1
|
Porat J, Vakiloroayaei A, Remnant BM, Talebi M, Cargill T, Bayfield MA. Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem 2023; 299:105326. [PMID: 37805140 PMCID: PMC10652106 DOI: 10.1016/j.jbc.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
tRNAs undergo an extensive maturation process involving posttranscriptional modifications often associated with tRNA structural stability and promoting the native fold. Impaired posttranscriptional modification has been linked to human disease, likely through defects in translation, mitochondrial function, and increased susceptibility to degradation by various tRNA decay pathways. More recently, evidence has emerged that bacterial tRNA modification enzymes can act as tRNA chaperones to guide tRNA folding in a manner independent from catalytic activity. Here, we provide evidence that the fission yeast tRNA methyltransferase Trm1, which dimethylates nuclear- and mitochondrial-encoded tRNAs at G26, can also promote tRNA functionality in the absence of catalysis. We show that WT and catalytic-dead Trm1 are active in an in vivo tRNA-mediated suppression assay and possess RNA strand annealing and dissociation activity in vitro, similar to previously characterized RNA chaperones. Trm1 and the RNA chaperone La have previously been proposed to function synergistically in promoting tRNA maturation, yet we surprisingly demonstrate that La binding to nascent pre-tRNAs decreases Trm1 tRNA dimethylation in vivo and in vitro. Collectively, these results support the hypothesis for tRNA modification enzymes that combine catalytic and noncatalytic activities to promote tRNA maturation, as well as expand our understanding of how La function can influence tRNA modification.
Collapse
|
2
|
Foulquier N, Le Dantec C, Bettacchioli E, Jamin C, Alarcón‐Riquelme ME, Pers J. Machine Learning for the Identification of a Common Signature for Anti-SSA/Ro 60 Antibody Expression Across Autoimmune Diseases. Arthritis Rheumatol 2022; 74:1706-1719. [PMID: 35635731 PMCID: PMC9804576 DOI: 10.1002/art.42243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Anti-Ro autoantibodies are among the most frequently detected extractable nuclear antigen autoantibodies, mainly associated with primary Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), and undifferentiated connective tissue disease (UCTD). This study was undertaken to determine if there is a common signature for all patients expressing anti-Ro 60 autoantibodies regardless of their disease phenotype. METHODS Using high-throughput multiomics data collected from the cross-sectional cohort in the PRECISE Systemic Autoimmune Diseases (PRECISESADS) study Innovative Medicines Initiative (IMI) project (genetic, epigenomic, and transcriptomic data, combined with flow cytometry data, multiplexed cytokines, classic serology, and clinical data), we used machine learning to assess the integrated molecular profiling of 520 anti-Ro 60+ patients compared to 511 anti-Ro 60- patients with primary SS, patients with SLE, and patients with UCTD, and 279 healthy controls. RESULTS The selected clinical features for RNA-Seq, DNA methylation, and genome-wide association study data allowed for a clear distinction between anti-Ro 60+ and anti-Ro 60- patients. The different features selected using machine learning from the anti-Ro 60+ patients constituted specific signatures when compared to anti-Ro 60- patients and healthy controls. Remarkably, the transcript Z score of 3 genes (ATP10A, MX1, and PARP14), presenting with overexpression associated with hypomethylation and genetic variation and independently identified using the Boruta algorithm, was clearly higher in anti-Ro 60+ patients compared to anti-Ro 60- patients regardless of disease type. Our findings demonstrated that these signatures, enriched in interferon-stimulated genes, were also found in anti-Ro 60+ patients with rheumatoid arthritis and those with systemic sclerosis and remained stable over time and were not affected by treatment. CONCLUSION Anti-Ro 60+ patients present with a specific inflammatory signature regardless of their disease type, suggesting that a dual therapeutic approach targeting both Ro-associated RNAs and anti-Ro 60 autoantibodies should be considered.
