1900 miRNAs, 64 were upregulated and 68 miRNAs were downregulated in the astrocytes by HIV-1 Tat with cocaine exposure. Moreover, miR-4727-3p, miR-5189-5p, miR-5090, and miR-6810-5p expressions were significantly impacted, and their gene targets were identified as VAMP2, NFIB, PPM1H, MEIS1, and PSD93 through the bioinformatic approach. In addition, the astrocytes treated with the nootropic drug piracetam protects these miRNAs. These findings provide evidence that the miRNAs in the astrocytes may be a potential biomarker and therapeutic target for HIV and cocaine abuse-induced neurodegeneration.
Collapse
|
20
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
22
|
Vannan A, Powell GL, Dell'Orco M, Wilson MA, Perrone-Bizzozero NI, Neisewander JL. microRNA regulation related to the protective effects of environmental enrichment against cocaine-seeking behavior. Drug Alcohol Depend 2021; 221:108585. [PMID: 33647589 PMCID: PMC8042572 DOI: 10.1016/j.drugalcdep.2021.108585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are "master post-transcriptional regulators" of gene expression. Here we investigate miRNAs involved in the incentive motivation for cocaine elicited by exposure to cocaine-associated cues. METHODS We conducted NanoString nCounter analyses of microRNA expression in the nucleus accumbens shell of male rats that had been tested for cue reactivity in a previous study. These rats had been trained to self-administer cocaine while living in isolate housing, then during a subsequent 21-day forced abstinence period they either stayed under isolate housing or switched to environmental enrichment (EE), as this EE intervention is known to decrease cocaine seeking. This allowed us to create groups of "high" and "low" cocaine seekers using a median split of cocaine-seeking behavior. RESULTS Differential expression analysis across high- and low-seekers identified 33 microRNAs that were differentially expressed in the nucleus accumbens shell. Predicted mRNA targets of these microRNAs are implicated in synaptic plasticity, neuronal signaling, and neuroinflammation signaling, and many are known addiction-related genes. Of the 33 differentially-expressed microRNAs, 8 were specifically downregulated in the low-seeking group and another set of 8 had expression levels that were significantly correlated with cocaine-seeking behavior. CONCLUSION These findings not only confirm the involvement of previously identified microRNAs (e.g., miR-212, miR-495) but also reveal novel microRNAs (e.g., miR-3557, miR-377) that alter, or are altered by, processes associated with cocaine-seeking behavior. Further research examining the mechanisms involved in these microRNA changes and their effects on signaling may reveal novel therapeutic targets for attenuating drug craving.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | |
Collapse
|
23
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
24
|
Liu H, Xu W, Feng J, Ma H, Zhang J, Xie X, Zhuang D, Shen W, Liu H, Zhou W. Increased Expression of Plasma miRNA-320a and let-7b-5p in Heroin-Dependent Patients and Its Clinical Significance. Front Psychiatry 2021; 12:679206. [PMID: 34267687 PMCID: PMC8275879 DOI: 10.3389/fpsyt.2021.679206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Heroin use disorder is a chronic and relapsing disease that induces persistent changes in the brain. The diagnoses of heroin use disorders are mainly based on subjective reports and no valid biomarkers available. Recent researches have revealed that circulating miRNAs are useful non-invasive biomarkers for diagnosing brain diseases such as Alzheimer's disease, multiple sclerosis, schizophrenia, and bipolar disorder. However, studies on circulating miRNAs for the diagnosis of heroin use disorders are rarely reported. In this study, we investigated the differential expression of plasma miRNAs in 57 heroin-dependent patients. Based on literature research and microarray analysis, two candidate miRNAs, miR-320a and let-7b-5p, were selected and analyzed by quantitative real-time RT-PCR. The results showed miR-320a and let-7b were significantly upregulated in plasma of the heroin-dependent patients compared to that in healthy controls. The area under curves (AUCs) of receiver operating characteristic (ROC) curves of miR-320a and let-7b-5p were 0.748 and 0.758, respectively. The sensitivities of miR-320a and let-7b-5p were 71.9 and 70.2%, while the specificities of miR-320a and let-7b-5p were 76.1 and 78.3%, respectively. The combination of these two miRNAs predicted heron dependence with an AUC of 0.782 (95% CI 0.687-0.876), with 73.7% sensitivity and 82.6% specificity. Our findings suggest a potential use for circulating miRNAs as biomarkers for the diagnosis of heroin abuse.
