1
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
2
|
Nevo Y, Sperling J, Sperling R. Heat shock activates splicing at latent alternative 5' splice sites in nematodes. Nucleus 2015; 6:225-35. [PMID: 25634319 DOI: 10.1080/19491034.2015.1010956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pre-mRNA splicing is essential for the regulation of gene expression in eukaryotes and is fundamental in development and cancer, and involves the selection of a consensus sequence that defines the 5' splice site (5'SS). Human introns harbor multiple sequences that conform to the 5'SS consensus, which are not used under normal growth conditions. Under heat shock conditions, splicing at such intronic latent 5'SSs occurred in thousands of human transcripts, resulting in pre-maturely terminated aberrant proteins. Here we performed a survey of the C. elegans genome, showing that worm's introns contain latent 5'SSs, whose use for splicing would have resulted in pre-maturely terminated mRNAs. Splicing at these latent 5'SSs could not be detected under normal growth conditions, while heat shock activated latent splicing in a number of tested C. elegans transcripts. Two scenarios could account for the lack of latent splicing under normal growth conditions (i) Splicing at latent 5'SSs do occur, but the nonsense mRNAs thus formed are rapidly and efficiently degraded (e.g. by NMD); and (ii) Splicing events at intronic latent 5'SSs are suppressed. Here we support the second scenario, because, nematode smg mutants that are devoid of NMD-essential factors, did not show latent splicing under normal growth conditions. Hence, these experiments together with our previous experiments in mammalian cells, indicate the existence of a nuclear quality control mechanism, termed Suppression Of Splicing (SOS), which discriminates between latent and authentic 5'SSs in an open reading frame dependent manner, and allows splicing only at the latter. Our results show that SOS is an evolutionary conserved mechanism, probably shared by most eukaryotes.
Collapse
Affiliation(s)
- Yuval Nevo
- a Department of Genetics; The Hebrew University of Jerusalem ; Jerusalem , Israel
| | | | | |
Collapse
|
3
|
Nevo Y, Kamhi E, Jacob-Hirsch J, Amariglio N, Rechavi G, Sperling J, Sperling R. Genome-wide activation of latent donor splice sites in stress and disease. Nucleic Acids Res 2012; 40:10980-94. [PMID: 23002147 PMCID: PMC3510495 DOI: 10.1093/nar/gks834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sequences that conform to the 5′ splice site (5′SS) consensus are highly abundant in mammalian introns. Most of these sequences are preceded by at least one in-frame stop codon; thus, their use for splicing would result in pre-maturely terminated aberrant mRNAs. In normally grown cells, such intronic 5′SSs appear not to be selected for splicing. However, under heat shock conditions aberrant splicing involving such latent 5′SSs occurred in a number of specific gene transcripts. Using a splicing-sensitive microarray, we show here that stress-induced (e.g. heat shock) activation of latent splicing is widespread across the human transcriptome, thus highlighting the possibility that latent splicing may underlie certain diseases. Consistent with this notion, our analyses of data from the Gene Expression Omnibus (GEO) revealed widespread activation of latent splicing in cells grown under hypoxia and in certain cancers such as breast cancer and gliomas. These changes were found in thousands of transcripts representing a wide variety of functional groups; among them are genes involved in cell proliferation and differentiation. The GEO analysis also revealed a set of gene transcripts in oligodendroglioma, in which the level of activation of latent splicing increased with the severity of the disease.
Collapse
Affiliation(s)
- Yuval Nevo
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
4
|
de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA (NEW YORK, N.Y.) 2011; 17:2094-107. [PMID: 22028363 PMCID: PMC3222123 DOI: 10.1261/rna.02918111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 05/29/2023]
Abstract
Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.
Collapse
Affiliation(s)
| | - Pamela Nicholson
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
5
|
A potential role for initiator-tRNA in pre-mRNA splicing regulation. Proc Natl Acad Sci U S A 2010; 107:11319-24. [PMID: 20534564 DOI: 10.1073/pnas.0911561107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The translation initiator-tRNA plays a crucial role in the initiation of protein synthesis in both prokaryotic and eukaryotic cells, by employing specific base pairing between its anticodon triplet CAU and the general initiation codon AUG in the mRNA. Here we show that the initiator-tRNA may also act, in a manner that is independent of its role in protein translation, as a pre-mRNA splicing regulator. Specifically, we show that alternative splicing events that are induced by mutations in the translation initiation AUG codon can be suppressed by expressing initiator-tRNA constructs carrying anticodon mutations that compensate for the AUG mutations. These mutated initiator-tRNAs appeared to be uncharged with an amino acid. Our results imply that recognition of the initiation AUG sequence by the anticodon triplet of initiator-tRNA in its unloaded state plays a role in quality control of splicing in the cell nucleus by a yet unresolved mechanism. Identifying the initiator-tRNA as a transacting splicing regulator suggests a novel involvement of this molecule in splicing regulation and provides a critical step toward deciphering this intriguing mechanism.