Collapse
Affiliation(s)
- Nathan Foulquier
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Christelle Le Dantec
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Eleonore Bettacchioli
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Christophe Jamin
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERM, and University Hospital of BrestBrestFrance
| | | | - Jacques‐Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERM, and University Hospital of BrestBrestFrance
| |
Collapse
|
3
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
4
|
Porat J, Kothe U, Bayfield MA. Revisiting tRNA chaperones: New players in an ancient game. RNA (NEW YORK, N.Y.) 2021; 27:rna.078428.120. [PMID: 33593999 PMCID: PMC8051267 DOI: 10.1261/rna.078428.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
tRNAs undergo an extensive maturation process including post-transcriptional modifications that influence secondary and tertiary interactions. Precursor and mature tRNAs lacking key modifications are often recognized as aberrant and subsequently targeted for decay, illustrating the importance of modifications in promoting structural integrity. tRNAs also rely on tRNA chaperones to promote the folding of misfolded substrates into functional conformations. The best characterized tRNA chaperone is the La protein, which interacts with nascent RNA polymerase III transcripts to promote folding and offers protection from exonucleases. More recently, certain tRNA modification enzymes have also been demonstrated to possess tRNA folding activity distinct from their catalytic activity, suggesting that they may act as tRNA chaperones. In this review, we will discuss pioneering studies relating post-transcriptional modification to tRNA stability and decay pathways, present recent advances into the mechanism by which the RNA chaperone La assists pre-tRNA maturation, and summarize emerging research directions aimed at characterizing modification enzymes as tRNA chaperones. Together, these findings shed light on the importance of tRNA folding and how tRNA chaperones, in particular, increase the fraction of nascent pre-tRNAs that adopt a folded, functional conformation.
Collapse
|
5
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Basu R, Eichhorn CD, Cheng R, Peterson RD, Feigon J. Structure of S. pombe telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins. RNA Biol 2020; 18:1181-1192. [PMID: 33131423 DOI: 10.1080/15476286.2020.1836891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
La-related proteins 7 (LARP7) are a class of RNA chaperones that bind the 3' ends of RNA and are constitutively associated with their specific target RNAs. In metazoa, Larp7 binds to the long non-coding 7SK RNA as a core component of the 7SK RNP, a major regulator of eukaryotic transcription. In the ciliate Tetrahymena the LARP7 protein p65 is a component of telomerase, an essential ribonucleoprotein complex that maintains the telomeric DNA at eukaryotic chromosome ends. p65 is important for the ordered assembly of telomerase RNA (TER) with telomerase reverse transcriptase. Unexpectedly, Schizosaccharomyces pombe Pof8 was recently identified as a LARP7 protein and a core component of fission yeast telomerase essential for biogenesis. LARP7 proteins have a conserved N-terminal La motif and RRM1 (La module) and C-terminal RRM2 with specific RNA substrate recognition attributed to RRM2, first structurally characterized in p65 as an atypical RRM named xRRM. Here we present the X-ray crystal structure and NMR studies of S. pombe Pof8 RRM2. Sequence and structure comparison of Pof8 RRM2 to p65 and human Larp7 xRRMs reveals conserved features for RNA binding with the main variability in the length of the non-canonical helix α3. This study shows that Pof8 has conserved xRRM features, providing insight into TER recognition and the defining characteristics of the xRRM.