Collapse
Affiliation(s)
- Haixiong Liu
- Laboratory of Behavioral Neuroscience, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo Kangning Hospital, Ningbo University, Ningbo, China
| | - Wenjin Xu
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Jiying Feng
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Jianbin Zhang
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohu Xie
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Dingding Zhuang
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Wenwen Shen
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Huifen Liu
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Chavoshi H, Boroujeni ME, Abdollahifar MA, Amini A, Tehrani AM, Moghaddam MH, Norozian M, Farahani RM, Aliaghaei A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J Chem Neuroanat 2020; 109:101854. [DOI: 10.1016/j.jchemneu.2020.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
|
26
|
Bahi A, Dreyer JL. Lentiviral-mediated up-regulation of let-7d microRNA decreases alcohol intake through down-regulating the dopamine D3 receptor. Eur Neuropsychopharmacol 2020; 37:70-81. [PMID: 32646740 DOI: 10.1016/j.euroneuro.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that Lethal-7 (let-7) microRNA (miRNA) is involved in a wide range of psychiatric disorders such as anxiety, depression, schizophrenia, and cocaine addiction. However, the exact role of let-7d miRNA in regulating ethanol intake and preference remains to be elucidated. The aim of the present study was to clarify the role of accumbal let-7d in controlling ethanol-related behaviors in adult rats. For this purpose, stereotaxic injections of let-7d-overexpressing lentiviral vectors (LV) were administered bilaterally into the nucleus accumbens (Nacc) of Wistar rats. The ethanol-related behaviors were investigated using the two-bottle choice (TBC) access paradigm, in which the rats had access to 2.5, 5, and 10% ethanol solutions, the grid hanging test (GHT) and ethanol-induced loss-of-righting-reflex (LORR) test. The results showed that intra-accumbally administered let-7d-overexpressing LV significantly decreased ethanol intake and preference without having significant effects on body weight, consumption or preference for tastants (saccharin and quinine) or ethanol metabolism. Furthermore, accumbal let-7d increased resistance to ethanol-induced sedation in the GHT and LORR test. Most importantly, the data showed that the dopamine D3 receptor (D3R) was a candidate target of let-7d In fact, and using real time PCR, let-7d was found to directly target D3R mRNA to decrease its expression. Further analyses proved that D3R expression was negatively correlated with the levels of let-7d and ethanol-related behaviors parameters. Taken together, the data indicating that let-7d impaired ethanol-related behaviors by targeting D3R will open up new exciting possibilities and might provide potential therapeutic evidence for alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
27
|
Dash S, Balasubramaniam M, Martínez-Rivera FJ, Godino A, Peck EG, Patnaik S, Suar M, Calipari ES, Nestler EJ, Villalta F, Dash C, Pandhare J. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Sci Rep 2020; 10:11197. [PMID: 32641757 PMCID: PMC7343862 DOI: 10.1038/s41598-020-68144-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
MiR-124 is a highly expressed miRNA in the brain and regulates genes involved in neuronal function. We report that miR-124 post-transcriptionally regulates PARP-1. We have identified a highly conserved binding site of miR-124 in the 3'-untranslated region (3'UTR) of Parp-1 mRNA. We demonstrate that miR-124 directly binds to the Parp-1 3'UTR and mutations in the seed sequences abrogate binding between the two RNA molecules. Luciferase reporter assay revealed that miR-124 post-transcriptionally regulates Parp-1 3'UTR activity in a dopaminergic neuronal cell model. Interestingly, the binding region of miR-124 in Parp-1 3'UTR overlapped with the target sequence of miR-125b, another post-transcriptional regulator of Parp-1. Our results from titration and pull-down studies revealed that miR-124 binds to Parp-1 3'UTR with greater affinity and confers a dominant post-transcriptional inhibition compared to miR-125b. Interestingly, acute or chronic cocaine exposure downregulated miR-124 levels concomitant with upregulation of PARP-1 protein in dopaminergic-like neuronal cells in culture. Levels of miR-124 were also downregulated upon acute or chronic cocaine exposure in the mouse nucleus accumbens (NAc)-a key reward region of brain. Time-course studies revealed that cocaine treatment persistently downregulated miR-124 in NAc. Consistent with this finding, miR-124 expression was also significantly reduced in the NAc of animals conditioned for cocaine place preference. Collectively, these studies identify Parp-1 as a direct target of miR-124 in neuronal cells, establish miR-124 as a cocaine-regulated miRNA in the mouse NAc, and highlight a novel pathway underlying the molecular effects of cocaine.
