1
|
Suzuki T, Ogizawa A, Ishiguro K, Nagao A. Biogenesis and roles of tRNA queuosine modification and its glycosylated derivatives in human health and diseases. Cell Chem Biol 2025; 32:227-238. [PMID: 39657672 DOI: 10.1016/j.chembiol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Various types of post-transcriptional modifications contribute to physiological functions by regulating the abundance and function of RNAs. In particular, tRNAs have the widest variety and largest number of modifications, with crucial roles in protein synthesis. Queuosine (Q) is a characteristic tRNA modification with a 7-deazaguanosine core structure bearing a bulky side chain with a cyclopentene group. Q and its derivatives are found in the anticodon of specific tRNAs in both bacteria and eukaryotes. In metazoan tRNAs, Q is further glycosylated with galactose or mannose. The functions of these glycosylated Qs remained unknown for nearly half a century since their discovery. Recently, our group identified the glycosyltransferases responsible for these tRNA modifications and elucidated their biological roles. We, here, review the biochemical and physiological functions of Q and its glycosylated derivatives as well as their associations with human diseases, including cancer and inflammatory and neurological diseases.
Collapse
Affiliation(s)
- Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Atsuya Ogizawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Ehrenhofer-Murray AE. Queuine: A Bacterial Nucleobase Shaping Translation in Eukaryotes. J Mol Biol 2025:168985. [PMID: 39956693 DOI: 10.1016/j.jmb.2025.168985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
Queuosine (Q), a 7-deazaguanosine derivative, is among the most intricate tRNA modifications, and is located at position 34 (the Wobble position) of tRNAs with a GUN anticodon. Found in most eukaryotes and many bacteria, Q is unique among tRNA modifications because its full biosynthetic pathway exists only in bacteria. In contrast, eukaryotes are auxotrophic for Q, relying on dietary sources and gut microbiota to acquire Q and the nucleobase queuine. This dependency creates a nutritional link to translation in the host. Q enhances Wobble base pairing with U and helps balance translational speed between Q codons ending in C and U in eukaryotes. The absence of Q modification impacts oxidative stress response, impairs mitochondrial function and protein folding, and has been associated with neurodegeneration, cancer, and inflammation. This review discusses our current understanding of the cellular and organismal impacts of Q deficiency in eukaryotes. Additionally, it examines recent advancements in technologies for detecting Q modifications at single-base resolution and explores the potential applications of the Q modification system in biotechnology.
Collapse
Affiliation(s)
- Ann E Ehrenhofer-Murray
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin 10099 Berlin, Germany.
| |
Collapse
|
3
|
Sierant M, Szewczyk R, Dziergowska A, Krolewska-Golinska K, Szczupak P, Bernat P, Nawrot B. Studies on the Oxidative Damage of the Wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of Eukaryotic Cells with Disturbed Homeostasis of the Antioxidant System. Int J Mol Sci 2024; 25:12336. [PMID: 39596401 PMCID: PMC11594727 DOI: 10.3390/ijms252212336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations. Using different types of eukaryotic cells, such as baker's yeast, human cancer cells, or modified HEK293 cells with an impaired antioxidant system, we confirmed that 5-substituted 2-thiouridines are oxidatively desulfurized in the wobble position of the anticodon of some tRNAs. The quantitative LC-MS/MS-MRMhr analysis of the nucleoside mixtures obtained from the hydrolyzed tRNA revealed the presence of the desulfuration products of mcm5S2U: mcm5H2U and mcm5U modifications. We also observed some amounts of immature cm5S2U, cm5H2U and cm5U products, which may have indicated a disruption of the enzymatic modification pathway at the C5 position of 2-thiouridine. The observed process, which was triggered by oxidative stress in the living cells, could impair the function of 2-thiouridine-containing tRNAs and alter the translation of genetic information.
Collapse
Affiliation(s)
- Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | | | - Agnieszka Dziergowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Karolina Krolewska-Golinska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Patrycja Szczupak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Przemyslaw Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| |
Collapse
|
4
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
6
|
Krueger J, Preusse M, Oswaldo Gomez N, Frommeyer YN, Doberenz S, Lorenz A, Kordes A, Grobe S, Müsken M, Depledge DP, Svensson SL, Weiss S, Kaever V, Pich A, Sharma CM, Ignatova Z, Häussler S. tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2312874121. [PMID: 38451943 PMCID: PMC10945773 DOI: 10.1073/pnas.2312874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024] Open
Abstract
The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.