Collapse
Affiliation(s)
- Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Robert D Peterson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iga Kołodziejczak
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
8
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
11
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
12
|
Vakiloroayaei A, Shah NS, Oeffinger M, Bayfield MA. The RNA chaperone La promotes pre-tRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res 2017; 45:11341-11355. [PMID: 28977649 PMCID: PMC5737608 DOI: 10.1093/nar/gkx764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs have critical roles in biological processes, and RNA chaperones can promote their folding into the native shape required for their function. La proteins are a class of highly abundant RNA chaperones that contact pre-tRNAs and other RNA polymerase III transcripts via their common UUU-3′OH ends, as well as through less specific contacts associated with RNA chaperone activity. However, whether La proteins preferentially bind misfolded pre-tRNAs or instead engage all pre-tRNA substrates irrespective of their folding status is not known. La deletion in yeast is synthetically lethal when combined with the loss of tRNA modifications predicted to contribute to the native pre-tRNA fold, such as the N2, N2-dimethylation of G26 by the methyltransferase Trm1p. In this work, we identify G26 containing pre-tRNAs that misfold in the absence of Trm1p and/or La (Sla1p) in Schizosaccharomyces pombe cells, then test whether La preferentially associates with such tRNAs in vitro and in vivo. Our data suggest that La does not discriminate a native from misfolded RNA target, and highlights the potential challenges faced by RNA chaperones in preferentially binding defective substrates.
Collapse
Affiliation(s)
- Ana Vakiloroayaei
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Neha S Shah
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
13
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
14
|
Brown KA, Sharifi S, Hussain R, Donaldson L, Bayfield MA, Wilson DJ. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif. Biochemistry 2016; 55:7141-7150. [PMID: 27959512 DOI: 10.1021/acs.biochem.6b00995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
Collapse
Affiliation(s)
- Kerene A Brown
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
| | - Samel Sharifi
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Rawaa Hussain
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Logan Donaldson
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| |
Collapse
|
15
|
Hasler D, Meister G. From tRNA to miRNA: RNA-folding contributes to correct entry into noncoding RNA pathways. FEBS Lett 2016; 590:2354-63. [DOI: 10.1002/1873-3468.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR); Laboratory for RNA Biology; University of Regensburg; Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR); Laboratory for RNA Biology; University of Regensburg; Germany
| |
Collapse
|
16
|
Hasler D, Lehmann G, Murakawa Y, Klironomos F, Jakob L, Grässer FA, Rajewsky N, Landthaler M, Meister G. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Mol Cell 2016; 63:110-24. [PMID: 27345152 DOI: 10.1016/j.molcel.2016.05.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/13/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
The Lupus autoantigen La is an RNA-binding protein that stabilizes RNA polymerase III (Pol III) transcripts and supports RNA folding and has in addition been implicated in the mammalian microRNA (miRNA) pathway. Here, we have analyzed effects of La depletion on Argonaute (Ago)-bound small RNAs in human cells. We find that in the absence of La, distinct tRNA fragments are loaded into Ago proteins. Thus, La functions as gatekeeper ensuring correct tRNA maturation and protecting the miRNA pathway from potentially functional tRNA fragments. However, one specific isoleucin pre-tRNA produces both a functional tRNA and a miRNA even when La is present. We demonstrate that the fully complementary 5' leader and 3' trailer of the pre-tRNA-Ile form a double-stranded RNA molecule that has low affinity to La. Instead, Exportin-5 (Xpo5) recognizes it as miRNA precursor and transports it into the cytoplasm for Dicer processing and Ago loading.
Collapse
MESH Headings
- A549 Cells
- Argonaute Proteins/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Binding Sites
- DEAD-box RNA Helicases/metabolism
- HEK293 Cells
- HeLa Cells
- Hep G2 Cells
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Humans
- Karyopherins/metabolism
- MCF-7 Cells
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nucleic Acid Conformation
- Protein Binding
- RNA Interference
- RNA Polymerase III/metabolism
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Ile/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease III/metabolism
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Structure-Activity Relationship
- Transfection
- SS-B Antigen
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg 93053, Germany
| | - Gerhard Lehmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg 93053, Germany
| | - Yasuhiro Murakawa
- Laboratory for RNA Biology and Posttranscriptional Regulation, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Filippos Klironomos
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Leonhard Jakob
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg 93053, Germany
| | - Friedrich A Grässer
- Institute of Virology, Saarland University Medical School, Homburg/Saar 66421, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Markus Landthaler
- Laboratory for RNA Biology and Posttranscriptional Regulation, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg 93053, Germany.
| |
Collapse
|
17
|
Ruminski DJ, Watson PY, Mahen EM, Fedor MJ. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo. RNA (NEW YORK, N.Y.) 2016; 22:416-27. [PMID: 26759451 PMCID: PMC4748819 DOI: 10.1261/rna.055178.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/05/2015] [Indexed: 05/24/2023]
Abstract
RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo.