Collapse
Affiliation(s)
- Sabyasachi Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily G Peck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fernando Villalta
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA.
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA.
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
28
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
29
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
30
|
Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen X. Cocaine induces differential circular RNA expression in striatum. Transl Psychiatry 2019; 9:199. [PMID: 31434869 PMCID: PMC6704174 DOI: 10.1038/s41398-019-0527-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/26/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA), a novel type of endogenous non-coding RNA, plays natural miRNA sponge effect that represses the activities of corresponding miRNAs through binding with them, thus modulating transcriptional expression of genes. Recent studies indicate that circRNAs are significantly enriched in the brain and some of them are derived from synaptic protein-coding genes. In addition, miRNAs are involved in synaptic plasticity, memory formation, and cocaine addiction. However, the role of circRNAs in cocaine reward is unclear. This study aimed to investigate the expression profile of striatal circRNAs in the mice after cocaine self-administration. By using circRNA microarray analysis, we observed that 90 striatal circRNAs were differentially expressed in cocaine self-administering mice, of which 18 circRNAs were up-regulated and 72 down-regulated. Six circRNAs were selected randomly for validation by using quantitative reverse transcription-PCR, and their expression levels showed consistency with microarray analysis. We backward predicted the circRNAs and their binding sites of miRNAs associated with neuroplasticity. In functional validation test, mmu_circRNA_002381 may modulate the transcription of certain genes associated with neuroplasticity, such as limk1 and bdnf. Taken together, circRNAs may participate in cocaine behavioral effect via interacting with miRNAs. Our findings reveal a potential role of circRNAs in cocaine effect.
Collapse
Affiliation(s)
- Qian Bu
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China ,0000 0001 0807 1581grid.13291.38Healthy Food Evaluation Research Center, Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065 China
| | - Hailei Long
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Xue Shao
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Hui Gu
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Jueying Kong
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Li Luo
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Bin Liu
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Wei Guo
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China ,0000 0000 9030 0162grid.440761.0School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Hongbo Wang
- 0000 0000 9030 0162grid.440761.0School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Jingwei Tian
- 0000 0000 9030 0162grid.440761.0School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005 China
| | - Yinglan Zhao
- 0000 0001 0807 1581grid.13291.38National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Forero DA, González-Giraldo Y. Convergent functional genomics of cocaine misuse in humans and animal models. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 46:22-30. [DOI: 10.1080/00952990.2019.1636384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Diego A. Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
- Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
32
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
33
|
Viola TW, Heberle BA, Zaparte A, Sanvicente-Vieira B, Wainer LM, Fries GR, Walss-Bass C, Grassi-Oliveira R. Peripheral blood microRNA levels in females with cocaine use disorder. J Psychiatr Res 2019; 114:48-54. [PMID: 31026664 PMCID: PMC6546503 DOI: 10.1016/j.jpsychires.2019.