Collapse
Affiliation(s)
- Jonas Krueger
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Sebastian Doberenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Adrian Kordes
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
| | - Svenja Grobe
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Daniel P. Depledge
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Institute of Virology, Hannover Medical School, Hannover30625, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover30625, Germany
| | - Sarah L. Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover30625, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Cynthia M. Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University Hamburg, 20146, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen2100, Denmark
| |
Collapse
|
7
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
8
|
Boughanem H, Böttcher Y, Tomé-Carneiro J, López de Las Hazas MC, Dávalos A, Cayir A, Macias-González M. The emergent role of mitochondrial RNA modifications in metabolic alterations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1753. [PMID: 35872632 DOI: 10.1002/wrna.1753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial epitranscriptomics refers to the modifications occurring in all the different RNA types of mitochondria. Although the number of mitochondrial RNA modifications is less than those in cytoplasm, substantial evidence indicates that they play a critical role in accurate protein synthesis. Recent evidence supported those modifications in mitochondrial RNAs also have crucial implications in mitochondrial-related diseases. In the light of current knowledge about the involvement, the association between mitochondrial RNA modifications and diseases arises from studies focusing on mutations in both mitochondrial and nuclear DNA genes encoding enzymes involved in such modifications. Here, we review the current evidence available for mitochondrial RNA modifications and their role in metabolic disorders, and we also explore the possibility of using them as promising targets for prevention and early detection. Finally, we discuss future directions of mitochondrial epitranscriptomics in these metabolic alterations, and how these RNA modifications may offer a new diagnostic and theragnostic avenue for preventive purposes. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria and University of Málaga, Spain.,Instituto de Salud Carlos III (ISCIII), Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - Yvonne Böttcher
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus Universitetssykehus, Lørenskog, Norway
| | - Manuel Macias-González
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria and University of Málaga, Spain.,Instituto de Salud Carlos III (ISCIII), Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| |
Collapse
|
9
|
Lyu Z, Wilson C, Ling J. Translational Fidelity during Bacterial Stresses and Host Interactions. Pathogens 2023; 12:383. [PMID: 36986305 PMCID: PMC10057733 DOI: 10.3390/pathogens12030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Translational fidelity refers to accuracy during protein synthesis and is maintained in all three domains of life. Translational errors occur at base levels during normal conditions and may rise due to mutations or stress conditions. In this article, we review our current understanding of how translational fidelity is perturbed by various environmental stresses that bacterial pathogens encounter during host interactions. We discuss how oxidative stress, metabolic stresses, and antibiotics affect various types of translational errors and the resulting effects on stress adaption and fitness. We also discuss the roles of translational fidelity during pathogen-host interactions and the underlying mechanisms. Many of the studies covered in this review will be based on work with Salmonella enterica and Escherichia coli, but other bacterial pathogens will also be discussed.
Collapse
Affiliation(s)
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Jürgenstein K, Tagel M, Ilves H, Leppik M, Kivisaar M, Remme J. Variance in translational fidelity of different bacterial species is affected by pseudouridines in the tRNA anticodon stem-loop. RNA Biol 2022; 19:1050-1058. [PMID: 36093925 PMCID: PMC9481147 DOI: 10.1080/15476286.2022.2121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of Pseudomonas putida, Pseudomonas aeruginosa and Escherichia coli. We observed that these profiles are surprisingly different, whereas species more prone to translational frameshifting are not necessarily more prone to stop codon readthrough. As tRNA modifications are among the factors that have been implicated to affect translation accuracy, we also show that translational fidelity is context-specifically influenced by pseudouridines in the anticodon stem-loop of tRNA, but the effect is not uniform between species.
Collapse
Affiliation(s)
- Karl Jürgenstein
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
11
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
14
|
Carpentier P, Leprêtre C, Basset C, Douki T, Torelli S, Duarte V, Hamdane D, Fontecave M, Atta M. Structural, biochemical and functional analyses of tRNA-monooxygenase enzyme MiaE from Pseudomonas putida provide insights into tRNA/MiaE interaction. Nucleic Acids Res 2020; 48:9918-9930. [PMID: 32785618 PMCID: PMC7515727 DOI: 10.1093/nar/gkaa667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme. The structure shows that Pp-MiaE consists of a catalytic diiron(III) domain with a four alpha-helix bundle fold. A docking model of Pp-MiaE in complex with tRNA, combined with site directed mutagenesis and in vivo activity shed light on the importance of an additional linker region for substrate tRNA recognition. Finally, krypton-pressurized Pp-MiaE experiments, revealed the presence of defined O2 site along a conserved hydrophobic tunnel leading to the diiron active center.