Collapse
Affiliation(s)
- Dana J Ruminski
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter Y Watson
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Elisabeth M Mahen
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Martha J Fedor
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
18
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
19
|
Kuehnert J, Sommer G, Zierk AW, Fedarovich A, Brock A, Fedarovich D, Heise T. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 2015; 43:581-94. [PMID: 25520193 PMCID: PMC4288197 DOI: 10.1093/nar/gku1309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.
Collapse
Affiliation(s)
- Julia Kuehnert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gunhild Sommer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Avery W Zierk
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Brock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzmitry Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tilman Heise
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
20
|
Hussain RH, Zawawi M, Bayfield MA. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res 2013; 41:8715-25. [PMID: 23887937 PMCID: PMC3794603 DOI: 10.1093/nar/gkt649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Collapse
Affiliation(s)
| | | | - Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
21
|
Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012; 2012:606195. [PMID: 23304190 PMCID: PMC3523155 DOI: 10.1155/2012/606195] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
Abstract
Anti-Ro/SSA antibodies are among the most frequently detected autoantibodies against extractable nuclear antigens and have been associated with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). Although the presence of these autoantibodies is one of the criteria for the diagnosis and classification of SS, they are also sometimes seen in other systemic autoimmune diseases. In the last few decades, the knowledge of the prevalence of anti-Ro/SSA antibodies in various autoimmune diseases and symptoms has been expanded, and the clinical importance of these antibodies is increasing. Nonetheless, the pathological role of the antibodies is still poorly understood. In this paper, we summarize the milestones of the anti-Ro/SSA autoantibody system and provide new insights into the association between the autoantibodies and the pathogenesis of autoimmune diseases.
Collapse
|
22
|
Ivanyi-Nagy R, Darlix JL. Reprint of: Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 169:448-57. [PMID: 23022255 PMCID: PMC7172194 DOI: 10.1016/j.virusres.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
23
|
Frohn A, Eberl HC, Stöhr J, Glasmacher E, Rüdel S, Heissmeyer V, Mann M, Meister G. Dicer-dependent and -independent Argonaute2 protein interaction networks in mammalian cells. Mol Cell Proteomics 2012; 11:1442-56. [PMID: 22918229 DOI: 10.1074/mcp.m112.017756] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Argonaute (Ago) proteins interact with small regulatory RNAs such as microRNAs (miRNAs) and facilitate gene-silencing processes. miRNAs guide Ago proteins to specific mRNAs leading to translational silencing or mRNA decay. In order to understand the mechanistic details of miRNA function, it is important to characterize Ago protein interactors. Although several proteomic studies have been performed, it is not clear how the Ago interactome changes on miRNA or mRNA binding. Here, we report the analysis of Ago protein interactions in miRNA-containing and miRNA-depleted cells. Using stable isotope labeling in cell culture in conjunction with Dicer knock out mouse embryonic fibroblasts, we identify proteins that interact with Ago2 in the presence or the absence of Dicer. In contrast to our current view, we find that Ago-mRNA interactions can also take place in the absence of miRNAs. Our proteomics approach provides a rich resource for further functional studies on the cellular roles of Ago proteins.