Collapse
|
6
|
Abstract
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.
Collapse
|
7
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
8
|
Pando MP, Kotraiah V, McGowan K, Bracco L, Einstein R. Alternative isoform discrimination by the next generation of expression profiling microarrays. Expert Opin Ther Targets 2007; 10:613-25. [PMID: 16848696 DOI: 10.1517/14728222.10.4.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microarray expression profiling has revolutionised the way that many therapeutic targets have been identified over the past 10 years. High-density microarrays have allowed scientists to simultaneously scrutinise the expression of all genes encoded on a given genome. Although the data collected from classically designed microarrays greatly enriched the pool of information available to help guide the selection and design of new therapeutic strategies, they were unable to tell the complete story. The major limitation with most array designs is that they can only produce a global expression value for all transcripts produced from a specific locus and cannot monitor each individual alternative isoform produced from the interrogated locus. Recently, new array designs have been described, and become commercially available, that can efficiently monitor individual alternatively spliced isoforms produced from a single locus, allowing the research community to get a more accurate picture of the biological landscape of the expressed transcripts.
Collapse
Affiliation(s)
- Matthew P Pando
- ExonHit Therapeutics, Inc., 217 Perry Parkway, Bdg 5, Gaithersburg, MD 20877, USA
| | | | | | | | | |
Collapse
|
9
|
Krawczak M, Thomas NST, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 2007; 28:150-8. [PMID: 17001642 DOI: 10.1002/humu.20400] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although single base-pair substitutions in splice junctions constitute at least 10% of all mutations causing human inherited disease, the factors that determine their phenotypic consequences at the RNA level remain to be fully elucidated. Employing a neural network for splice-site recognition, we performed a meta-analysis of 478 disease-associated splicing mutations, in 38 different genes, for which detailed laboratory-based mRNA phenotype assessment had been performed. Inspection of the +/-50-bp DNA sequence context of the mutations revealed that exon skipping was the preferred phenotype when the immediate vicinity of the affected exon-intron junctions was devoid of alternative splice-sites. By contrast, in the presence of at least one such motif, cryptic splice-site utilization, became more prevalent. This association was, however, confined to donor splice-sites. Outside the obligate dinucleotide, the spatial distribution of pathological mutations was found to differ significantly from that of SNPs. Whereas disease-associated lesions clustered at positions -1 and +3 to +6 for donor sites and -3 for acceptor sites, SNPs were found to be almost evenly distributed over all sequence positions considered. When all putative missense mutations in the vicinity of splice-sites were extracted from the Human Gene Mutation Database for the 38 studied genes, a significantly higher proportion of changes at donor sites (37/152; 24.3%) than at acceptor splice-sites (1/142; 0.7%) was found to reduce the neural network signal emitted by the respective splice-site. Based upon these findings, we estimate that some 1.6% of disease-causing missense substitutions in human genes are likely to affect the mRNA splicing phenotype. Taken together, our results are consistent with correct donor splice-site recognition being a key step in exon recognition.
Collapse
Affiliation(s)
- Michael Krawczak
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kamhi E, Yahalom G, Kass G, Hacham Y, Sperling R, Sperling J. AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing. Nucleic Acids Res 2006; 34:3421-33. [PMID: 16855285 PMCID: PMC1524910 DOI: 10.1093/nar/gkl390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/05/2006] [Accepted: 05/08/2006] [Indexed: 12/03/2022] Open
Abstract
More than 90% of human genes are rich in intronic latent 5' splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5' splice sites regulates alternative 5' splice site selection in a way that prevents the production of toxic nonsense mRNAs and verified this idea by showing that the removal of such in-frame stop codons is sufficient to activate latent splicing. Splicing control by SOS requires recognition of the mRNA reading frame, presumably recognizing the start codon sequence. Here we show that AUG sequences are indeed essential for SOS. Although protein translation does not seem to be required for SOS, the first AUG is shown here to be necessary but not sufficient. We further show that latent splicing can be elicited upon treatment with pactamycin-a drug known to block translation by its ability to recognize an RNA fold-but not by treatment with other drugs that inhibit translation through other mechanisms. The effect of pactamycin on SOS is dependent neither on steady-state translation nor on the pioneer round of translation. This effect is found for both transfected and endogenous genes, indicating that SOS is a natural mechanism.
