1
|
Abstract
Antibiotics constitute one of the cornerstones of modern medicine. However, individuals may succumb to a bacterial infection if a pathogen survives exposure to antibiotics. The ability of bacteria to survive bactericidal antibiotics results from genetic changes in the preexisting bacterial genome, from the acquisition of genes from other organisms, and from nonheritable phenomena that give rise to antibiotic tolerance. Nonheritable antibiotic tolerance can be exhibited by a large fraction of the bacterial population or by a small subpopulation referred to as persisters. Nonheritable resistance to antibiotics has been ascribed to the activity of toxins that are part of toxin-antitoxin modules, to the universal energy currency ATP, and to the signaling molecule guanosine (penta) tetraphosphate. However, these molecules are dispensable for nonheritable resistance to antibiotics in many organisms. By contrast, nutrient limitation, treatment with bacteriostatic antibiotics, or expression of genes that slow bacterial growth invariably promote nonheritable resistance. We posit that antibiotic persistence results from conditions promoting feedback inhibition among core cellular processes, resulting phenotypically in a slowdown or halt in bacterial growth.
Collapse
|
2
|
Trinquier A, Ulmer JE, Gilet L, Figaro S, Hammann P, Kuhn L, Braun F, Condon C. tRNA Maturation Defects Lead to Inhibition of rRNA Processing via Synthesis of pppGpp. Mol Cell 2019; 74:1227-1238.e3. [PMID: 31003868 DOI: 10.1016/j.molcel.2019.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
Abstract
rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Guanosine Pentaphosphate/biosynthesis
- Guanosine Pentaphosphate/genetics
- Guanosine Triphosphate/metabolism
- Ligases/genetics
- Ligases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Aude Trinquier
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jonathan E Ulmer
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Frédérique Braun
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Ciarán Condon
- UMR8261 (CNRS-Université Paris Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
3
|
Abstract
In Escherichia coli, rRNAs are initially transcribed with precursor sequences, which are subsequently removed through processing reactions. To investigate the role of precursor sequences, we analyzed ribosome assembly in strains containing mutations in the processing RNases. We observed that defects in 23S rRNA processing resulted in an accumulation of ribosomal subunits and caused a significant delay in ribosome assembly. These observations suggest that precursor residues in 23S rRNA control ribosome assembly and could be serving a regulatory role to couple ribosome assembly to rRNA processing. The possible mechanisms through which rRNA processing and ribosome assembly could be linked are discussed.
Collapse
|
4
|
Bergmiller T, Peña-Miller R, Boehm A, Ackermann M. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD. BMC Microbiol 2011; 11:118. [PMID: 21619589 PMCID: PMC3115834 DOI: 10.1186/1471-2180-11-118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. RESULTS We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (p)ppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (p)ppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. CONCLUSIONS Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (p)ppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.
Collapse
Affiliation(s)
- Tobias Bergmiller
- Department of Environmental Sciences, ETH Zurich, Switzerland, and Department of Environmental Microbiology, Eawag, Switzerland
| | | | - Alexander Boehm
- Institut für Molekulare Infektionsbiologie, University of Wuerzburg, Germany
| | - Martin Ackermann
- Department of Environmental Sciences, ETH Zurich, Switzerland, and Department of Environmental Microbiology, Eawag, Switzerland
| |
Collapse
|
5
|
Jagessar KL, Jain C. Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA (NEW YORK, N.Y.) 2010; 16:1386-92. [PMID: 20484467 PMCID: PMC2885687 DOI: 10.1261/rna.2015610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DEAD-box RNA helicases are enzymes that unwind RNA duplexes and are found in virtually all organisms. Most organisms harbor multiple DEAD-box helicases, suggesting that these factors participate in distinct aspects of RNA metabolism. To define the individual and collective contribution of the five DEAD-box helicases in the bacterium Escherichia coli (E. coli), nonpolar deletion mutants lacking single or multiple DEAD-box genes were constructed. An analysis of the single-deletion strains indicated that the absence of either the DeaD or SrmB RNA helicase causes growth and/or ribosomal defects under typical laboratory growth conditions. The analysis of strains lacking multiple DEAD-box genes showed cumulative growth defects at low temperatures. A strain deleted for all five DEAD-box genes was also constructed for these studies, representing the first time all DEAD-box genes have been removed in any organism. Additional investigations revealed that the growth and ribosomal defects of such a DEAD-box deficient strain can be sharply attenuated under alternative conditions, indicating that the defects caused by a lack of DEAD-box genes are modulated by growth context.