Collapse
Affiliation(s)
- Anne Frohn
- Laboratory of RNA Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ivanyi-Nagy R, Darlix JL. Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 167:226-35. [PMID: 22652509 PMCID: PMC7172325 DOI: 10.1016/j.virusres.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/17/2023]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Key Words
- cs, conserved sequence
- dar, downstream aug region
- db, dumbbell-like structure
- denv, dengue virus
- jev, japanese encephalitis virus
- orf, open reading frame
- rdrp, rna-dependent rna polymerase
- sfrna, subgenomic flavivirus rna
- tbev, tick-borne encephalitis virus
- uar, upstream aug region
- utr, untranslated region
- wnv, west nile virus
- yfv, yellow fever virus
- west nile virus
- core protein
- flaviviruses
- viral replication
- genome cyclization
- rna chaperoning
Collapse
Affiliation(s)
| | - Jean-Luc Darlix
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d’Italie, 69364 Lyon, France
| |
Collapse
|
25
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
26
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
27
|
Naeeni AR, Conte MR, Bayfield MA. RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J Biol Chem 2012; 287:5472-82. [PMID: 22203678 PMCID: PMC3285324 DOI: 10.1074/jbc.m111.276071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/23/2011] [Indexed: 02/05/2023] Open
Abstract
La proteins are conserved factors in eukaryotes that bind and protect the 3' trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3'OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3'OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets.
Collapse
Affiliation(s)
- Amir R. Naeeni
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| | - Maria R. Conte
- the Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Mark A. Bayfield
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| |
Collapse
|
28
|
Sommer G, Rossa C, Chi AC, Neville BW, Heise T. Implication of RNA-binding protein La in proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. PLoS One 2011; 6:e25402. [PMID: 22016766 PMCID: PMC3189910 DOI: 10.1371/journal.pone.0025402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/02/2011] [Indexed: 01/22/2023] Open
Abstract
The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of β-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Biochemistry and Molecular Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
29
|
Noguchi K, Ishitu Y, Takaku H. Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells. BMC Biotechnol 2011; 11:79. [PMID: 21781346 PMCID: PMC3151216 DOI: 10.1186/1472-6750-11-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
Background The group I intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene repair using trans-splicing. However, the ribozyme activity of a group I intron appears to be facilitated by RNA chaperones in vivo; therefore, the efficiency of self-splicing could be dependent on the structure around the insert site or the length of the sequence to be inserted. To better understand how ribozyme activity could be modulated in cultured mammalian cells, a group I intron was inserted into a short hairpin RNA (shRNA), and silencing of a reporter gene by the shRNA was estimated to reflect self-splicing activity in vivo. In addition, we appended a theophylline-binding aptamer to the ribozyme to investigate any potential effects caused by a trans-effector. Results shRNA-expression vectors in which the loop region of the shRNA was interrupted by an intron were constructed to target firefly luciferase mRNA. There was no remarkable toxicity of the shRNA-expression vectors in Cos cells, and the decrease in luciferase activity was measured as an index of the ribozyme splicing activity. In contrast, the expression of the shRNA through intron splicing was completely abolished in 293T cells, although the silencing induced by the shRNA-expressing vector alone was no different from that in the Cos cells. The splicing efficiency of the aptamer-appended intron also had implications for the potential of trans-factors to differentially promote self-splicing among cultured mammalian cells. Conclusions Silencing by shRNAs interrupted by a group I intron could be used to monitor self-splicing activity in cultured mammalian cells, and the efficiency of self-splicing appears to be affected by cell-type specific factors, demonstrating the potential effectiveness of a trans-effector.
Collapse
Affiliation(s)
- Kousei Noguchi
- Department of Life and Environmental Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | |
Collapse
|
30
|
Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci 2011; 124:2058-69. [PMID: 21610089 PMCID: PMC3104036 DOI: 10.1242/jcs.086561] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 01/02/2023] Open
Abstract
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular 'catch and release' mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors.