Collapse
Affiliation(s)
- Philippe Carpentier
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Christian Basset
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, SyMMES, F-38000, 17 avenue des martyrs Grenoble, France
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Victor Duarte
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Mohamed Atta
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR 5249, 17 avenue des martyrs, Grenoble, France
| |
Collapse
|
15
|
Durán-Aranguren D, Chiriví-Salomón J, Anaya L, Durán-Sequeda D, Cruz L, Serrano J, Sarmiento L, Restrepo S, Sanjuan T, Sierra R. Effect of bioactive compounds extracted from Cordyceps nidus ANDES-F1080 on laccase activity of Pleurotus ostreatus ANDES-F515. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00466. [PMID: 32617265 PMCID: PMC7322798 DOI: 10.1016/j.btre.2020.e00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Laccases are ligninolytic enzymes produced by different microorganisms, especially by fungi such as the white-rot fungus Pleurotus ostreatus. Chemical inductors have been used to promote laccase secretion due to the application of these enzymes in lignocellulosic biomass pretreatment. Cordyceps nidus ANDES-F1080 was previously described as a source of bioactive compounds that could influence the enzymatic production system of other fungi. For that reason, this study evaluates the effect of C. nidus' ANDES-F1080 extracts on the laccase activity of P. ostreatus ANDES-F515. To achieve this objective, C. nidus ANDES-F1080 was grown in four different substrates: two artificial-based and two natural-based culture media. Metabolites were extracted from C. nidus ANDES-F1080 using water and methanol as solvents. Biochemical characterization of these extracts was performed to complement the analysis of their effect on laccase activity. Our results revealed an enhancement on the laccase activity of P. ostreatus ANDES-F515 grown in natural-based cultures when C. nidus' ANDES-F1080 extracts were supplemented. The best laccase activities registered values around 10,575 ± 813 U·L-1.
Collapse
Affiliation(s)
- D. Durán-Aranguren
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - J.S. Chiriví-Salomón
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Conservación, Bioprospección y Desarrollo Sostenible, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia
| | - L. Anaya
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - D. Durán-Sequeda
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - L.J. Cruz
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - J.D. Serrano
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - L. Sarmiento
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - S. Restrepo
- Laboratory of Mycology and Plant Diseases, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - T. Sanjuan
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - R. Sierra
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
16
|
Dabravolski S. Multi-faceted nature of the tRNA isopentenyltransferase. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:475-485. [PMID: 32345433 DOI: 10.1071/fp19255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/26/2019] [Indexed: 06/11/2023]
Abstract
Transfer RNA isopentenylation an adenine 37 position (A37) is a universal modification known in prokaryotes and eukaryotes. A set of highly homologous enzymes catalyse a series of reactions, leading to tRNA modifications, aimed to increase adaptation to environmental condition through the control of translation efficiency and reading frame maintenance. Transfer RNA-isopentenylation-related (TI-related) functions are well studied in bacteria, mitochondria of yeast and human, but completely unexplored in plants. Transfer RNA-isopentenylation-unrelated (TI-unrelated) functions participate in adaptation to environmental stresses via the regulation of sterol metabolism, gene silencing/suppression and amyloid fibrils formation. TI-unrelated functions are mostly studied in yeast. Finally, the degradation of A37-modified tRNA releases a set of bioactive compounds known as cis-cytokinins. Although all organisms are able to produce cis-cytokinins, its physiological role is still a matter of debates. For several species of bacteria and fungi, cis-cytokinins are known to play a crucial role in pathogenesis. In mammalian and human models cis-cytokinins have tumour-suppressing and anti-inflammation effects. This review aims to summarise current knowledge of the TI-related and TI-unrelated functions and main bioactive by-products of isopentenylated tRNA degradation.
Collapse
Affiliation(s)
- Siarhei Dabravolski
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelu 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
17
|
Arcinas AJ, Maiocco SJ, Elliott SJ, Silakov A, Booker SJ. Ferredoxins as interchangeable redox components in support of MiaB, a radical S-adenosylmethionine methylthiotransferase. Protein Sci 2020; 28:267-282. [PMID: 30394621 DOI: 10.1002/pro.3548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022]
Abstract
MiaB is a member of the methylthiotransferase subclass of the radical S-adenosylmethionine (SAM) superfamily of enzymes, catalyzing the methylthiolation of C2 of adenosines bearing an N6 -isopentenyl (i6 A) group found at position 37 in several tRNAs to afford 2-methylthio-N6 -(isopentenyl)adenosine (ms2 i6 A). MiaB uses a reduced [4Fe-4S]+ cluster to catalyze a reductive cleavage of SAM to generate a 5'-deoxyadenosyl 5'-radical (5'-dA•)-a required intermediate in its reaction-as well as an additional [4Fe-4S]2+ auxiliary cluster. In Escherichia coli and many other organisms, re-reduction of the [4Fe-4S]2+ cluster to the [4Fe-4S]+ state is accomplished by the flavodoxin reducing system. Most mechanistic studies of MiaBs have been carried out on the enzyme from Thermotoga maritima (Tm), which lacks the flavodoxin reducing system, and which is not activated by E. coli flavodoxin. However, the genome of this organism encodes five ferredoxins (TM0927, TM1175, TM1289, TM1533, and TM1815), each of which might donate the requisite electron to MiaB and perhaps to other radical SAM enzymes. The genes encoding each of these ferredoxins were cloned, and the associated proteins were isolated and shown to support turnover by Tm MiaB. In addition, TM1639, the ferredoxin-NADP+ oxidoreductase subunit α (NfnA) from Tm was overproduced and isolated and shown to provide electrons to the Tm ferredoxins during Tm MiaB turnover. The resulting reactions demonstrate improved coupling between formation of the 5'-dA• and ms2 i6 A production, indicating that only one hydrogen atom abstraction is required for the reaction.