Collapse
Affiliation(s)
- Eyal Kamhi
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Galit Yahalom
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Gideon Kass
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Yael Hacham
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Joseph Sperling
- To whom correspondence should be addressed. Tel: 972 8 934 2509; Fax: 972 8 934 4142;
| |
Collapse
|
11
|
Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17:309-15. [PMID: 15901502 DOI: 10.1016/j.ceb.2005.03.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) generally involves nonsense codon recognition by translating ribosomes at a position approximately 25 nts upstream of a splicing-generated exon junction complex of proteins. As such, NMD provides a means to degrade abnormal mRNAs that encode potentially deleterious truncated proteins. Additionally, an estimated one-third of naturally occurring, alternatively spliced mRNAs is also targeted for NMD. Given the extraordinary frequency of alternative splicing together with data indicating that naturally occurring transcripts other than alternatively spliced mRNAs are likewise targeted for NMD, it is believed that mammalian cells routinely utilize NMD to achieve proper levels of gene expression.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
12
|
Gutgsell NS, Deutscher MP, Ofengand J. The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1141-52. [PMID: 15928344 PMCID: PMC1370798 DOI: 10.1261/rna.2550105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RluD is the pseudouridine synthase responsible for the formation of Psi1911, Psi1915, and Psi1917 in Escherichia coli 23S rRNA. Previous work from our laboratory demonstrated that disruption of the rluD gene and/or loss of the pseudouridine residues for which it is responsible resulted in a severe growth phenotype. In the current work we have examined further the effect of the loss of the RluD protein and its product pseudouridine residues in a deletion strain lacking the rluD gene. This strain exhibits defects in ribosome assembly, biogenesis, and function. Specifically, there is a deficit of 70S ribosomes, an increase in 50S and 30S subunits, and the appearance of new 62S and 39S particles. Analysis of the 39S particles indicates that they are immature precursors of the 50S subunits, whereas the 62S particles are derived from the breakdown of unstable 70S ribosomes. In addition, purified mutant 70S ribosomes were found to be somewhat less efficient than wild type in protein synthesis. The defect in ribosome assembly and resulting growth phenotype of the mutant could be restored by expression of wild-type RluD and synthesis of Psi1911, Psi1915, and Psi1917 residues, but not by catalytically inactive mutant RluD proteins, incapable of pseudouridine formation. The data suggest that the loss of the pseudouridine residues can account for all aspects of the mutant phenotype; however, a possible second function of the RluD synthase is also discussed.
Collapse
Affiliation(s)
- Nancy S Gutgsell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
13
|
Zhang Z, Krainer AR. Involvement of SR Proteins in mRNA Surveillance. Mol Cell 2004; 16:597-607. [PMID: 15546619 DOI: 10.1016/j.molcel.2004.10.031] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/09/2004] [Accepted: 10/26/2004] [Indexed: 11/18/2022]
Abstract
Nonsense mutations influence several aspects of gene expression, including mRNA stability and splicing fidelity, but the mechanism by which premature termination codons (PTCs) can apparently affect splice-site selection remains elusive. We used a model human beta-globin gene with duplicated 5' splice sites (5'ss) and found that PTCs inserted between the two 5'ss do not directly influence splicing in this system. Instead, their apparent effect on 5'ss selection in vivo is an indirect result of nonsense-mediated mRNA decay (NMD), as conditions that eliminated NMD also abrogated the effect on splicing. Remarkably, we found an unexpected function of SR proteins in targeting several mRNAs with PTCs to the NMD pathway. Overexpression of various SR proteins strongly enhanced NMD, and this effect required an RS domain. Our data argue against a universal role of PTCs in regulating pre-mRNA splicing and reveal an additional function of SR proteins in eukaryotic gene expression.
Collapse
Affiliation(s)
- Zuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
14
|
Wachtel C, Li B, Sperling J, Sperling R. Stop codon-mediated suppression of splicing is a novel nuclear scanning mechanism not affected by elements of protein synthesis and NMD. RNA (NEW YORK, N.Y.) 2004; 10:1740-50. [PMID: 15388876 PMCID: PMC1370662 DOI: 10.1261/rna.7480804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/23/2004] [Indexed: 05/21/2023]
Abstract
The pre-mRNA splicing machine must frequently discriminate between normal and many potential 5'splice sites that match the consensus sequence but remain latent. Suppression of splicing (SOS) at such latent 5'splice sites is required for the maintenance of an open reading frame, and to ensure that only RNAs that encode for functional proteins will be formed. In this study we show that SOS is a novel mechanism distinct from the known RNA surveillance mechanisms. First, SOS is distinct from nonsense-mediated mRNA decay (NMD) because it is not dependent on translation and is not affected by RNAi-mediated down-regulation of hUpf1 and hUpf2--two key components of the NMD pathway. Second, SOS is distinct from nonsense-associated alternative splicing (NAS), because a mutant of hUpf1, which was shown to abrogate NAS, does not activate latent splicing. Elucidating the mechanism of SOS is pertinent to human disease in view of the large number of human genes that harbor latent splice sites.
Collapse
Affiliation(s)
- Chaim Wachtel
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
15
|
Abstract
The accuracy of the data we reported in an RNA Letter to the Editor earlier this year on the possible relationship between stop codons and splicing is questioned by Miriami et al. (this issue). We reply here that we see no inaccuracy in our data presentation and offer a possible explanation for their interpretation.
Collapse
Affiliation(s)
- Xiang H-F Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|