Collapse
Affiliation(s)
| | | | - Christo P. Christov
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Thomas Shafee
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Timothy J. Gardiner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
31
|
Iben JR, Epstein JA, Bayfield MA, Bruinsma MW, Hasson S, Bacikova D, Ahmad D, Rockwell D, Kittler ELW, Zapp ML, Maraia RJ. Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants. Nucleic Acids Res 2011; 39:4728-42. [PMID: 21317186 PMCID: PMC3113579 DOI: 10.1093/nar/gkr066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNASerUCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNASerUCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNASerUCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNASerUCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a ‘reference’ mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2010; 2011:532908. [PMID: 21234377 PMCID: PMC3017892 DOI: 10.1155/2011/532908] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studied in vitro and in vivo using oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here.
Collapse
|
33
|
Abstract
Many non-coding RNAs fold into complex three-dimensional structures, yet the self-assembly of RNA structure is hampered by mispairing, weak tertiary interactions, electrostatic barriers, and the frequent requirement that the 5' and 3' ends of the transcript interact. This rugged free energy landscape for RNA folding means that some RNA molecules in a population rapidly form their native structure, while many others become kinetically trapped in misfolded conformations. Transient binding of RNA chaperone proteins destabilize misfolded intermediates and lower the transition states between conformations, producing a smoother landscape that increases the rate of folding and the probability that a molecule will find the native structure. DEAD-box proteins couple the chemical potential of ATP hydrolysis with repetitive cycles of RNA binding and release, expanding the range of conditions under which they can refold RNA structures.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
34
|
Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 2010; 5:e13673. [PMID: 21060685 PMCID: PMC2965120 DOI: 10.1371/journal.pone.0013673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.
Collapse
Affiliation(s)
| | - Helen Chambers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
36
|
Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev 2009; 8:632-7. [DOI: 10.1016/j.autrev.2009.02.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 02/06/2009] [Indexed: 11/15/2022]
|
37
|
Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA (NEW YORK, N.Y.) 2009; 15:750-64. [PMID: 19299548 PMCID: PMC2673062 DOI: 10.1261/rna.1478709] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/22/2009] [Indexed: 05/24/2023]
Abstract
The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.
Collapse
|
38
|
Van den Bergh K, Hooijkaas H, Blockmans D, Westhovens R, Op De Beéck K, Verschueren P, Dufour D, van de Merwe JP, Fijak M, Klug J, Michiels G, Devogelaere B, De Smedt H, Derua R, Waelkens E, Blanckaert N, Bossuyt X. Heterogeneous Nuclear Ribonucleoprotein H1, a Novel Nuclear Autoantigen. Clin Chem 2009; 55:946-54. [DOI: 10.1373/clinchem.2008.115626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Serum samples from patients with autoimmune connective tissue diseases that show a finely speckled antinuclear antibody (ANA) on indirect immune-fluorescence often have antibodies against unknown nuclear target antigens. To search for such autoantigens we applied a proteomic approach using sera from patients with a high ANA titer (≥640) and finely speckled fluorescence but in whom no antibodies to extractable nuclear antigens (ENA) could be identified.
Methods: Using an immunoproteomics approach we identified heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1) as a novel nuclear target of autoantibody response.
Results: Recombinant rat hnRNP H1 reacted in Western blot analyses with 48% of 93 sera from patients with primary Sjögren syndrome and with 5.2% of 153 sera from patients with other connective tissue diseases (diseased controls). For comparison, the diagnostic sensitivity and specificity of anti–Sjögren syndrome A (SSA) antibodies for primary Sjögren syndrome in the same patient cohort were 88.2% and 76.3%, respectively. Interestingly, 5 of 11 primary Sjögren syndrome patients with no anti-SSA or anti-SSB antibodies had anti–hnRNP H1 antibodies. Anti–hnRNP H1 antibodies were preabsorbed by hnRNP H1, as demonstrated by indirect immunofluorescence. In an evaluation of the presence of anti–hnRNP H1 antibodies in 188 consecutive samples submitted to the clinical laboratory with positive ANA (titer ≥160), anti–hnRNP H1 antibodies were found in 3 of 7 (2 primary and 5 secondary) Sjögren syndrome patients and in 8.3% of the diseased controls.