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is growing emphasis in the field of psychiatry on the need to identify candidate biomarkers to aid in diagnosis and clinical management of addictive disorders. MicroRNAs (miRNAs) are small nucleotide sequences with the ability to regulate gene expression at the transcriptomic level. However, the role of miRNAs as potential biomarkers for addiction is still underexplored. Based on translational and clinical findings, we compared the expression levels of microRNA-124 (miR-124), microRNA-181 (miR-181), and microRNA-212 (miR-212) between a group of females with cocaine use disorder (CUD; n = 30) and a group of healthy female controls (HC; n = 20). METHODS Blood expression levels of miR-124, miR-181, and miR-212 in the HC and CUD group were determined by qPCR, using two miRNAs as endogenous controls (miR-24 and miR-126). Substance use behavior was assessed by self-report using the Addiction Severity Index (ASI-6) and depressive symptoms severity was measured using the Beck Depressive Inventory (BDI-II). Urine screen test was performed to detect cocaine metabolites. RESULTS Mir-124 and miR-181 were upregulated in the CUD group (p > 0.01). Furthermore, increased cognitive/affective depression symptoms were identified among a CUD subgroup with the higher miR-181 expression levels (p > 0.05). No significant difference in expression levels was found for miR-212. CONCLUSIONS MiR-124 and miR-181 show promise as biomarkers for CUD when assessed in the peripheral blood. Further investigation is needed to elucidate the molecular mechanisms underlying these associations and to validate target genes regulated by these miRNAs.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bernardo Aguzzoli Heberle
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Department of Behavioral Neuroscience & Psychopharmacology (BNP), University of Kentucky (UKY), 741 South Limestone, Room B453, Lexington, KY, 40506-0509, USA
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo Mendes Wainer
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 77054 East Rd, Houston, TX, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 77054 East Rd, Houston, TX, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
Ancestral Stress Alters Lifetime Mental Health Trajectories and Cortical Neuromorphology via Epigenetic Regulation. Sci Rep 2019; 9:6389. [PMID: 31011159 PMCID: PMC6476877 DOI: 10.1038/s41598-019-42691-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Experiences during early development are powerful determinants of lifetime mental health. Here we investigated if ancestral stress regulates the brain’s epigenetic memory to alter neuromorphology and emotionality in the remote F4 progeny. Pregnant female rat dams of the parental F0 generation were exposed to stress on gestational days 12–18. To generate a transgenerational stress lineage, their pregnant daughters (F1), grand-daughters (F2) and great-grand-daughters (F3) remained undisturbed. To generate a multigenerational stress lineage, pregnant dams of each generation (F1–F3) were stressed. A lineage of non-stress controls (F0–F3) was also produced. Multigenerational stress exceeded the impact of transgenerational stress by increasing anxiety-like behaviours and stress response in young and middle-aged F4 males but not females. Functional changes were accompanied by reduced spine density in the male medial prefrontal cortex with opposite effects in the orbital frontal cortex. Ancestral stress regulated cortical miR-221 and miR-26 expression and their target genes, thus downregulating ntrk2 and map1a genes in males while downregulating crh and upregulating map1a genes in females. These miRNA-dependent pathways are candidates for developmental programming of lifetime mental health. Thus, multigenerational stress in particular determines sexually dimorphic predisposition to stress vulnerability and generates a phenotype resembling symptoms of post-traumatic stress disorder.
Collapse
|
35
|
Mavrikaki M, Anastasiadou E, Ozdemir RA, Potter D, Helmholz C, Slack FJ, Chartoff EH. Overexpression of miR-9 in the Nucleus Accumbens Increases Oxycodone Self-Administration. Int J Neuropsychopharmacol 2019; 22:383-393. [PMID: 30989210 PMCID: PMC6545539 DOI: 10.1093/ijnp/pyz015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is an urgent need to identify factors that increase vulnerability to opioid addiction to help stem the opioid epidemic and develop more efficient pharmacotherapeutics. MicroRNAs are small non-coding RNAs that regulate gene expression at a posttranscriptional level and have been implicated in chronic drug-taking in humans and in rodent models. Recent evidence has shown that chronic opioid treatment regulates the microRNA miR-9. The present study was designed to test the hypothesis that miR-9 in the nucleus