1
|
Qu Y, Liang W, Yu M, Wang C, Luo M, Zhong L, Li Z, Wang F. MYO1F in neutrophils is required for the response to immune checkpoint blockade therapy. J Exp Med 2025; 222:e20241957. [PMID: 40202509 PMCID: PMC11980683 DOI: 10.1084/jem.20241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor-associated neutrophils (TANs) represent a significant barrier to the effectiveness of immune checkpoint blockade (ICB) therapy. A comprehensive understanding of TANs' regulatory mechanisms is therefore essential for predicting ICB efficacy and improving immunotherapy strategies. Our study reveals that MYO1F is selectively downregulated in neutrophils within both human cancers and murine tumor models, showing a negative correlation with ICB response. Mechanistically, MYO1F normally inhibits neutrophil immunosuppression and proliferation by restraining STAT3 activity. However, during tumorigenesis, tumor-derived TGF-β1 disrupts the binding of SPI1 to intron 8 of Myo1f via DNA methylation, thereby suppressing Myo1f transcription. The resultant decrease in MYO1F reprograms neutrophils into an immunosuppressive state through the STAT3-dependent signaling pathways. This immunosuppressive state further contributes to tumor microenvironment (TME) remodeling by inducing CTL exhaustion. These findings establish MYO1F as a critical regulator within TANs, highlighting its significant role in modulating ICB therapy efficacy.
Collapse
Affiliation(s)
- Yingying Qu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhua Liang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Yu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Luo
- Institute of Pediatrics of Children’s Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Zhong
- Department of Liver Surgery and Organ Transplantation Center, Shenzhen Third People’s Hospital, Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Rose AB, Baer A, Shaker I, Monroe JG, Korf I, Rose LS. Introns increase gene expression in Caenorhabditis elegans by a mechanism that must be at least partly different than in plants. Sci Rep 2025; 15:15862. [PMID: 40328889 PMCID: PMC12055998 DOI: 10.1038/s41598-025-99739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
The wide diversity of organisms in which introns stimulate gene expression suggests that this is an ancient phenomenon. However, the mechanisms through which introns boost expression remain poorly understood, and the degree the which the action of introns is evolutionarily conserved is unknown. Here we compared the effect on expression of introns at different positions and tested ten different introns at the same location in a reporter gene in single-copy transgenic nematodes. The introns boosted expression most when near the start of the gene, as previously observed in several organisms. All ten introns tested at the same position increased mRNA accumulation 10- to 17-fold, in contrast to plants where introns vary widely in their effect on expression and relatively few increase mRNA levels 10-fold or more. These results suggest that some aspects of the mechanisms through which introns boost expression are fundamentally different in nematodes and plants.
Collapse
Affiliation(s)
- Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, 95616, USA.
| | - Aaron Baer
- Department of Molecular and Cellular Biology, University of California, Davis, 95616, USA
| | - Isaac Shaker
- Department of Molecular and Cellular Biology, University of California, Davis, 95616, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, 95616, USA
| | - Ian Korf
- Department of Molecular and Cellular Biology, University of California, Davis, 95616, USA
- Genome Center, University of California, Davis, 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, 95616, USA
| |
Collapse
|
3
|
Wang T, Ma X, Ma C, Yu Q, Liang C, Yan P. The Biological Properties of the FAS and TACR3 Genes and the Association of Single-Nucleotide Polymorphisms with Milk Quality Traits in Gannan Yak. Foods 2025; 14:1575. [PMID: 40361657 PMCID: PMC12071982 DOI: 10.3390/foods14091575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Fatty acid synthase (FAS) is a fundamental metabolic enzyme that catalyzes the synthesis of endogenous fatty acids; TACR3, also known as tachykinin receptor 3 or NK3R, is an important G-protein-coupled receptor that is primarily responsible for responding to neuropeptides such as neurokinin B (NKB) and plays a crucial role in embryonic development, organ formation, and cell differentiation. This study aimed to explore the association between the single-nucleotide polymorphisms (SNPs) of the FAS and TACR3 genes and the milk quality of Gannan yak and to determine them as potential molecular marker loci for the milk quality of yaks. The genotyping of 162 Gannan yaks was performed using liquid-phase chip technology. Association analyses were conducted between the obtained SNP loci genotypes and milk composition traits, including milk protein, casein, non-fat solids, and acidity. Comparative sequence analysis of two genes (FAS and TACR3) across multiple species revealed that the yak FAS gene exhibited the highest homology with Bos taurus and Bos indicus, while the yak TACR3 gene showed the greatest sequence similarity to Bos taurus. Hardy-Weinberg equilibrium tests were performed on four SNP loci, and the equilibrium indices of the four loci were 0.799, 0.368, 0.689, and 0.948 (p > 0.05), indicating that all of these loci are in Hardy-Weinberg equilibrium state. g.13,276T>C (FAS) was significantly correlated with lactose content traits (p < 0.05); g.74,382C>G (FAS) was significantly correlated with casein, protein, total solids, non-fat solids, and acidity traits (p < 0.05); g.40,529A>G (TACR3) was significantly correlated with protein, non-fat solids, citric acid, and acidity traits (p < 0.05). The influence of g.40,555C>T (TACR3) on these traits did not reach a significant level (p > 0.05). This study suggests that two genes can serve as potential candidate genes affecting the quality of Gannan yak milk, providing reference genes for improving the quality of Gannan yak milk.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qinran Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 931100, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
4
|
Kikuta H, Takeda S, Akada R, Hoshida H. Genome-wide screening reveals repression by nuclear exosome as a prerequisite for intron-mediated enhancement in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195089. [PMID: 40220860 DOI: 10.1016/j.bbagrm.2025.195089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Introns can enhance gene expression, a phenomenon called intron-mediated enhancement (IME). Previously proposed IME mechanisms do not sufficiently explain the variability in enhancement levels, suggesting that IME mechanism has not been fully understood. A comprehensive screening of genes involved in IME can provide valuable insights. Recently, using a luciferase coding sequence (yCLuc), we showed that IME functions by relieving repression rather than simply enhancing expression. The expression of yCLuc is repressed by the specific nucleotide sequence UCUU, and adding an intron relieves this repression in the yeast Saccharomyces cerevisiae. Herein, genome-wide screenings were conducted using S. cerevisiae knockout strain libraries to identify genes involved in IME. For screening, yCLuc was expressed with and without an intron in knockout strains. Consequently, CDC73, a regulator of RNA polymerase II (RNAPII), was identified as essential for enhancement. Additionally, 23 genes specifically involved in the repression were identified. These 23 genes are related to nuclear exosomes, RNA modification, RNAPII regulation, the nuclear pore complex, ribosomes, and chromatin modification. Among these, genes associated with nuclear exosomes, which degrade various RNAs in the nucleus, showed the largest impact on expression. The RNA sequence UCUU has been reported as a target for RNA degradation by nuclear exosomes. These findings suggested that UCUU-containing coding sequences are primarily repressed via RNA degradation by the nuclear exosome through UCUU recognition, with this repression being relieved by the presence of an intron.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Shunya Takeda
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
5
|
Kowal EK, Sakai Y, McGurk M, Pasetsky Z, Burge C. Sequence-dependent and -independent effects of intron-mediated enhancement learned from thousands of random introns. Nucleic Acids Res 2025; 53:gkaf097. [PMID: 39995040 PMCID: PMC11850230 DOI: 10.1093/nar/gkaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Spliceosomal introns are a ubiquitous feature of eukaryotic genes, whose presence often boosts the expression of their host gene, a phenomenon known as intron-mediated enhancement (IME). IME has been noted across diverse genes and organisms but remains mysterious in many respects. For example, how does intron sequence affect the magnitude of IME? In this study, we performed a massively parallel reporter assay (MPRA) to assess the effect of varying intron sequence on gene expression in a high-throughput manner, in human cells, using tens of thousands of synthetic introns with natural splice sites and randomized internal sequence. We observe that most random introns splice efficiently and enhance gene expression as well as or better than fully natural introns. Nearly all introns stimulate gene expression ∼eight-fold above an intronless control, at both mRNA and protein levels, suggesting that the primary mechanism acts to increase mRNA levels. IME strength is positively associated with splicing efficiency and with the intronic content of poly-uridine stretches, which we confirm using reporter experiments. In sum, this work assesses the IME of a diverse library of introns and uncovers sequence-dependent aspects, but suggests that enhancement of gene expression is a general property of splicing, largely independent of intron sequence.