Collapse
Affiliation(s)
- Arthur J Arcinas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | | | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 1680
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 1680.,Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
18
|
Guo Q, Ng PQ, Shi S, Fan D, Li J, Zhao J, Wang H, David R, Mittal P, Do T, Bock R, Zhao M, Zhou W, Searle I. Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth. PLoS One 2019; 14:e0225064. [PMID: 31756231 PMCID: PMC6874348 DOI: 10.1371/journal.pone.0225064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022] Open
Abstract
Modified nucleosides in tRNAs are critical for protein translation. N1-methylguanosine-37 and N1-methylinosine-37 in tRNAs, both located at the 3'-adjacent to the anticodon, are formed by Trm5. Here we describe Arabidopsis thaliana AtTRM5 (At3g56120) as a Trm5 ortholog. Attrm5 mutant plants have overall slower growth as observed by slower leaf initiation rate, delayed flowering and reduced primary root length. In Attrm5 mutants, mRNAs of flowering time genes are less abundant and correlated with delayed flowering. We show that AtTRM5 complements the yeast trm5 mutant, and in vitro methylates tRNA guanosine-37 to produce N1-methylguanosine (m1G). We also show in vitro that AtTRM5 methylates tRNA inosine-37 to produce N1-methylinosine (m1I) and in Attrm5 mutant plants, we show a reduction of both N1-methylguanosine and N1-methylinosine. We also show that AtTRM5 is localized to the nucleus in plant cells. Proteomics data showed that photosynthetic protein abundance is affected in Attrm5 mutant plants. Finally, we show tRNA-Ala aminoacylation is not affected in Attrm5 mutants. However the abundance of tRNA-Ala and tRNA-Asp 5' half cleavage products are deduced. Our findings highlight the bifunctionality of AtTRM5 and the importance of the post-transcriptional tRNA modifications m1G and m1I at tRNA position 37 in general plant growth and development.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Qin Ng
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Shanshan Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diwen Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Jing Zhao
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rakesh David
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Trung Do
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Iain Searle
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| |
Collapse
|
19
|
Jin X, Lv Z, Gao J, Zhang R, Zheng T, Yin P, Li D, Peng L, Cao X, Qin Y, Persson S, Zheng B, Chen P. AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thaliana. Nucleic Acids Res 2019; 47:883-898. [PMID: 30508117 PMCID: PMC6344853 DOI: 10.1093/nar/gky1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Modified nucleosides on tRNA are critical for decoding processes and protein translation. tRNAs can be modified through 1-methylguanosine (m1G) on position 37; a function mediated by Trm5 homologs. We show that AtTRM5a (At3g56120) is a Trm5 ortholog in Arabidopsis thaliana. AtTrm5a is localized to the nucleus and its function for m1G and m1I methylation was confirmed by mutant analysis, yeast complementation, m1G nucleoside level on single tRNA, and tRNA in vitro methylation. Arabidopsis attrm5a mutants were dwarfed and had short filaments, which led to reduced seed setting. Proteomics data indicated differences in the abundance of proteins involved in photosynthesis, ribosome biogenesis, oxidative phosphorylation and calcium signalling. Levels of phytohormone auxin and jasmonate were reduced in attrm5a mutant, as well as expression levels of genes involved in flowering, shoot apex cell fate determination, and hormone synthesis and signalling. Taken together, loss-of-function of AtTrm5a impaired m1G and m1I methylation and led to aberrant protein translation, disturbed hormone homeostasis and developmental defects in Arabidopsis plants.
Collapse
Affiliation(s)
- Xiaohuan Jin
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Zhengyi Lv
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Junbao Gao
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Rui Zhang
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Life Science, HuaZhong Agricultural University, Wuhan 430070, China.,National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- College of Life Science, HuaZhong Agricultural University, Wuhan 430070, China.,National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Xintao Cao
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Yan Qin
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010, VIC, Australia.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, HuaZhong Agricultural University, Wuhan 430070, China
| | - Peng Chen
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun 2019; 10:2519. [PMID: 31175275 PMCID: PMC6555806 DOI: 10.1038/s41467-019-10409-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/06/2019] [Indexed: 11/08/2022] Open
Abstract
The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.