accumbens potentiates oxycodone addictive-like behavior. METHODS We utilized adeno-associated virus (AAV) to overexpress miR-9 in the nucleus accumbens of male rats and tested the effects on intravenous self-administration of the highly abused prescription opioid, oxycodone, in 1-hour short-access followed by 6-h long-access sessions, the latter of which leads to escalation of drug intake. In separate rats, we assessed the effects of nucleus accumbens miR-9 overexpression on mRNA targets including RE1-silencing transcription factor (REST) and dopamine D2 receptor (DRD2), which have been shown to be regulated by drugs of abuse. RESULTS Overexpression of miR-9 in the nucleus accumbens significantly increased oxycodone self-administration compared with rats expressing a control, scrambled microRNA. Analysis of the pattern of oxycodone intake revealed that miR-9 overexpression increased "burst" episodes of intake and decreased the inter-infusion interval. Furthermore, miR-9 overexpression decreased the expression of REST and increased DRD2 in the nucleus accumbens at time points that coincided with behavioral effects. CONCLUSIONS These results suggest that nucleus accumbens miR-9 regulates oxycodone addictive-like behavior as well as the expression of genes that are involved in drug addiction.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Eleni Anastasiadou
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Recep A Ozdemir
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David Potter
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Carolin Helmholz
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Frank J Slack
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts,Correspondence: Elena H. Chartoff, PhD, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, MA ()
| |
Collapse
|
36
|
Su H, Zhu L, Li J, Wang R, Liu D, Han W, Cadet JL, Chen T. Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine -induced locomotor sensitization in mice. Neuropharmacology 2019; 148:160-168. [PMID: 30639389 DOI: 10.1016/j.neuropharm.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Changes in microRNA (miRNA)-mediated gene expression in the nucleus accumbens (NAc) may play important roles in regulating drug addiction. MiR-29c is a highly expressed miRNA in the human and rodent nervous systems where it plays a broad regulatory role. As the first step towards investigating potential functions of miR-29c in methamphetamine (METH) addiction, we used C57BL/6 mice in a model of METH-induced locomotor sensitization. We measured miR-29c expression changes in the NAc of the mice after repeated-intermittent METH exposure and acute METH administration respectively by using quantitative real-time PCR (qPCR). We found that miR-29c expression was significantly down-regulated in the NAc of METH-sensitized mice but not in the acute METH-treated mice. Then, we tested the respective effects of miR-29c over-expression and inhibition in the NAc on METH-induced locomotor sensitization. To reach this goal, we constructed adeno-associated virus (AAV)-expressing miR-29c (AAV-miR-29c) and its corresponding inhibitor - tough decoy (AAV-anti-miR-29c TuD) to over-express and inhibit miR-29c, respectively. We found that AAV-miR-29c over-expression in the NAc enhanced METH-induced locomotor sensitization, whereas AAV inhibition of miR-29c expression in the NAc attenuated the effects of METH. Moreover, we observed the participation of Dnmt3a, Dnmt3b, and Meg3 in the effects of miR-29c on METH sensitization. Our results suggest that miR-29c is an important epigenetic regulator of METH-induced behavioural sensitization and changes in gene expression. These data further suggest a potential role of miR-29c in regulating long-term METH-induced adaptation in the brain.
Collapse
Affiliation(s)
- Hang Su
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Jiaqi Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Dan Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse/NIH/DHHS, Bayview Boulevard, Maryland, 21224, USA
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China.
| |
Collapse
|
37
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
38
|
Oliver RJ, Mandyam CD. Regulation of Adult Neurogenesis by Non-coding RNAs: Implications for Substance Use Disorders. Front Neurosci 2018; 12:849. [PMID: 30524229 PMCID: PMC6261985 DOI: 10.3389/fnins.2018.00849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.