Collapse
Affiliation(s)
- Emma J K Kowal
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| | - Yuta Sakai
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| | - Michael P McGurk
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| | - Zoe J Pasetsky
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, United States
| |
Collapse
|
6
|
Lv M, Fu J, Li C, Li J. Intron RPS25Ai, a Novel DNA Element, Has Global Effects on Synthetic Pathway Engineering by Empowering Protein Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28378-28389. [PMID: 39660479 DOI: 10.1021/acs.jafc.4c11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Classical genetic components in synthetic biology encompass essential elements of promoters, transcription factors, protein-coding genes, and terminators while both academic and industrial needs require novel engineering tools. Our study explores the potential of introns as versatile, novel biological DNA elements. Using intron RPS25Ai from Saccharomyces cerevisiae, the expression of mCherry was enhanced by 18.4-fold, demonstrating spatiotemporal regulatory patterns at both transcriptional and translational levels. A molecular mechanism study shows that this distinctive fine-tuning control relies on correct splicing events and extends to post-transcriptional processes. Intron RPS25Ai was applied to a heterologous metabolic pathway in engineered yeast, increasing β-carotene production by 4.29-fold. RPS25Ai functioned as a multilevel regulatory genetic element, enabling the increase in the expression of crtYB both at the pre-mRNA (99%) and mature RNA level (64%), with a splicing efficiency of 82%. Furthermore, the intron-engineered strain achieved a genome-scale regulation, upregulating 67% of "intron-containing" genes, with an average expression increase of 27%, compared with the upregulation of only 37% of "no-intron" genes. In addition, RPS25Ai induced a comprehensive rearrangement of ribosomal components, with the expression of 89% of ribosomal genes being upregulated, further empowering protein synthesis in the β-carotene-producing yeast cell factory.
Collapse
Affiliation(s)
- Mengjiao Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaqi Fu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Wu H, Yu H, Zhang Y, Yang B, Sun W, Ren L, Li Y, Li Q, Liu B, Ding Y, Zhang H. Unveiling RNA structure-mediated regulations of RNA stability in wheat. Nat Commun 2024; 15:10042. [PMID: 39567481 PMCID: PMC11579497 DOI: 10.1038/s41467-024-54172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Despite the critical role of mRNA stability in post-transcriptional gene regulation, research on this topic in wheat, a vital agricultural crop, remains unclear. Our study investigated the mRNA decay landscape of durum wheat (Triticum turgidum L. ssp. durum, BBAA), revealing subgenomic asymmetry in mRNA stability and its impact on steady-state mRNA abundance. Our findings indicate that the 3' UTR structure and homoeolog preference for RNA structural motifs can influence mRNA stability, leading to subgenomic RNA decay imbalance. Furthermore, single-nucleotide variations (SNVs) selected for RNA structural motifs during domestication can cause variations in subgenomic mRNA stability and subsequent changes in steady-state expression levels. Our research on the transcriptome stability of polyploid wheat highlights the regulatory role of non-coding region structures in mRNA stability, and how domestication shaped RNA structure, altering subgenomic mRNA stability. These results illustrate the importance of RNA structure-mediated post-transcriptional gene regulation in wheat and pave the way for its potential use in crop improvement.
Collapse
Affiliation(s)
- Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yueying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lanying Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yuchen Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Qianqian Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
8
|
Wang T, Ma X, Feng F, Zheng F, Zheng Q, Zhang J, Zhang M, Ma C, Deng J, Guo X, Chu M, La Y, Bao P, Pan H, Liang C, Yan P. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024; 13:2953. [PMID: 39335882 PMCID: PMC11431709 DOI: 10.3390/foods13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fei Zheng
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Qingbo Zheng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Minghao Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chaofan Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Jingying Deng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 931100, China
| |
Collapse
|
9
|
Min YG, Lee SY, Lim E, Park MY, Kim DH, Byun JM, Koh Y, Hong J, Shin DY, Yoon SS, Sung JJ, Oh SB, Kim I. Genetic Risk Factors for Bortezomib-induced Neuropathic Pain in an Asian Population: A Genome-wide Association Study in South Korea. THE JOURNAL OF PAIN 2024; 25:104552. [PMID: 38692398 DOI: 10.1016/j.jpain.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients while evaluating the reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. Genome-wide association study was performed on the discovery cohort (n = 74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 single nucleotide polymorphism [SNPs]). Relevant biological pathways were identified using the pathway scoring algorithm. The top 20 SNPs were validated in the validation cohort (n = 111). Previously reported SNPs were validated in the entire cohort (n = 185). Pathway analysis of the genome-wide association study results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among the top 20 SNPs from the discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long noncoding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, P = .085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to BINP in Korean MM patients, offering novel insights beyond the existing research focused on Caucasian populations into personalized risk assessment and therapeutic strategies of BINP.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | - Ja Min Byun
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; ADA Forsyth Institute, 245 First St, Cambridge MA, 02142, USA.
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Dao K, Jungers CF, Djuranovic S, Mustoe AM. U-rich elements drive pervasive cryptic splicing in 3' UTR massively parallel reporter assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606557. [PMID: 39149310 PMCID: PMC11326173 DOI: 10.1101/2024.08.05.606557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Non-coding RNA sequences play essential roles in orchestrating gene expression. However, the sequence codes and mechanisms underpinning post-transcriptional regulation remain incompletely understood. Here, we revisit the finding from a prior massively parallel reporter assay (MPRA) that AU-rich (U-rich) elements in 3' untranslated regions (3' UTRs) can drive upregulation or downregulation of mRNA expression depending on 3' UTR context. We unexpectedly discover that this variable regulation arises from widespread cryptic splicing, predominately from an unannotated splice donor in the coding sequence of GFP to diverse acceptor sites in reporter 3' UTRs. Splicing is activated by U-rich sequences, which function as potent position-dependent regulators of 5' and 3' splice site choice and overall splicing efficiency. Splicing has diverse impacts on reporter expression, causing both increases and decreases in reporter expression via multiple mechanisms. We further provide evidence that cryptic splicing impacts between 10 to 50% of measurements made by other published 3' UTR MPRAs. Overall, our work emphasizes U-rich sequences as principal drivers of splicing and provides strategies to minimize cryptic splicing artifacts in reporter assays.
Collapse
Affiliation(s)
- Khoa Dao
- Therapeutic Innovation Center (THINC), Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston TX
| | - Courtney F. Jungers
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis MO
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis MO
| | - Anthony M. Mustoe
- Therapeutic Innovation Center (THINC), Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX
| |
Collapse
|
11
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
12
|
Lan L, Leng L, Liu W, Ren Y, Reeve W, Fu X, Wu Z, Zhang X. The haplotype-resolved telomere-to-telomere carnation ( Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. HORTICULTURE RESEARCH 2024; 11:uhad244. [PMID: 38225981 PMCID: PMC10788775 DOI: 10.1093/hr/uhad244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024]
Abstract
Carnation (Dianthus caryophyllus) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety 'Baltico', which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.
Collapse
Affiliation(s)
- Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Luhong Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weichao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Wayne Reeve
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaoni Zhang
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
13
|
Wang X, Qi Y, Zhu C, Zhou R, Ruo Z, Zhao Z, Liu X, Li S, Zhao F, Wang J, Hu J, Shi B. Variation in the HSL Gene and Its Association with Carcass and Meat Quality Traits in Yak. Animals (Basel) 2023; 13:3720. [PMID: 38067071 PMCID: PMC10705307 DOI: 10.3390/ani13233720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 09/10/2024] Open
Abstract
Hormone-sensitive lipase (HSL) is involved in the breakdown of triacylglycerols in adipose tissue, which influences muscle tenderness and juiciness by affecting the intramuscular fat content (IMF). This study analyzed the association between different genotypes and haplotypes of the yak HSL gene and carcass and meat quality traits. We used hybridization pool sequencing to detect exon 2, exon 8, and intron 3 variants of the yak HSL gene and genotyped 525 Gannan yaks via KASP to analyze the effects of the HSL gene variants on the carcass and meat quality traits in yaks. According to the results, the HSL gene is highly expressed in yak adipose tissue. Three single nucleotide polymorphisms (SNPs) were identified, with 2 of them located in the coding region and one in the intron region. Variants in the 2 coding regions resulted in amino acid changes. The population had 3 genotypes of GG, AG, and AA, and individuals with the AA genotype had lower WBSF values (p < 0.05). The H3H3 haplotype combinations could improve meat tenderness by reducing the WBSF values and the cooking loss rate (CLR) (p < 0.05). H1H1 haplotype combinations were associated with the increased drip loss rate (DLR) (p < 0.05). The presence of the H1 haplotype was associated the increased CLR in yaks, while that of the H2 haplotype was associated with the decreased DLR in yaks (p < 0.05). These results demonstrated that the HSL gene may influence the meat quality traits in yaks by affecting the IMF content in muscle tissues. Consequently, the HSL gene can possibly be used as a biomarker for improving the meat quality traits in yaks in the future.