Collapse
|
21
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
22
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Lence T, Paolantoni C, Worpenberg L, Roignant JY. Mechanistic insights into m6A RNA enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:222-229. [DOI: 10.1016/j.bbagrm.2018.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/27/2018] [Indexed: 12/09/2022]
|
24
|
Hoffmann A, Fallmann J, Vilardo E, Mörl M, Stadler PF, Amman F. Accurate mapping of tRNA reads. Bioinformatics 2019; 34:1116-1124. [PMID: 29228294 DOI: 10.1093/bioinformatics/btx756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Many repetitive DNA elements are transcribed at appreciable expression levels. Mapping the corresponding RNA sequencing reads back to a reference genome is notoriously difficult and error-prone task, however. This is in particular true if chemical modifications introduce systematic mismatches, while at the same time the genomic loci are only approximately identical, as in the case of tRNAs. Results We therefore developed a dedicated mapping strategy to handle RNA-seq reads that map to tRNAs relying on a modified target genome in which known tRNA loci are masked and instead intronless tRNA precursor sequences are appended as artificial 'chromosomes'. In a first pass, reads that overlap the boundaries of mature tRNAs are extracted. In the second pass, the remaining reads are mapped to a tRNA-masked target that is augmented by representative mature tRNA sequences. Using both simulated and real life data we show that our best-practice workflow removes most of the mapping artefacts introduced by simpler mapping schemes and makes it possible to reliably identify many of chemical tRNA modifications in generic small RNA-seq data. Using simulated data the FDR is only 2%. We find compelling evidence for tissue specific differences of tRNA modification patterns. Availability and implementation The workflow is available both as a bash script and as a Galaxy workflow from https://github.com/AnneHoffmann/tRNA-read-mapping. Contact fabian@tbi.univie.ac.at. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Elisa Vilardo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany.,Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark.,Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Fabian Amman
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria.,Department of Chromosome Biology of the University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
25
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
26
|
Kumbhar NM, Gopal JS. Structural significance of hypermodified nucleoside 5-carboxymethylaminomethyluridine (cmnm 5U) from 'wobble' (34th) position of mitochondrial tRNAs: Molecular modeling and Markov state model studies. J Mol Graph Model 2018; 86:66-83. [PMID: 30336453 DOI: 10.1016/j.jmgm.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/28/2022]
Abstract
A quantum chemical semi-empirical RM1 approach was used to deduce the structural role of hypermodified nucleoside 5-carboxymethylaminomethyluridine 5'-monophosphate (pcmnm5U) from 'wobble' (34th) position of mitochondrial tRNAs. The energetically preferred pcmnm5U(34) adopted a 'skew' conformation for C5-substituted side chain (-CH2-NH2+-CH2-COO-) moiety that orient towards the 5'-ribose-phosphate backbone, which support 'anti' orientation of glycosyl (χ34) torsion angle. Preferred conformation of pcmnm5U(34) was stabilized by O(4) … HC(10), O1P⋯HN(11), O(15) … HN(11), O(15) … HC(10), O4' … HC(6) and O(2) … HC2' hydrogen bonding interactions. The high flexibility of side chain moiety displayed different structural properties for pcmnm5U(34). Three different conformations of pcmnm5U(34) were observed in molecular dynamics simulations and Markov state model studies. The unmodified uracil revealed 'syn' and 'anti' orientations for glycosyl (χ34) torsion angle that substantiate the role of "-CH2-NH2+-CH2-COO-" moiety in maintaining the 'anti' orientation of pcmnm5U(34). The preferred conformation of pcmnm5U(34) helps to recognize Guanosine more proficiently than Adenosine from the third position of codons. The role of pcmnm5U(34) in tRNA biogenesis paves the way to understand its structural significance in usual mitochondrial metabolism and respiration.
Collapse
Affiliation(s)
- Navanath M Kumbhar
- Garware Research Centre, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| | - Janhavi S Gopal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| |
Collapse
|
27
|
Yamagami R, Miyake R, Fukumoto A, Nakashima M, Hori H. Consumption of N5, N10-methylenetetrahydrofolate in Thermus thermophilus under nutrient-poor condition. J Biochem 2018. [PMID: 29538705 DOI: 10.1093/jb/mvy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Miyake
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Fukumoto
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Misa Nakashima
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
28
|
Szabóová D, Hapala I, Sulo P. The complete mitochondrial DNA sequence from Kazachstania sinensis reveals a general +1C frameshift mechanism in CTGY codons. FEMS Yeast Res 2018. [PMID: 29528462 DOI: 10.1093/femsyr/foy028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete mitochondrial DNA (mtDNA) sequence from Kazachstania sinensis was analysed and compared to mtDNA from related yeasts. It contained the same set of genes; however, it only contained 23 tRNAs, as the trnR2 gene was absent. Most of the 12 introns within cox1, cob and rnl genes were inserted in the same sites as in other yeasts; however, two introns in rnl were in unusual positions. Traits such as gene order and GC cluster number were more related to Saccharomyces than to the other Kazachstania or linked clades. The most exceptional feature was the +1 frameshift in cox3, atp6 and cob open reading frames that was also found in other Kazachstania, Nakaseomyces delphensis and Candida glabrata. Comparison of DNA and protein sequences revealed the universal sites of +1C frameshifts were either CTGT or CTGC sequences. Moreover, an A→G substitution was found at position 37 in the anticodon stem loop tRNA gene for cysteine in all species with frameshifts but not in other sibling yeasts. This substitution allowed strong Watson-Crick base-pairing between an unmodified G (ACG) and the skipped C in the CTGY, leading to this quadruplet being read as cysteine.