Collapse
Affiliation(s)
- Robert J Oliver
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Zygmunt M, Piechota M, Rodriguez Parkitna J, Korostyński M. Decoding the transcriptional programs activated by psychotropic drugs in the brain. GENES BRAIN AND BEHAVIOR 2018; 18:e12511. [PMID: 30084543 DOI: 10.1111/gbb.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Analysis of drug-induced gene expression in the brain has long held the promise of revealing the molecular mechanisms of drug actions as well as predicting their long-term clinical efficacy. However, despite some successes, this promise has yet to be fulfilled. Here, we present an overview of the current state of understanding of drug-induced gene expression in the brain and consider the obstacles to achieving a robust prediction of the properties of psychoactive compounds based on gene expression profiles. We begin with a comprehensive overview of the mechanisms controlling drug-inducible transcription and the complexity resulting from expression of noncoding RNAs and alternative gene isoforms. Particular interest is placed on studies that examine the associations within drug classes with regard to the effects on gene transcription, alterations in cell signaling and neuropharmacological drug properties. While the ability of gene expression signatures to distinguish specific clinical classes of psychotropic and addictive drugs remains unclear, some reports show that under specific constraints, drug properties can be predicted based on gene expression. Such signatures offer a simple and effective way to classify psychotropic drugs and screen novel psychoactive compounds. Finally, we note that the amount of data regarding molecular programs activated in the brain by drug treatment has grown exponentially in recent years and that future advances may therefore come in large part from integrating the currently available high-throughput data sets.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
40
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
41
|
Cabana-Domínguez J, Arenas C, Cormand B, Fernàndez-Castillo N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl Psychiatry 2018; 8:173. [PMID: 30166527 PMCID: PMC6117282 DOI: 10.1038/s41398-018-0224-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cocaine is one of the most used psychostimulant drugs worldwide. MicroRNAs are post-transcriptional regulators of gene expression that are highly expressed in brain, and several studies have shown that cocaine can alter their expression. In a previous study, we identified several protein-coding genes that are differentially expressed in a dopaminergic neuron-like model after an acute exposure to cocaine. Now, we used the prediction tool WebGestalt to identify miRNA molecules potentially involved in the regulation of these genes. Using the same cellular model, we found that seven of these miRNAs are down-regulated by cocaine: miR-124-3p, miR-124-5p, miR-137, miR-101-3p, miR-9-5p, miR-369-3p and miR-153-3p, the last three not previously related to cocaine. Furthermore, we found that three of the miRNA genes that are differentially expressed in our model (hsa-miR-9-1, hsa-miR-153-1 and hsa-miR-124-3) are nominally associated with cocaine dependence in a case-control study (2,085 cases and 4,293 controls). In summary, we highlighted novel miRNAs that may be involved in those cocaine-induced changes of gene expression that underlie addiction. Moreover, we identified genetic variants that contribute to cocaine dependence in three of these miRNA genes, supporting the idea that genes differentially expressed under cocaine may play an important role in the susceptibility to cocaine dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
42
|
Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA. Neuropsychopharmacology 2018; 43:900-911. [PMID: 29154364 PMCID: PMC5809802 DOI: 10.1038/npp.2017.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
The development of the dopamine input to the medial prefrontal cortex occurs during adolescence and is a process that is vulnerable to disruption by stimulant drugs such as amphetamine. We have previously linked the amphetamine-induced disruption of dopamine connectivity and prefrontal cortex maturation during adolescence to the downregulation of the Netrin-1 receptor, DCC, in dopamine neurons. However, how DCC expression in dopamine neurons is itself regulated is completely unknown. MicroRNA (miRNA) regulation of mRNA translation and stability is a prominent mechanism linking environmental events to changes in protein expression. Here, using male mice, we show that miR-218 is expressed in dopamine neurons and is a repressor of DCC. Whereas Dcc mRNA levels increase from early adolescence to adulthood, miR-218 exhibits the exact opposite switch, most likely maintaining postnatal Dcc expression. This dynamic regulation appears to be selective to Dcc since the expression of Robo 1, the other guidance cue receptor target of miR-218, does not vary with age. Amphetamine in adolescence, but not in adulthood, increases miR-218 in the VTA and this event is required for drug-induced downregulation of Dcc mRNA and protein expression. This effect seems to be specific to Dcc because amphetamine does not alter Robo1. Furthermore, the upregulation of miR-218 by amphetamine requires dopamine D2 receptor activation. These findings identify miR-218 as regulator of DCC in the VTA both in normal development and after drug exposure in adolescence.
Collapse
|
43
|
In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 2018; 23:434-443. [PMID: 28044061 PMCID: PMC5495632 DOI: 10.1038/mp.2016.238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3'UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.
Collapse
|
44
|
Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens. Metab Brain Dis 2017; 32:1767-1783. [PMID: 28681200 DOI: 10.1007/s11011-017-0061-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.