Collapse
Affiliation(s)
- Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Ruifeng Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Zhoume Ruo
- Maqin County Dawu Town Agricultural and Animal Husbandry Technical Service Station, Guoluo Prefecture 814000, China;
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (C.Z.); (R.Z.); (Z.Z.); (X.L.); (S.L.); (F.Z.); (J.W.)
| |
Collapse
|
14
|
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int J Mol Sci 2023; 24:15488. [PMID: 37895167 PMCID: PMC10607073 DOI: 10.3390/ijms242015488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|
15
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Carrell EM, Chen YH, Ranum PT, Coffin SL, Singh LN, Tecedor L, Keiser MS, Hudry E, Hyman BT, Davidson BL. VWA3A-derived ependyma promoter drives increased therapeutic protein secretion into the CSF. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:296-304. [PMID: 37547292 PMCID: PMC10400871 DOI: 10.1016/j.omtn.2023.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.
Collapse
Affiliation(s)
- Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L. Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S. Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Shi X, Won M, Tang C, Ding Q, Sharma A, Wang F, Kim JS. RNA splicing based on reporter genes system: Detection, imaging and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
20
|
Dvorak P, Hanicinec V, Soucek P. The position of the longest intron is related to biological functions in some human genes. Front Genet 2023; 13:1085139. [PMID: 36712854 PMCID: PMC9875286 DOI: 10.3389/fgene.2022.1085139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The evidence that introns can influence different levels of transfer of genetic information between DNA and the final product is increasing. Longer first introns were found to be a general property of eukaryotic gene structure and shown to contain a higher fraction of conserved sequence and different functional elements. Our work brings more precise information about the position of the longest introns in human protein-coding genes and possible connection with biological function and gene expression. According to our results, the position of the longest intron can be localized to the first third of introns in 64%, the second third in 19%, and the third in 17%, with notable peaks at the middle and last introns of approximately 5% and 6%, respectively. The median lengths of the longest introns decrease with increasing distance from the start of the gene from approximately 15,000 to 5,000 bp. We have shown that the position of the longest intron is in some cases linked to the biological function of the given gene. For example, DNA repair genes have the longest intron more often in the second or third. In the distribution of gene expression according to the position of the longest intron, tissue-specific profiles can be traced with the highest expression usually at the absolute positions of intron 1 and 2. In this work, we present arguments supporting the hypothesis that the position of the longest intron in a gene is another biological factor modulating the transmission of genetic information. The position of the longest intron is related to biological functions in some human genes.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Institute of Medical Genetics, University Hospital Pilsen, Pilsen, Czechia,*Correspondence: Pavel Dvorak,
| | - Vojtech Hanicinec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Toxicogenomics Unit, National Institute of Public Health, Prague, Czechia
| |
Collapse
|
21
|
Bo S, Sun Q, Ning P, Yuan N, Weng Y, Liang Y, Wang H, Lu Z, Li Z, Zhao X. A novel approach to analyze the association characteristics between post-spliced introns and their corresponding mRNA. Front Genet 2023; 14:1151172. [PMID: 36923795 PMCID: PMC10008863 DOI: 10.3389/fgene.2023.1151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Studies have shown that post-spliced introns promote cell survival when nutrients are scarce, and intron loss/gain can influence many stages of mRNA metabolism. However, few approaches are currently available to study the correlation between intron sequences and their corresponding mature mRNA sequences. Here, based on the results of the improved Smith-Waterman local alignment-based algorithm method (SW method) and binding free energy weighted local alignment algorithm method (BFE method), the optimal matched segments between introns and their corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their relative matching frequency (RF) distributions were obtained. The results showed that although the distributions of relative matching frequencies on mRNAs obtained by the BFE method were similar to the SW method, the interaction intensity in 5'and 3'untranslated regions (UTRs) regions was weaker than the SW method. The RF distributions in the exon-exon junction regions were comparable, the effects of long and short introns on mRNA and on the five functional sites with BFE method were similar to the SW method. However, the interaction intensity in 5'and 3'UTR regions with BFE method was weaker than with SW method. Although the matching rate and length distribution shape of the optimal matched fragment were consistent with the SW method, an increase in length was observed. The matching rates and the length of the optimal matched fragments were mainly in the range of 60%-80% and 20-30bp, respectively. Although we found that there were still matching preferences in the 5'and 3'UTR regions of the mRNAs with BFE, the matching intensities were significantly lower than the matching intensities between introns and their corresponding mRNAs with SW method. Overall, our findings suggest that the interaction between introns and mRNAs results from synergism among different types of sequences during the evolutionary process.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengfei Ning
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ningping Yuan
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yujie Weng
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ying Liang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Huitao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
22
|
Bo S, Sun Q, Li Z, Aodun G, Ji Y, Wei L, Wang C, Lu Z, Zhang Q, Zhao X. Ubiquitous conservative interaction patterns between post-spliced introns and their mRNAs revealed by genome-wide interspecies comparison. Front Genet 2023; 14:1151703. [PMID: 37124607 PMCID: PMC10132729 DOI: 10.3389/fgene.2023.1151703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introns, as important vectors of biological functions, can influence many stages of mRNA metabolism. However, in recent research, post-spliced introns are rarely considered. In this study, the optimal matched regions between introns and their mRNAs in nine model organism genomes were investigated with improved Smith-Waterman local alignment software. Our results showed that the distributions of mRNA optimal matched frequencies were highly consistent or universal. There are optimal matched frequency peaks in the UTR regions, which are obvious, especially in the 3'-UTR. The matched frequencies are relatively low in the CDS regions of the mRNA. The distributions of the optimal matched frequencies around the functional sites are also remarkably changed. The centers of the GC content distributions for different sequences are different. The matched rate distributions are highly consistent and are located mainly between 60% and 80%. The most probable value of the optimal matched segments is about 20 bp for lower eukaryotes and 30 bp for higher eukaryotes. These results show that there are abundant functional units in the introns, and these functional units are correlated structurally with all kinds of sequences of mRNA. The interaction between the post-spliced introns and their corresponding mRNAs may play a key role in gene expression.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and the Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Gerile Aodun
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yucheng Ji
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Lihua Wei
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Chao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| | - Qiang Zhang
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
- *Correspondence: Zhanyuan Lu, ; Qiang Zhang, ; Xiaoqing Zhao,
| |
Collapse
|
23
|
How to study a highly toxic protein to bacteria: A case of voltage sensor domain of mouse sperm-specific sodium/proton exchanger. Protein Expr Purif 2023; 201:106172. [DOI: 10.1016/j.pep.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
|
24
|
The PNUTS-PP1 complex acts as an intrinsic barrier to herpesvirus KSHV gene expression and replication. Nat Commun 2022; 13:7447. [PMID: 36460671 PMCID: PMC9718767 DOI: 10.1038/s41467-022-35268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Control of RNA Polymerase II (pol II) elongation is a critical component of gene expression in mammalian cells. The PNUTS-PP1 complex controls elongation rates, slowing pol II after polyadenylation sites to promote termination. The Kaposi's sarcoma-associated herpesvirus (KSHV) co-opts pol II to express its genes, but little is known about its regulation of pol II elongation. We identified PNUTS as a suppressor of a KSHV reporter gene in a genome-wide CRISPR screen. PNUTS depletion enhances global KSHV gene expression and overall viral replication. Mechanistically, PNUTS requires PP1 interaction, binds viral RNAs downstream of polyadenylation sites, and restricts transcription readthrough of viral genes. Surprisingly, PNUTS also represses productive elongation at the 5´ ends of the KSHV reporter and the KSHV T1.4 RNA. From these data, we conclude that PNUTS' activity constitutes an intrinsic barrier to KSHV replication likely by suppressing pol II elongation at promoter-proximal regions.