Collapse
Affiliation(s)
- Dana Szabóová
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Ilkovicova ulica 6, Bratislava 84215, Slovakia
| | - Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences SAS, Dúbravská 9, Bratislava 840 05, Slovakia
| | - Pavol Sulo
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Ilkovicova ulica 6, Bratislava 84215, Slovakia
| |
Collapse
|
29
|
Koshla O, Lopatniuk M, Rokytskyy I, Yushchuk O, Dacyuk Y, Fedorenko V, Luzhetskyy A, Ostash B. Properties of Streptomyces albus J1074 mutant deficient in tRNALeu UAA gene bldA. Arch Microbiol 2017; 199:1175-1183. [DOI: 10.1007/s00203-017-1389-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/06/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022]
|
30
|
Väre VYP, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules 2017; 7:E29. [PMID: 28300792 PMCID: PMC5372741 DOI: 10.3390/biom7010029] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
Collapse
Affiliation(s)
- Ville Y P Väre
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Emily R Eruysal
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Amithi Narendran
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
31
|
Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Biomolecules 2017; 7:biom7010027. [PMID: 28287455 PMCID: PMC5372739 DOI: 10.3390/biom7010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations.
Collapse
|
32
|
Aubee JI, Olu M, Thompson KM. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA (NEW YORK, N.Y.) 2016; 22:729-742. [PMID: 26979278 PMCID: PMC4836647 DOI: 10.1261/rna.053165.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The translation of rpoS(σ(S)), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in theN(6)-isopentyl-2-thiomethyl adenosinemethyl adenosine 37 (ms(2)i(6)A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraPas another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. AniraP-lacZ fusion was significantly decreased in the abse nce of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA(-)rpo Sandira P translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and notira P, via overexpression of tRNA(LeuX)but not tRNA(LeuZ) We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification.
Collapse
Affiliation(s)
- Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Morenike Olu
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA Department of Biology, Howard University, Washington, DC 20059, USA
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
33
|
Thiaville PC, Legendre R, Rojas-Benítez D, Baudin-Baillieu A, Hatin I, Chalancon G, Glavic A, Namy O, de Crécy-Lagard V. Global translational impacts of the loss of the tRNA modification t 6A in yeast. MICROBIAL CELL 2016; 3:29-45. [PMID: 26798630 PMCID: PMC4717488 DOI: 10.15698/mic2016.01.473] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The universal tRNA modification t6A is found at position 37 of nearly
all tRNAs decoding ANN codons. The absence of t6A37 leads
to severe growth defects in baker’s yeast, phenotypes similar to those caused by
defects in mcm5s2U34 synthesis. Mutants in
mcm5s2U34 can be suppressed by
overexpression of tRNALysUUU, but we show t6A
phenotypes could not be suppressed by expressing any individual ANN decoding
tRNA, and t6A and mcm5s2U are not determinants
for each other’s formation. Our results suggest that t6A deficiency,
like mcm5s2U deficiency, leads to protein folding defects,
and show that the absence of t6A led to stress sensitivities (heat,
ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally,
L-homoserine suppressed the slow growth phenotype seen in
t6A-deficient strains, and proteins aggregates and Advanced Glycation
End-products (AGEs) were increased in the mutants. The global consequences on
translation caused by t6A absence were examined by ribosome
profiling. Interestingly, the absence of t6A did not lead to global
translation defects, but did increase translation initiation at upstream non-AUG
codons and increased frame-shifting in specific genes. Analysis of codon
occupancy rates suggests that one of the major roles of t6A is to
homogenize the process of elongation by slowing the elongation rate at codons
decoded by high abundance tRNAs and I34:C3 pairs while
increasing the elongation rate of rare tRNAs and G34:U3
pairs. This work reveals that the consequences of t6A absence are
complex and multilayered and has set the stage to elucidate the molecular basis
of the observed phenotypes.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Rachel Legendre
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Diego Rojas-Benítez
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Agnès Baudin-Baillieu
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Isabelle Hatin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Guilhem Chalancon
- Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alvaro Glavic
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Olivier Namy
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
34
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
35
|
Belew AT, Dinman JD. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015; 14:172-8. [PMID: 25584829 PMCID: PMC4615106 DOI: 10.4161/15384101.2014.989123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like most basic molecular mechanisms, programmed –1 ribosomal frameshifting (−1 PRF) was first identified in viruses. Early observations that global dysregulation of −1 PRF had deleterious effects on yeast cell growth suggested that −1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral −1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify −1 PRF signals in free living organisms. The unexpected observation that almost all −1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that −1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in −1 PRF. The recent discovery of −1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
Collapse
Affiliation(s)
- Ashton T Belew
- a Department of Cell Biology and Molecular Genetics ; University of Maryland ; College Park , MD USA
| | | |
Collapse
|
36
|
Tükenmez H, Xu H, Esberg A, Byström AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res 2015; 43:9489-99. [PMID: 26283182 PMCID: PMC4627075 DOI: 10.1093/nar/gkv832] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, 11 out of 42 tRNA species contain 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um) nucleosides in the anticodon at the wobble position (U34). Earlier we showed that mutants unable to form the side chain at position 5 (ncm(5) or mcm(5)) or lacking sulphur at position 2 (s(2)) of U34 result in pleiotropic phenotypes, which are all suppressed by overexpression of hypomodified tRNAs. This observation suggests that the observed phenotypes are due to inefficient reading of cognate codons or an increased frameshifting. The latter may be caused by a ternary complex (aminoacyl-tRNA*eEF1A*GTP) with a modification deficient tRNA inefficiently being accepted to the ribosomal A-site and thereby allowing an increased peptidyl-tRNA slippage and thus a frameshift error. In this study, we have investigated the role of wobble uridine modifications in reading frame maintenance, using either the Renilla/Firefly luciferase bicistronic reporter system or a modified Ty1 frameshifting site in a HIS4A::lacZ reporter system. We here show that the presence of mcm(5) and s(2) side groups at wobble uridines are important for reading frame maintenance and thus the aforementioned mutant phenotypes might partly be due to frameshift errors.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Hao Xu
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Anders Esberg
- Department of Odontology/Cariology, Umeå University, Umeå, 901 87, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
37
|
The importance of codon–anticodon interactions in translation elongation. Biochimie 2015; 114:72-9. [DOI: 10.1016/j.biochi.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
38
|
Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ, Minczuk M. Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 2015; 38:655-80. [PMID: 26016801 PMCID: PMC4493943 DOI: 10.1007/s10545-015-9859-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/03/2022]
Abstract
Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.