Collapse
Affiliation(s)
- Kevin L Jagessar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
6
|
Abstract
In Escherichia coli, rRNAs are transcribed as precursors and require processing at the 3' and 5' ends to generate mature RNA molecules. The largest of these RNAs, 23S rRNA, is matured at the 3' end by a set of exonucleases and at the 5' end by an unknown RNase. Whether the 3' and 5' maturation steps occur independently or are coupled has previously been unclear. By assessing the levels of precursors accumulating at the 3' and 5' ends, we provide evidence that these processes may be linked. Thus, each of several conditions that led to precursor accumulation at one end also did so at the other end. We also observed that each end undergoes maturation at similar rates, suggesting that the two processes could be coupled. Finally, we provide evidence that processing at the 3' end facilitates 5'-end maturation. A model to explain the basis for the observed directionality of the reactions is proposed. This information will aid in the search for the enzyme responsible for final maturation of the 5' end of 23S rRNA.
Collapse
|
7
|
Identification and characterization of growth suppressors of Escherichia coli strains lacking phosphorolytic ribonucleases. J Bacteriol 2009; 191:5622-7. [PMID: 19617368 DOI: 10.1128/jb.01716-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNases are involved in critical aspects of RNA metabolism in all organisms. Two classes of RNases that digest RNA from an end (exo-RNases) are known: RNases that use water as a nucleophile to catalyze RNA degradation (hydrolytic RNases) and RNases that use inorganic phosphate (phosphorolytic RNases). It has been shown previously that the absence of the two known Escherichia coli phosphorolytic RNases, polynucleotide phosphorylase and RNase PH, leads to marked growth and ribosome assembly defects. To investigate the basis for these defects, a screen for growth suppressors was performed. The majority of suppressor mutations were found to lie within nsrR, which encodes a nitric oxide (NO)-sensitive transcriptional repressor. Further analysis showed that the suppressors function not by inactivating nsrR but by causing overexpression of a downstream gene that encodes a hydrolytic RNase, RNase R. Additional studies revealed that overexpression of another hydrolytic RNase, RNase II, similarly suppressed the growth defects. These results suggest that the requirement for phosphorolytic RNases for robust cellular growth and efficient ribosome assembly can be bypassed by increased expression of hydrolytic RNases.
Collapse
|
8
|
El Yacoubi B, Lyons B, Cruz Y, Reddy R, Nordin B, Agnelli F, Williamson JR, Schimmel P, Swairjo MA, de Crécy-Lagard V. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res 2009; 37:2894-909. [PMID: 19287007 PMCID: PMC2685093 DOI: 10.1093/nar/gkp152] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Threonylcarbamoyladenosine (t6A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNAThr lacking only the t6A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t6A in vivo.
Collapse
Affiliation(s)
- Basma El Yacoubi
- Department of Microbiology, University of Florida, Gainesville, FL 32611-0700, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jain C. The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA (NEW YORK, N.Y.) 2008; 14:381-9. [PMID: 18083833 PMCID: PMC2212244 DOI: 10.1261/rna.800308] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Escherichia coli contains five members of the DEAD-box RNA helicase family, a ubiquitous class of proteins characterized by their ability to unwind RNA duplexes. Although four of these proteins have been implicated in RNA turnover or ribosome biogenesis, no cellular function for the RhlE DEAD-box protein has been described as yet. During an analysis of the cold-sensitive growth defect of a strain lacking the DeaD/CsdA RNA helicase, rhlE plasmids were identified from a chromosomal library as multicopy suppressors of the growth defect. Remarkably, when tested for allele specificity, RhlE overproduction was found to exacerbate the cold-sensitive growth defect of a strain that lacks the SrmB RNA helicase. Moreover, the absence of RhlE exacerbated or alleviated the cold-sensitive defect of deaD or srmB strains, respectively. Primer extension and ribosome analysis indicated that RhlE regulates the accumulation of immature ribosomal RNA or ribosome precursors when deaD or srmB strains are grown at low temperatures. By using an epitope-tagged version of RhlE, the majority of RhlE in cell extracts was found to cosediment with ribosome-containing fractions. Since both DeaD and SrmB have been recently shown to function in ribosome assembly, these findings suggests that rhlE genetically interacts with srmB and deaD to modulate their function during ribosome maturation. On the basis of the available evidence, I propose that RhlE is a novel ribosome assembly factor, which plays a role in the interconversion of ribosomal RNA-folding intermediates that are further processed by DeaD or SrmB during ribosome maturation.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA.
| |
Collapse
|