Collapse
|
25
|
Ren H, Tang Q, Xue T, Wang Q, Xu H, Zhang Q, Pan C. A 24-bp indel within the sheep AHR gene is associated with litter size. Anim Biotechnol 2022; 33:1533-1538. [PMID: 33947312 DOI: 10.1080/10495398.2021.1914071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aryl Hydrocarbon Receptor (AHR) is a member of the PER-ARNT-SIM (PAS) family, which could mediate various biological processes, for instance, the balance of the immune system, cell proliferation, differentiation, vascular tissue remodeling and reproduction ability regulation. A previous research showed that the AHR gene exerted important functions on the pig reproduction, implying that it could serve as a candidate gene related to animal reproductive traits. Here, the aim of this work was to identify potential insertion/deletion (indel) mutations of the AHR gene in three sheep breeds and analyze the associations between these mutations and reproductive traits. Results showed that a 24-bp indel was uncovered three genotypes (II, ID and DD) in the Australian White sheep (AuW) and Lanzhou fat-tail sheep (LZFT) population, while there were only two genotypes (ID and DD) in Luxi black-headed sheep (LXBH). Moreover, the Fisher's exact test showed that the 24-bp indel mutation was significantly associated with litter size and live litter size in AuW sheep (Fisher's p < 0.05). Therefore, the 24-bp indel of sheep AHR gene can contribute to sheep marker-assisted selection breeding and further improve the sheep reproductive performance.
Collapse
Affiliation(s)
- Hongying Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Xue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry co., Ltd, Tianjin, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Rapchak K, Yagobian SD, Moore J, Khattri M, Shuda M. Merkel cell polyomavirus small T antigen is a viral transcription activator that is essential for viral genome maintenance. PLoS Pathog 2022; 18:e1011039. [PMID: 36574443 PMCID: PMC9829177 DOI: 10.1371/journal.ppat.1011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
Merkel cell polyomavirus (MCV) is a small DNA tumor virus that persists in human skin and causes Merkel cell carcinoma (MCC) in immunocompromised individuals. The multi-functional protein MCV small T (sT) activates viral DNA replication by stabilizing large T (LT) and promotes cell transformation through the LT stabilization domain (LTSD). Using MCVΔsT, a mutant MCV clone that ablates sT, we investigated the role of sT in MCV genome maintenance. sT was dispensable for initiation of viral DNA replication, but essential for maintenance of the MCV genome and activation of viral early and late gene expression for progression of the viral lifecycle. Furthermore, in phenotype rescue studies, exogenous sT activated viral DNA replication and mRNA expression in MCVΔsT through the LTSD. While exogenous LT expression, which mimics LT stabilization, increased viral DNA replication, it did not activate viral mRNA expression. After cataloging transcriptional regulator proteins by proximity-based MCV sT-host protein interaction analysis, we validated LTSD-dependent sT interaction with four transcriptional regulators: Cux1, c-Jun, BRD9, and CBP. Functional studies revealed Cux1 and c-Jun as negative regulators, and CBP and BRD9 as positive regulators of MCV transcription. CBP inhibitor A-485 suppressed sT-induced viral gene activation in replicating MCVΔsT and inhibited early gene expression in MCV-integrated MCC cells. These results suggest that sT promotes viral lifecycle progression by activating mRNA expression and capsid protein production through interaction with the transcriptional regulators. This activity is essential for MCV genome maintenance, suggesting a critical role of sT in MCV persistence and MCC carcinogenesis.
Collapse
Affiliation(s)
- Kyle Rapchak
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Shiva D. Yagobian
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Jackson Moore
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Michelle Khattri
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
27
|
Wang J, Xi X, Zhao S, Wang X, Yao L, Feng J, Han R. Introns in the Naa50 gene act as strong enhancers of tissue-specific expression in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111422. [PMID: 35988583 DOI: 10.1016/j.plantsci.2022.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Naa50 is the catalytic subunit of N-terminal acetyltransferase complex E, which plays an important role in regulating plant development, endoplasmic reticulum stress and immune responses in Arabidopsis. In this study, the complete genomic sequence (but not the coding sequence) of Naa50 rescued the phenotype of Naa50 deletion mutants. Naa50 expression was noted in whole roots except for central root cap cells. The deletion of intron 1 resulted in a loss of Naa50 expression in the root meristem zone and in the epidermis, cortex and endodermis of the elongation zone and mature zone, while the deletion of intron 2 decreased Naa50 expression in the epidermis, cortex and endodermis of the root elongation zone and mature zone. The native Naa50 promoter together with introns 1 and 2 promotes the expression of Naa50 in sepal vascular bundles, filaments, pollen and stigmas; however, neither intron has positive effect on Naa50 expression in mature rosette leaves. The results of this study show that introns 1 and 2 in the Naa50 gene function as enhancers to promote the tissue-specific expression of Naa50.
Collapse
Affiliation(s)
- Jin Wang
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China
| | - Xiaoyu Xi
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Shifeng Zhao
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaolei Wang
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Lixia Yao
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Jinlin Feng
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China.
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan 030000, Shanxi, China; College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
28
|
Wu Y, Zhang L, Zeng XC, Shi W. Intronic Number Polymorphism in the Genes Encoding Potassium Channel Specific Venom Toxins from Scorpion. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Tharabenjasin P, Pabalan N, Jarjanazi H, Jinawath N. Associations of osteoprotegerin (OPG) TNFRSF11B gene polymorphisms with risk of fractures in older adult populations: meta-analysis of genetic and genome-wide association studies. Osteoporos Int 2022; 33:563-575. [PMID: 34716467 DOI: 10.1007/s00198-021-06161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
UNLABELLED The meta-analysis of osteoprotegerin (OPG) (TNFRSF11B) polymorphisms from genetic association studies and genome-wide association studies was performed in order to test the hypothesis of association between OPG polymorphisms and fracture. The findings showed a significant 13% to 37% protective effect of OPG on fractures in postmenopausal women (PSM) (rs2073618), overall, ≥ 60y and Western subjects (rs3134069 and rs3134070). PURPOSE Fractures in older people usually result from compromised bone integrity. The multifactorial aetiology of fractures includes both genetic and environmental factors. Inconsistency of reported associations of osteoprotegerin (OPG) (TNFRSF11B) polymorphisms with fracture in the older adult population warranted a meta-analysis to determine more precise estimates. METHODS We searched for all available literature on OPG (TNFRSF11B) and fracture. Four polymorphisms were examined, one exonic (rs2073618) and three intronic (rs3134069, rs3134070 and rs3102735). The first two intron polymorphisms were combined (OPGI: osteoprotegerin intron) on account of complete linkage disequilibrium. Risks were estimated with odds ratios (ORs) and 95% confidence intervals (CIs) using the allele-genotype model that included variant (var), wild-type (wt) and heterozygote (het). Multiple comparisons were Bonferroni-corrected. We used meta-regression to examine sources of heterogeneity. Zero heterogeneity (homogeneity: I2 = 0%) and high significance (Pa < 0.00001) were the criteria for strength of evidence. Significant outcomes were subjected to sensitivity analysis and publication bias assessment. RESULTS From 13 articles (11 genetic association and two genome-wide), this meta-analysis generated five significant pooled ORs, all indicating reduced risks (ORs 0.44-0.87). Of the five, four highly significant comparisons (Pa ≤ 0.00001-0.002) survived the Bonferroni correction, one in rs2073618 het model of the postmenopausal women (OR 0.87, 95% CI 0.81-0.92, I2 = 0%) and the other three in OPGI wt model of the overall analysis, ≥ 60 y and Western subjects (ORs 0.63-0.71, 95% CI 0.47-0.86, I2 = 97-99%). These findings were consistent, had high significance and high statistical power and were robust and without evidence of publication bias. Four covariates (year of publication, study quality, fracture type/site and sample size) were the sources of heterogeneity in the OPGI overall outcomes (Pa = 0.0001-0.03). CONCLUSION Evidence showed that the OPG (TNFRSF11B) polymorphisms reduced the risk for fracture in older adults, particularly protective among postmenopausal women, ≥ 60 y and Western subjects.