Collapse
Affiliation(s)
- Maw Shin Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Bandar Sunway, 47500, Selangor, Malaysia
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Bandar Sunway, 47500, Selangor, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b. eNeuro 2017; 4:eN-NWR-0089-17. [PMID: 28828398 PMCID: PMC5562297 DOI: 10.1523/eneuro.0089-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/27/2023] Open
Abstract
Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA “miR-125b” plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3’-untranslated region (3’UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3’UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b’s regulatory effect on PARP-1 3’UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action.
Collapse
|
46
|
MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Sci Rep 2017; 7:40413. [PMID: 28074855 PMCID: PMC5225456 DOI: 10.1038/srep40413] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of evolutionarily conserved, 18-25 nucleotide non-coding sequences that post-transcriptionally regulate gene expression. Recent studies implicated their roles in the regulation of neuronal functions, such as learning, cognition and memory formation. Here we report that miR-218 inhibits heroin-induced behavioral plasticity. First, network propagation-based method was used to predict candidate miRNAs that played potential key roles in regulating drug addiction-related genes. Microarray screening was also carried out to identify miRNAs responding to chronic heroin administration in the nucleus accumbens (NAc). Among the collapsed miRNAs, top-ranked miR-218 was decreased after chronic exposure to heroin. Lentiviral overexpression of miR-218 in NAc could inhibit heroin-induced reinforcement in both conditioned place preference (CPP) test and heroin self-administration experiments. Luciferase activity assay indicated that miR-218 could regulate 3' untranslated regions (3' UTR) of multiple neuroplasticity-related genes and directly target methyl CpG binding protein 2 (Mecp2). Consistently, Mecp2308/y mice exhibited reduced heroin seeking behavior in CPP test. These data reveal a functional role of miR-218 and its target, MeCP2, in the regulation of heroin-induced behavioral plasticity.
Collapse
|
47
|
Biochemical Diagnosis in Substance and Non-substance Addiction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1010:169-202. [PMID: 29098673 DOI: 10.1007/978-981-10-5562-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An optimal biochemical marker for addiction would be some easily traced molecules in body specimens, which indicates indulgent addictive behaviors, or susceptibility to certain addictive stimuli. In this chapter, we discussed existing literature about possible biomarkers, and classified them into three categories: origin forms and metabolites of substances, markers from biochemical responses to certain addiction, and genetic and epigenetic biomarkers suggesting susceptibility to addiction. In every category, we examined studies concerning certain type of addiction one by one, with focuses mainly on opiates, psychostimulants, and pathological gambling. Several promising molecules were highlighted, including those of neurotrophic factors, inflammatory factors, and indicators of vascular injury, and genetic and epigenetic biomarkers such as serum miRNAs. DNA methylation signatures and signal nucleotide polymorphism of candidate gene underlying the addiction.
Collapse
|
48
|
Peregud DI, Panchenko LF, Gulyaeva NV. MicroRNA may regulate the content of the brain-derived neurotrophic factor in the frontal cortex of rats after spontaneous morphine withdrawal. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci Rep 2016; 6:36993. [PMID: 27869204 PMCID: PMC5116666 DOI: 10.1038/srep36993] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 11/12/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.
Collapse
|
50
|
O'Connor RM, Gururajan A, Dinan TG, Kenny PJ, Cryan JF. All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends Pharmacol Sci 2016; 37:1029-1044. [PMID: 27832923 DOI: 10.1016/j.tips.2016.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Current treatment strategies for psychiatric disorders remain inadequate. Impeding development of novel therapeutics is our incomplete knowledge of the molecular pathophysiology underlying these disorders. Changes to miRNA function and expression are increasingly being associated with pathological behavioral states. Furthermore, the prospect of using of miRNA expression profiles (the miRNome) as objective psychiatric diagnosis tools is gaining traction. In this review, we focus on recent findings surrounding the link between miRNA function and psychiatric disorders, and outline some of the key challenges that will need to be overcome if the therapeutic potential of these molecular effectors is to be fully realized.
Collapse
Affiliation(s)
- Richard M O'Connor
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA.
| | - Anand Gururajan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|