Collapse
Affiliation(s)
| | - Sarah F. Pearce
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | | | - Aaron R. D’Souza
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | - Thomas J. Nicholls
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
39
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
40
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
41
|
Rogers HH, Griffiths-Jones S. tRNA anticodon shifts in eukaryotic genomes. RNA (NEW YORK, N.Y.) 2014; 20:269-281. [PMID: 24442610 PMCID: PMC3923123 DOI: 10.1261/rna.041681.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such "identity elements" are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of "anticodon shifts" to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation-based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.
Collapse
|
42
|
Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. ACTA ACUST UNITED AC 2013; 21:174-85. [PMID: 24315934 DOI: 10.1016/j.chembiol.2013.10.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level.
Collapse
|
43
|
The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli. J Bacteriol 2013; 196:754-61. [PMID: 24296670 DOI: 10.1128/jb.01013-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The stationary phase/general stress response sigma factor RpoS (σ(S)) is necessary for adaptation and restoration of homeostasis in stationary phase. As a physiological consequence, its levels are tightly regulated at least at two levels. Multiple small regulatory RNA molecules modulate its translation, in a manner that is dependent on the RNA chaperone Hfq and the rpoS 5' untranslated region. ClpXP and the RssB adaptor protein degrade RpoS, unless it is protected by an anti-adaptor. We here find that, in addition to these posttranscriptional levels of regulation, tRNA modification also affects the steady-state levels of RpoS. We screened mutants of several RNA modification enzymes for an effect on RpoS expression and identified the miaA gene, encoding a tRNA isopentenyltransferase, as necessary for full expression of both an rpoS750-lacZ translational fusion and the RpoS protein. This effect is independent of rpoS, the regulatory RNAs, and RpoS degradation. RpoD steady-state levels were not significantly different in the absence of MiaA, suggesting that this is an RpoS-specific effect. The rpoS coding sequence is significantly enriched for leu codons that use MiaA-modified tRNAs, compared to rpoD and many other genes. Dependence on MiaA may therefore provide yet another way for RpoS levels to respond to growth conditions.
Collapse
|
44
|
Role of the ribosomal P-site elements of m²G966, m⁵C967, and the S9 C-terminal tail in maintenance of the reading frame during translational elongation in Escherichia coli. J Bacteriol 2013; 195:3524-30. [PMID: 23729652 DOI: 10.1128/jb.00455-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9Δ3 background caused significantly increased -1 frameshifting at 37°C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30°C, supporting its context-dependent role.
Collapse
|
45
|
Paris Z, Horáková E, Rubio MAT, Sample P, Fleming IM, Armocida S, Lukeš J, Alfonzo JD. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function. RNA (NEW YORK, N.Y.) 2013; 19:649-658. [PMID: 23520175 PMCID: PMC3677280 DOI: 10.1261/rna.036665.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/01/2013] [Indexed: 06/01/2023]
Abstract
All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m(1)G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance. In eukaryotes, the tRNA methyltransferase TRM5 is responsible for m(1)G formation in nucleus-encoded as well as mitochondria-encoded tRNAs, reflecting the universal importance of this modification for protein synthesis. However, it is not clear what role, if any, mitochondrial TRM5 serves in organisms that do not encode tRNAs in their mitochondrial genomes. These organisms may easily satisfy the m(1)G37 requirement through their robust mitochondrial tRNA import mechanisms. We have explored this possibility in the parasitic protist Trypanosoma brucei and show that down-regulation of TRM5 by RNAi leads to the expected disappearance of m(1)G37, but with surprisingly little effect on cytoplasmic translation. On the contrary, lack of TRM5 causes a marked growth phenotype and a significant decrease in mitochondrial functions, including protein synthesis. These results suggest mitochondrial TRM5 may be needed to mature unmethylated tRNAs that reach the mitochondria and that could pose a problem for translational fidelity. This study also reveals an unexpected lack of import specificity between some fully matured and potentially defective tRNA species.