Collapse
Affiliation(s)
- P Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - N Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| | - H Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, Canada
| | - N Jinawath
- Integrative Computational Bioscience Center (ICBS), Mahidol University, Nakhon Pathom, 73170, Thailand
- Program in Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
30
|
Genome-Scale Computational Identification and Characterization of UTR Introns in Atalantia buxifolia. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulated evidence has shown that CDS introns (CIs) play important roles in regulating gene expression. However, research on UTR introns (UIs) is limited. In this study, UIs (including 5′UTR and 3′UTR introns (5UIs and 3UIs)) were identified from the Atalantia buxifolia genome. The length and nucleotide distribution characteristics of both 5UIs and 3UIs and the distributions of cis-acting elements and transcription factor binding sites (TFBSs) in 5UIs were investigated. Moreover, PageMan enrichment analysis was applied to show the possible roles of transcripts containing UIs (UI-Ts). In total, 1077 5UIs and 866 3UIs were identified from 897 5UI-Ts and 670 3UI-Ts, respectively. Among them, 765 (85.28%) 5UI-Ts and 527 (78.66%) 3UI-Ts contained only one UI, and 94 (6.38%) UI-Ts contained both 5UI and 3UI. The UI density was lower than that of CDS introns, but their mean and median intron sizes were ~2 times those of the CDS introns. The A. buxifolia 5UIs were rich in gene-expression-enhancement-related elements and contained many TFBSs for BBR-BPC, MIKC_MADS, AP2 and Dof TFs, indicating that 5UIs play a role in regulating or enhancing the expression of downstream genes. Enrichment analysis revealed that UI-Ts involved in ‘not assigned’ and ‘RNA’ pathways were significantly enriched. Noteworthily, 119 (85.61%) of the 3UI-Ts were genes encoding pentatricopeptide (PPR) repeat-containing proteins. These results will be helpful for the future study of the regulatory roles of UIs in A. buxifolia.
Collapse
|
31
|
Kozisek T, Hamann A, Samuelson L, Fudolig M, Pannier AK. Comparison of promoter, DNA vector, and cationic carrier for efficient transfection of hMSCs from multiple donors and tissue sources. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:81-93. [PMID: 34513295 PMCID: PMC8413668 DOI: 10.1016/j.omtn.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are primary cells with high clinical relevance that could be enhanced through genetic modification. However, gene delivery, particularly through nonviral routes, is inefficient. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological "priming" of hMSCs with clinically approved drugs can increase transfection in hMSCs by modulating transfection-induced cytotoxicity. However, even with priming, hMSC transfection remains inefficient for clinical applications. This work takes a complementary approach to addressing the challenges of transfecting hMSCs by systematically investigating key transfection parameters for their effect on transgene expression. Specifically, we investigated two promoters (cytomegalovirus [CMV] and elongation factor 1 alpha), four DNA vectors (plasmid, plasmid with no F1 origin, minicircle, and mini-intronic plasmid), two cationic carriers (Lipofectamine 3000 and Turbofect), and four donors of hMSCs from two tissues (adipose and bone marrow) for efficient hMSC transfection. Following systematic comparison of each variable, we identified adipose-derived hMSCs transfected with mini-intronic plasmids containing the CMV promoter delivered using Lipofectamine 3000 as the parameters that produced the highest transfection levels. The data presented in this work can guide the development of other hMSC transfection systems with the goal of producing clinically relevant, genetically modified hMSCs.
Collapse
Affiliation(s)
- Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Luke Samuelson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Miguel Fudolig
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
32
|
Makeyeva YV, Shirayama M, Mello CC. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev Cell 2021; 56:2636-2648.e4. [PMID: 34547227 DOI: 10.1016/j.devcel.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
In animals, Argonaute small-RNA pathways scan germline transcripts to silence self-replicating genetic elements. However, little is known about how endogenous gene expression is recognized and licensed. Here, we show that the presence of introns and, by inference, the process of mRNA splicing prevents default Argonaute-mediated silencing in the C. elegans germline. The silencing of intronless genes is initiated independently of the piRNA pathway but nevertheless engages multiple components of the downstream amplification and maintenance mechanisms that mediate transgenerational silencing, including both nuclear and cytoplasmic members of the worm-specific Argonaute gene family (WAGOs). Small RNAs amplified from intronless mRNAs can trans-silence cognate intron-containing genes. Interestingly, a second, small RNA-independent cis-acting mode of silencing also acts on intronless mRNAs. Our findings suggest that cues put in place during mRNA splicing license germline gene expression and provide evidence for a splicing-dependent and dsRNA- and piRNA-independent mechanism that can program Argonaute silencing.
Collapse
Affiliation(s)
- Yekaterina V Makeyeva
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Ahmed S, Rakib A, Uddin MMN, Islam MS, Ullah SA, Emran TB. Association of reelin gene (RELN) polymorphism with autism spectrum disorder in the Bangladeshi population. Meta Gene 2021; 29:100901. [DOI: 10.1016/j.mgene.2021.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Li YY, Wang H, Zhang YY. CDKN2B-AS1 gene rs4977574 A/G polymorphism and coronary heart disease: A meta-analysis of 40,979 subjects. J Cell Mol Med 2021; 25:8877-8889. [PMID: 34418317 PMCID: PMC8435436 DOI: 10.1111/jcmm.16849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/05/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022] Open
Abstract
It has been implied that there is a possible relationship between cyclin‐dependent protein kinase inhibitors antisense RNA 1 (CDKN2B‐AS1) gene rs4977574 A/G polymorphism and coronary heart disease (CHD) susceptibility. However, as the research results are discrepant, no distinct consensus on this issue has been reached so far. In order to further elaborate the latent association of the CDKN2B‐AS1 gene rs4977574 A/G polymorphism and CHD, this present meta‐analysis was conducted. There were 40,979 subjects of 17 individual studies in the present meta‐analysis. The pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated to determine the association strength. Considering the significant heterogeneity among the individual studies, the random‐effect models were used. In the current meta‐analysis, a significant association between CDKN2B‐AS1 gene rs4977574 A/G polymorphism and CHD was found under allelic (OR: 1.18, 95% CI: 1.08–1.29, p = 4.83×10−4), recessive (OR: 1.36, 95% CI: 1.11–1.67, p = 0.003), dominant (OR: 0.71, 95% CI: 0.58–0.86, p = 6.26×10−4), heterozygous (OR:1.210, 95% CI: 1.076–1.360, p = 0.001), homozygous (OR: 1.394, 95% CI: 1.163–1.671, p = 3.31×10−4) and additive (OR: 1.180, 95% CI: 1.075–1.295, p = 4.83×10−4) genetic models. A more significant association between them was found in the Asian population than that in the whole population under these genetic models (p < 0.05). However, no significant association between them was found in the Caucasian population (p > 0.05). CDKN2B‐AS1 gene rs4977574 A/G polymorphism was associated with CHD susceptibility, especially in the Asian population. G allele of CDKN2B‐AS1 gene rs4977574 A/G polymorphism is the risk allele for CHD.
Collapse
Affiliation(s)
- Yan-Yan Li
- Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang-Yang Zhang
- Department of General Practice, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
36
|
Fan J, Ma D, Zhu H, Jiang P, Su H. Gene structure, SNP screening and growth correlation analysis of the preproinsulin gene in grass carp (Ctenopharyngodon idellus). J Genet 2021. [DOI: 10.1007/s12041-021-01289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Wang X, Liu H, Li Y, Su R, Liu Y, Qiao K. Relationship between polymorphism of receptor SCARB2 gene and clinical severity of enterovirus-71 associated hand-foot-mouth disease. Virol J 2021; 18:132. [PMID: 34193186 PMCID: PMC8244142 DOI: 10.1186/s12985-021-01605-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To investigate the relationship between polymorphism of scavenger receptor class B member 2 (SCARB2) gene and clinical severity of enterovirus (EV)-71 associated hand-foot-mouth disease (HFMD). METHODS Among the 100 recruited cases, 56 were in the severe HFMD group (case group) and 44 were in the general HFMD group (control group). By screening functional single nucleotide polymorphisms (SNPs) and hot SNPs, and performing SNP site optimization, some SNP sites of SCARB2 gene were selected for analysis. Genotyping was performed using a MassArray platform. PLINK software was used for statistical processing and analysis of the correlation differences between the mutant genotypes in the severe and general HFMD groups. The relationship between the SNPs and clinical severity of enterovirus (EV)-71 associated HFMD was assessed. RESULTS 28 SNPs in SCARB2 were selected by site optimization. Then three loci were not in agreement with the minor allele frequency (MAF) in the 1000 Han Chinese in Beijing (CHB) dataset. Another three loci could not be detected. Nine loci were not suitable for further analysis (MAF < 0.01 and Hardy-Weinberg [HWE] P < 0.001). A total of 13 sites were subsequently analyzed. Through Fisher analysis, the frequency of the rs6812193 T allele was 0.134 and 0.034 in the severe and general HFMD groups, respectively (P 0.023 < 0.05, odds ratio [OR] 4.381 > 1). Logistic regression analysis of rs6812193 T alleles between the severe and general HFMD groups, respectively (P 0.023 < 0.05, OR 4.412 > 1, L95 1.210 > 1). Genotype logistic regression analysis of the rs6812193 alleles CT + TT versus CC gave an OR of 4.56 (95% confidence interval [95% CI] 1.22-17.04, P = 0.012). CONCLUSION The rs6812193 T allele was a susceptibility SNP for SHFMD, and the rs6812193 polymorphism might be significantly associated with the susceptibility to EV-71 infection.
Collapse
Affiliation(s)
- Xia Wang
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Hong Liu
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Ying Li
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China.
| | - Rui Su
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China.
| | - Yamin Liu
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Kunyan Qiao
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| |
Collapse
|
38
|
McClements ME, Butt A, Piotter E, Peddle CF, MacLaren RE. An analysis of the Kozak consensus in retinal genes and its relevance to gene therapy. Mol Vis 2021; 27:233-242. [PMID: 34012226 PMCID: PMC8116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The classic Kozak consensus is a critical genetic element included in gene therapy transgenes to encourage the translation of the therapeutic coding sequence. Despite optimizations of other transgene elements, the Kozak consensus has not yet been considered for potential tissue-specific sequence refinement. We screened the -9 to -1 region relative to the AUG start codon of retina-specific genes to identify whether a Kozak consensus that is different from the classic sequence may be more appropriate for inclusion in gene therapy transgenes that treat inherited retinal disease. METHODS Sequences for 135 genes known to cause nonsyndromic inherited retinal disease were extracted from the NCBI database, and the -9 to -1 nucleotides were compared. This panel was then refined to 75 genes with specific retinal functions, for which the -9 to -1 nucleotides were placed in front of a GFP transcript sequence and RNAfold predictions performed. These were compared with a GFP sequence with the classic Kozak consensus (GCCGCCACC), and sequences from retinal genes with minimum free energy (MFE) predictions greater than the reference sequence were selected to generate an optimized Kozak consensus sequence. The original Kozak consensus and the refined retina Kozak consensus were placed upstream of the Renilla luciferase coding sequence, which were used to transfect retinoblastoma cell lines Y-79 and WERI-RB-1 and HEK 293T/17 cells. RESULTS The nucleotide frequencies of the original panel of genes were determined to be comparable to the classic Kozak consensus. RNAfold analysis of a GFP transcript with the classic Kozak sequence in the 5' untranslated region (UTR) generated an MFE prediction of -503.3 kcal/mol. RNAfold analysis was then performed with a GFP transcript containing each -9 to -1 Kozak sequence of 75 retinal genes. Thirty-eight of the 75 genes provided a greater MFE value than -503.3 kcal/mol and exhibited an absence of stable secondary structures before the AUG codon. The -9 to -1 nucleotide frequencies of these genes identified a Kozak consensus of ACCGAGACC, differing from the classic Kozak consensus at positions -9, -5, and -4. Applying this sequence to the GFP transcript increased the MFE prediction to -500.1 kcal/mol. The newly identified retina Kozak sequence was also applied to Renilla luciferase plus the REP1 and RPGR transcripts used in current clinical trials. In all examples, the predicted transcript MFE score increased when compared with the current transcript sequences containing classic Kozak consensus sequences. In vitro transfections identified a 7%-9% increase in Renilla activity when incorporating the optimized Kozak sequence. CONCLUSIONS The Kozak consensus is a critical element of eukaryotic genes; therefore, it is a required feature of gene therapy transgenes. To date, the classic sequence of GCCRCC (-6 to -1) has typically been incorporated in gene therapy transgenes, but the analysis described here suggests that, for vectors targeting the retina, using a Kozak consensus derived from retinal genes can provide increased expression of the target product.
Collapse
|
39
|
Wen J, Shao P, Chen Y, Wang L, Lv X, Yang W, Jia Y, Jiang Z, Zhu B, Qu L. Genomic scan revealed KIT gene underlying white/gray plumage color in Chinese domestic geese. Anim Genet 2021; 52:356-360. [PMID: 33644907 DOI: 10.1111/age.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
Goose is an important type of domesticated poultry. The wild geese that are regarded as the ancestors of modern domestic geese present gray plumage. Domesticated, geese have both white and gray feathers. To elucidate the genetic mechanisms underlying the formation of white and gray plumage in geese, we resequenced the whole genome of 18 geese from six populations including white and gray goose breeds. The average sequencing depth per individual was 9.81× and the average genome coverage was 96.8%. A total of 346 genes were detected in the top 1% of FST scores of gray- and white-feathered geese, and a significant FST site was located in the intron region within the KIT gene, the 18 bp deletion in KIT having the strongest potential association with white feathers. It has been reported that a number of genes are associated with plumage colors in birds. However, no studies have identified the relationship between KIT and plumage color in birds at present, although the white coat can be attributed to mutations in KIT in some mammals. Our study showed that that KIT is a plausible candidate gene for white/gray plumage color in Chinese domestic geese.
Collapse
Affiliation(s)
- J Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - P Shao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Y Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - L Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - X Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - W Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - Y Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - B Zhu
- Zhuozhou Animal Health Supervision Station, Hebei, 072750, China
| | - L Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
40
|
Rezvykh AP, Funikov SY, Protsenko LA, Kulikova DA, Zelentsova ES, Chuvakova LN, Blumenstiel JP, Evgen’ev MB. Evolutionary Dynamics of the Pericentromeric Heterochromatin in Drosophila virilis and Related Species. Genes (Basel) 2021; 12:175. [PMID: 33513919 PMCID: PMC7911463 DOI: 10.3390/genes12020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Pericentromeric heterochromatin in Drosophila generally consists of repetitive DNA, forming the environment associated with gene silencing. Despite the expanding knowledge of the impact of transposable elements (TEs) on the host genome, little is known about the evolution of pericentromeric heterochromatin, its structural composition, and age. During the evolution of the Drosophilidae, hundreds of genes have become embedded within pericentromeric regions yet retained activity. We investigated a pericentromeric heterochromatin fragment found in D. virilis and related species, describing the evolution of genes in this region and the age of TE invasion. Regardless of the heterochromatic environment, the amino acid composition of the genes is under purifying selection. However, the selective pressure affects parts of genes in varying degrees, resulting in expansion of gene introns due to TEs invasion. According to the divergence of TEs, the pericentromeric heterochromatin of the species of virilis group began to form more than 20 million years ago by invasions of retroelements, miniature inverted repeat transposable elements (MITEs), and Helitrons. Importantly, invasions into the heterochromatin continue to occur by TEs that fall under the scope of piRNA silencing. Thus, the pericentromeric heterochromatin, in spite of its ability to induce silencing, has the means for being dynamic, incorporating the regions of active transcription.