Collapse
Affiliation(s)
- Zdeněk Paris
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Mary Anne T. Rubio
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Sample
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ian M.C. Fleming
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephanie Armocida
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Juan D. Alfonzo
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
46
|
Shepotinovskaya I, Uhlenbeck OC. tRNA residues evolved to promote translational accuracy. RNA (NEW YORK, N.Y.) 2013; 19:510-516. [PMID: 23440350 PMCID: PMC3677261 DOI: 10.1261/rna.036038.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/24/2013] [Indexed: 05/27/2023]
Abstract
The decoding properties of 22 structurally conservative base-pair and base-triple mutations in the anticodon hairpin and tertiary core of Escherichia coli tRNA(Ala)GGC were determined under single turnover conditions using E. coli ribosomes. While all of the mutations were able to efficiently decode the cognate GCC codon, many showed substantial misreading of near-cognate GUC or ACC codons. Although all the misreading mutations were present in the sequences of other E. coli tRNAs, they were never found among bacterial tRNA(Ala)GGC sequences. This suggests that the sequences of bacterial tRNA(Ala)GGC have evolved to avoid reading incorrect codons.
Collapse
|
47
|
Baranowski D, Golankiewicz B, Folkman W, Popenda M. 2-Methylwyosine, a nucleoside with restricted anti conformation in the east region enforced by nucleobase moiety modification: synthesis and conformational analysis by NMR and molecular dynamics. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 31:707-19. [PMID: 23067123 DOI: 10.1080/15257770.2012.724133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We synthesized a new 2-methyl derivative of wyosine using a multistep procedure starting from guanosine. We examined different synthetic paths and optimized the conditions for each step. Based on MD calculations and analysis of the (3) J (HH) and J (C1'H1') of the ribose moiety, we discovered that the sugar part adopted conformation specific for the East region rarely occurring in solution. This unusual conformational preference is probably due to steric repulsions between the methyl group at position 2 and the 5'-CH(2)OH group. We observed that N-glycosidic bond stability weakened 14-fold upon the introduction of the methyl group in position 2 compared with wyosine.
Collapse
Affiliation(s)
- Daniel Baranowski
- Laboratory of Nucleoside Chemistry, Institute of Bioorganic Chemistry PAS, Poznan, Poland.
| | | | | | | |
Collapse
|
48
|
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:35-48. [PMID: 23139145 DOI: 10.1002/wrna.1144] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following synthesis, tRNAs are peppered by numerous chemical modifications which may differentially affect a tRNA's structure and function. Although modifications affecting the business ends of a tRNA are predictably important for cell viability, a majority of modifications play more subtle structural roles that can affect tRNA stability and folding. The current trend is that modifications act in concert and it is in the context of the specific sequence of a given tRNA that they impart their differing effects. Recent developments in the modification field have highlighted the diversity of modifications in tRNA. From these, the combinatorial nature of modifications in explaining previously described phenotypes derived from their absence has emerged as a growing theme.
Collapse
Affiliation(s)
- Jane E Jackman
- The Ohio State Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
49
|
Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 2012; 31:434-54. [PMID: 22191691 PMCID: PMC3322404 DOI: 10.1089/dna.2011.1437] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022] Open
Abstract
Throughout the kingdoms of life, transfer RNA (tRNA) undergoes over 100 enzyme-catalyzed, methyl-based modifications. Although a majority of the methylations are conserved from bacteria to mammals, the functions of a number of these modifications are unknown. Many of the proteins responsible for tRNA methylation, named tRNA methyltransferases (Trms), have been characterized in Saccharomyces cerevisiae. In contrast, only a few human Trms have been characterized. A BLAST search for human homologs of each S. cerevisiae Trm revealed a total of 34 human proteins matching our search criteria for an S. cerevisiae Trm homolog candidate. We have compiled a database cataloging basic information about each human and yeast Trm. Every S. cerevisiae Trm has at least one human homolog, while several Trms have multiple candidates. A search of cancer cell versus normal cell mRNA expression studies submitted to Oncomine found that 30 of the homolog genes display a significant change in mRNA expression levels in at least one data set. While 6 of the 34 human homolog candidates have confirmed tRNA methylation activity, the other candidates remain uncharacterized. We believe that our database will serve as a resource for investigating the role of human Trms in cellular stress signaling.
Collapse
Affiliation(s)
- William L. Towns
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
| | - Thomas J. Begley
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
- RNA Institute, University at Albany, Rensselaer, New York
- Cancer Research Center, University at Albany, Rensselaer, New York
| |
Collapse
|
50
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|