Collapse
Affiliation(s)
- Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Sergei Yu. Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyudmila A. Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyubov N. Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Justin P. Blumenstiel
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| |
Collapse
|
41
|
Rondelet A, Pozniakovsky A, Namboodiri D, Cardoso da Silva R, Singh D, Leuschner M, Poser I, Ssykor A, Berlitz J, Schmidt N, Röhder L, Vader G, Hyman AA, Bird AW. ESI mutagenesis: a one-step method for introducing mutations into bacterial artificial chromosomes. Life Sci Alliance 2020; 4:4/2/e202000836. [PMID: 33293335 PMCID: PMC7756954 DOI: 10.26508/lsa.202000836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023] Open
Abstract
A simple and efficient recombineering-based method for introducing point mutations into bacterial artificial chromosomes using an artificial intron cassette. Bacterial artificial chromosome (BAC)–based transgenes have emerged as a powerful tool for controlled and conditional interrogation of protein function in higher eukaryotes. Although homologous recombination-based recombineering methods have streamlined the efficient integration of protein tags onto BAC transgenes, generating precise point mutations has remained less efficient and time-consuming. Here, we present a simplified method for inserting point mutations into BAC transgenes requiring a single recombineering step followed by antibiotic selection. This technique, which we call exogenous/synthetic intronization (ESI) mutagenesis, relies on co-integration of a mutation of interest along with a selectable marker gene, the latter of which is harboured in an artificial intron adjacent to the mutation site. Cell lines generated from ESI-mutated BACs express the transgenes equivalently to the endogenous gene, and all cells efficiently splice out the synthetic intron. Thus, ESI mutagenesis provides a robust and effective single-step method with high precision and high efficiency for mutating BAC transgenes.
Collapse
Affiliation(s)
- Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Divya Singh
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marit Leuschner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrea Ssykor
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Berlitz
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lea Röhder
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerben Vader
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
42
|
Han SR, Lee CH, Im JY, Kim JH, Kim JH, Kim SJ, Cho YW, Kim E, Kim Y, Ryu JH, Ju MH, Jeong JS, Lee SW. Targeted suicide gene therapy for liver cancer based on ribozyme-mediated RNA replacement through post-transcriptional regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:154-168. [PMID: 33335800 PMCID: PMC7732968 DOI: 10.1016/j.omtn.2020.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has high fatality rate and limited therapeutic options. Here, we propose a new anti-HCC approach with high cancer-selectivity and efficient anticancer effects, based on adenovirus-mediated Tetrahymena group I trans-splicing ribozymes specifically inducing targeted suicide gene activity through HCC-specific replacement of telomerase reverse transcriptase (TERT) RNA. To confer potent anti-HCC effects and minimize hepatotoxicity, we constructed post-transcriptionally enhanced ribozyme constructs coupled with splicing donor and acceptor site and woodchuck hepatitis virus post-transcriptional regulatory element under the control of microRNA-122a (miR-122a). Adenovirus encoding post-transcriptionally enhanced ribozyme improved trans-splicing reaction and decreased human TERT (hTERT) RNA level, efficiently and selectively retarding hTERT-positive liver cancers. Adenovirus encoding miR-122a-regulated ribozyme caused selective liver cancer cytotoxicity, the efficiency of which depended on ribozyme expression level relative to miR-122a level. Systemic administration of adenovirus encoding the post-transcriptionally enhanced and miR-regulated ribozyme caused efficient anti-cancer effects at a single dose of low titers and least hepatotoxicity in intrahepatic multifocal HCC mouse xenografts. Minimal liver toxicity, tissue distribution, and clearance pattern of the recombinant adenovirus were observed in normal animals administered either systemically or via the hepatic artery. Post-transcriptionally regulated RNA replacement strategy mediated by a cancer-specific ribozyme provides a clinically relevant, safe, and efficient strategy for HCC treatment.
Collapse
Affiliation(s)
- Seung Ryul Han
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea
| | - Chang Ho Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ji Young Im
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ju Hyun Kim
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ji Hyun Kim
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea
| | - Sung Jin Kim
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Young Woo Cho
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eunkyung Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Youngah Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| | - Ji-Ho Ryu
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mi Ha Ju
- Department of Pathology and Immune-network Pioneer Research Center, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Jin Sook Jeong
- Department of Pathology and Immune-network Pioneer Research Center, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Seong-Wook Lee
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea.,Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
43
|
Bozorgmehr A, Moayedi R, Sadeghi B, Ghadirivasfi M, Joghataei MT, Shahbazi A. A Novel Link between the Oxytocin Receptor Gene and Impulsivity. Neuroscience 2020; 444:196-208. [DOI: 10.1016/j.neuroscience.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/17/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
|
44
|
Molecular characterization and a duplicated 31-bp indel within the LDB2 gene and its associations with production performance in chickens. Gene 2020; 761:145046. [PMID: 32781192 DOI: 10.1016/j.gene.2020.145046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Many studies have shown that the LDB2 gene plays a regulatory role in retinal development and the cell cycle, but its biological role remains unclear. In this study, a 31-bp indel in the LDB2 gene was found for the first time on the basis of 2797 individuals from 10 different breeds, which led to different genotypes among individuals (II, ID and DD). Among these genotypes, DD was the most dominant. Association analysis of an F2 resource population crossed with the Gushi (GS) chicken and Anka chicken showed that the DD genotype conferred a significantly greater semi-evisceration weight (SEW, 1108.665 g ± 6.263), evisceration weight (EW, 927.455 g ± 5.424), carcass weight (CW, 1197.306 g ± 6.443), breast muscle weight (BMW, 71.05 g ± 0.574), and leg muscle weight (LMW, 100.303 g ± 0.677) than the ID genotype (SEW, 1059.079 g ± 16.86; EW, 879.459 g ± 14.446; CW, 1141.821 g ± 17.176; BMW, 67.164 g ± 1.523; and LMW, 96.163 g ± 1.823). In addition, LDB2 gene expression in different breeds was significantly higher in the breast muscles and leg muscles than in other tissues. The expression level in the breast muscle differed significantly among stages of GS chicken development, with the highest expression observed at 6 weeks. The expression levels in the pectoral muscles differed significantly among Ross 308 genotypes. In summary, we studied the relationships between a 31-bp indel in the LDB2 gene and economic traits in chickens. The indel was significantly correlated with multiple growth and carcass traits in the F2 resource population and affected the expression of the LDB2 gene in muscle tissue. In short, our study revealed that the LDB2 gene 31-bp indel can be used as a potential genetic marker for molecular breeding.
Collapse
|
45
|
Bagchi D, Mason BD, Baldino K, Li B, Lee EJ, Zhang Y, Chu LK, El Raheb S, Sinha I, Neppl RL. Adult-Onset Myopathy with Constitutive Activation of Akt following the Loss of hnRNP-U. iScience 2020; 23:101319. [PMID: 32659719 PMCID: PMC7358745 DOI: 10.1016/j.isci.2020.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle has the remarkable ability to modulate its mass in response to changes in nutritional input, functional utilization, systemic disease, and age. This is achieved by the coordination of transcriptional and post-transcriptional networks and the signaling cascades balancing anabolic and catabolic processes with energy and nutrient availability. The extent to which alternative splicing regulates these signaling networks is uncertain. Here we investigate the role of the RNA-binding protein hnRNP-U on the expression and splicing of genes and the signaling processes regulating skeletal muscle hypertrophic growth. Muscle-specific Hnrnpu knockout (mKO) mice develop an adult-onset myopathy characterized by the selective atrophy of glycolytic muscle, the constitutive activation of Akt, increases in cellular and metabolic stress gene expression, and changes in the expression and splicing of metabolic and signal transduction genes. These findings link Hnrnpu with the balance between anabolic signaling, cellular and metabolic stress, and physiological growth. Hnrnpu mKO mice develop adult-onset myopathy with selective glycolytic muscle atrophy Akt is constitutively active in the atrophied muscles of Hnrnpu mKO mice Hnrnpu mutants show altered gene expression and alternative splicing patterns Induction of genes associated with cellular and metabolic stress
Collapse
Affiliation(s)
- Debalina Bagchi
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Benjamin D Mason
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kodilichi Baldino
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bin Li
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Eun-Joo Lee
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Yuteng Zhang
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Linh Khanh Chu
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sherif El Raheb
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ronald L Neppl
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
46
|
A Day in the Life of the Exon Junction Complex. Biomolecules 2020; 10:biom10060866. [PMID: 32517083 PMCID: PMC7355637 DOI: 10.3390/biom10060866] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The exon junction complex (EJC) is an abundant messenger ribonucleoprotein (mRNP) component that is assembled during splicing and binds to mRNAs upstream of exon-exon junctions. EJCs accompany the mRNA during its entire life in the nucleus and the cytoplasm and communicate the information about the splicing process and the position of introns. Specifically, the EJC’s core components and its associated proteins regulate different steps of gene expression, including pre-mRNA splicing, mRNA export, translation, and nonsense-mediated mRNA decay (NMD). This review summarizes the most important functions and main protagonists in the life of the EJC. It also provides an overview of the latest findings on the assembly, composition and molecular activities of the EJC and presents them in the chronological order, in which they play a role in the EJC’s life cycle.
Collapse
|
47
|
Mufarrege EF, Benizio EL, Prieto CC, Chiappini F, Rodriguez MC, Etcheverrigaray M, Kratje RB. Development of Magoh protein-overexpressing HEK cells for optimized therapeutic protein production. Biotechnol Appl Biochem 2020; 68:230-238. [PMID: 32249976 DOI: 10.1002/bab.1915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 11/07/2022]
Abstract
In the pharmaceutical industry, the need for high levels of protein expression in mammalian cells has prompted the search for new strategies, including technologies to obtain cells with improved mechanisms that enhance its transcriptional activity, folding, or protein secretion. Chinese Hamster Ovary (CHO) cells are by far the most used host cell for therapeutic protein expression. However, these cells produce specific glycans that are not present in human cells and therefore potentially immunogenic. As a result, there is an increased interest in the use of human-derived cells for therapeutic protein production. For many decades, human embryonic kidney (HEK) cells were exclusively used for research. However, two products for therapeutic indication were recently approved in the United States. It was previously shown that tethered Magoh, an Exon-junction complex core component, to specific mRNA sequences, have had significant positive effects on mRNA translational efficiency. In this study, a HEK Magoh-overexpressing cell line and clones, designated here as HEK-MAGO, were developed for the first time. These cells exhibited improved characteristics in protein expression, reaching -two- to threefold increases in rhEPO protein production in comparison with the wild-type cells. Moreover, this effect was promoter independent highlighting the versatility of this expression platform.
Collapse
Affiliation(s)
- Eduardo F Mufarrege
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Evangelina L Benizio
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Claudio C Prieto
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Fabricio Chiappini
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | | | - Marina Etcheverrigaray
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Ricardo B Kratje
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
48
|
Shi X, Wu J, Mensah RA, Tian N, Liu J, Liu F, Chen J, Che J, Guo Y, Wu B, Zhong G, Cheng C. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. Int J Mol Sci 2020; 21:E3088. [PMID: 32349372 PMCID: PMC7247714 DOI: 10.3390/ijms21093088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Introns exist not only in coding sequences (CDSs) but also in untranslated regions (UTRs) of a gene. Recent studies in animals and model plants such as Arabidopsis have revealed that the UTR-introns (UIs) are widely presented in most genomes and involved in regulation of gene expression or RNA stability. In the present study, we identified introns at both 5'UTRs (5UIs) and 3'UTRs (3UIs) of sweet orange genes, investigated their size and nucleotide distribution characteristics, and explored the distribution of cis-elements in the UI sequences. Functional category of genes with predicted UIs were further analyzed using GO, KEGG, and PageMan enrichment. In addition, the organ-dependent splicing and abundance of selected UI-containing genes in root, leaf, and stem were experimentally determined. Totally, we identified 825 UI- and 570 3UI-containing transcripts, corresponding to 617 and 469 genes, respectively. Among them, 74 genes contain both 5UI and 3UI. Nucleotide distribution analysis showed that 5UI distribution is biased at both ends of 5'UTR whiles 3UI distribution is biased close to the start site of 3'UTR. Cis- elements analysis revealed that 5UI and 3UI sequences were rich of promoter-enhancing related elements, indicating that they might function in regulating the expression through them. Function enrichment analysis revealed that genes containing 5UI are significantly enriched in the RNA transport pathway. While, genes containing 3UI are significantly enriched in splicesome. Notably, many pentatricopeptide repeat-containing protein genes and the disease resistance genes were identified to be 3UI-containing. RT-PCR result confirmed the existence of UIs in the eight selected gene transcripts whereas alternative splicing events were found in some of them. Meanwhile, qRT-PCR result showed that UIs were differentially expressed among organs, and significant correlation was found between some genes and their UIs, for example: The expression of VPS28 and its 3UI was significantly negative correlated. This is the first report about the UIs in sweet orange from genome-wide level, which could provide evidence for further understanding of the role of UIs in gene expression regulation.
Collapse
Affiliation(s)
- Xiaobao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raphael Anue Mensah
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingru Che
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
49
|
Singh G, Fritz SE, Seufzer B, Boris-Lawrie K. The mRNA encoding the JUND tumor suppressor detains nuclear RNA-binding proteins to assemble polysomes that are unaffected by mTOR. J Biol Chem 2020; 295:7763-7773. [PMID: 32312751 DOI: 10.1074/jbc.ra119.012005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
One long-standing knowledge gap is the role of nuclear proteins in mRNA translation. Nuclear RNA helicase A (DHX9/RHA) is necessary for the translation of the mRNAs of JUND (JunD proto-oncogene AP-1 transcription factor subunit) and HIV-1 genes, and nuclear cap-binding protein 1 (NCBP1)/CBP80 is a component of HIV-1 polysomes. The protein kinase mTOR activates canonical messenger ribonucleoproteins by post-translationally down-regulating the eIF4E inhibitory protein 4E-BP1. We posited here that NCBP1 and DHX9/RHA (RHA) support a translation pathway of JUND RNA that is independent of mTOR. We present evidence from reciprocal immunoprecipitation experiments indicating that NCBP1 and RHA both are components of messenger ribonucleoproteins in several cell types. Moreover, tandem affinity and RT-quantitative PCR results revealed that JUND mRNA is a component of a previously unknown ribonucleoprotein complex. Results from the tandem IP indicated that another component of the JUND-containing ribonucleoprotein complex is NCBP3, a recently identified ortholog of NCBP2/CBP20. We also found that NCBP1, NCBP3, and RHA, but not NCBP2, are components of JUND-containing polysomes. Mutational analysis uncovered two dsRNA-binding domains of RHA that are necessary to tether JUND-NCBP1/NCBP3 to polysomes. We also found that JUND translation is unaffected by inhibition of mTOR, unless RHA was down-regulated by siRNA. These findings uncover a noncanonical cap-binding complex consisting of NCBP1/NCBP3 and RHA substitutes for the eukaryotic translation initiation factors 4E and 4G and activates mTOR-independent translation of the mRNA encoding the tumor suppressor JUND.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Sarah E Fritz
- Integrated Biomedical Science Graduate Program, Ohio State University, Columbus, Ohio 43210
| | - Bradley Seufzer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108 .,Integrated Biomedical Science Graduate Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
50
|
Shen C, Zhong Y, Huang X, Wang Y, Peng Y, Li K, Zhou B, Zhang L, Rao L. Associations between TAB2 gene polymorphisms and dilated cardiomyopathy in a Chinese population. Biomark Med 2020; 14:441-450. [PMID: 32270697 DOI: 10.2217/bmm-2019-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The present study aimed to investigate the role of TAB2 gene polymorphisms in dilated cardiomyopathy (DCM) susceptibility and prognosis in a Chinese population. Materials & methods: A total of 343 DCM patients and 451 controls were enrolled and had their blood genotyped. Survival analysis was evaluated with Kaplan-Meier curves and Cox regression analysis. Results: G carriers (AG/GG) and AG genotype of rs237028 had a higher DCM susceptibility as well as a worse DCM prognosis. Additionally, C carriers (CT/CC) of rs652921 and G carriers (TG/GG) of rs521845 had a higher DCM risk and CC homozygote of rs652921 had a worse DCM prognosis. These associations were still significant after adjustment for the Bonferroni correction. Conclusion: TAB2 gene polymorphisms were associated with DCM susceptibility and prognosis in the Chinese population.
Collapse
Affiliation(s)
- Can Shen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Zhong
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingming Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Peng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|