Conclusions: HnRNP H1 is a newly discovered autoantigen that could become an additional diagnostic marker.
Collapse
Affiliation(s)
| | - Herbert Hooijkaas
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | | | | | | | - Diana Dufour
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Joop P van de Merwe
- Department of Immunology and Department of Internal Medicine, Erasmus Medical Center Rotterdam, the Netherlands
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Georges Michiels
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| | - Benoit Devogelaere
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Humbert De Smedt
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Rita Derua
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | - Etienne Waelkens
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | | | - Xavier Bossuyt
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| |
Collapse
|
39
|
Bayfield MA, Maraia RJ. Precursor-product discrimination by La protein during tRNA metabolism. Nat Struct Mol Biol 2009; 16:430-7. [PMID: 19287396 PMCID: PMC2666094 DOI: 10.1038/nsmb.1573] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 02/09/2009] [Indexed: 11/09/2022]
Abstract
La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. Although the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA binding beta-sheet surface of the RNA-recognition motif (RRM1) is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. Here we show that La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 beta-surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding, whereas the processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA, but not for the UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair an RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA.
Collapse
Affiliation(s)
| | - Richard J. Maraia
- To whom correspondence should be directed at: 31 Center Drive, Building 31, Room 2A25, Bethesda, MD 20892-2426, Phone: 301-402-3567, Fax: 301-480-6863, E-mail:
| |
Collapse
|
40
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Abstract
RNA folds to a myriad of three-dimensional structures and performs an equally diverse set of functions. The ability of RNA to fold and function in vivo is all the more remarkable because, in vitro, RNA has been shown to have a strong propensity to adopt misfolded, non-functional conformations. A principal factor underlying the dominance of RNA misfolding is that local RNA structure can be quite stable even in the absence of enforcing global tertiary structure. This property allows non-native structure to persist, and it also allows native structure to form and stabilize non-native contacts or non-native topology. In recent years it has become clear that one of the central reasons for the apparent disconnect between the capabilities of RNA in vivo and its in vitro folding properties is the presence of RNA chaperones, which facilitate conformational transitions of RNA and therefore mitigate the deleterious effects of RNA misfolding. Over the past two decades, it has been demonstrated that several classes of non-specific RNA binding proteins possess profound RNA chaperone activity in vitro and when overexpressed in vivo, and at least some of these proteins appear to function as chaperones in vivo. More recently, it has been shown that certain DExD/H-box proteins function as general chaperones to facilitate folding of group I and group II introns. These proteins are RNA-dependent ATPases and have RNA helicase activity, and are proposed to function by using energy from ATP binding and hydrolysis to disrupt RNA structure and/or to displace proteins from RNA-protein complexes. This review outlines experimental studies that have led to our current understanding of the range of misfolded RNA structures, the physical origins of RNA misfolding, and the functions and mechanisms of putative RNA chaperone proteins.
Collapse
Affiliation(s)
- Rick Russell
- Department of Chemistry and Biochemistry, The Institute For Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
42
|
Rajkowitsch L, Schroeder R. Dissecting RNA chaperone activity. RNA (NEW YORK, N.Y.) 2007; 13:2053-60. [PMID: 17901153 PMCID: PMC2080586 DOI: 10.1261/rna.671807] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/20/2007] [Indexed: 05/17/2023]
Abstract
Many RNA-binding proteins help RNAs to fold via their RNA chaperone activity. This term has been used widely without accounting for the diversity of the observed reactions, which include complex events like restructuring of misfolded catalytic RNAs, promoting the assembly of RNA-protein complexes, and mediating RNA-RNA interactions. Proteins display very diverse activities depending on the assays used to measure RNA chaperone activity. To classify proteins with this activity, we compared three exemplary proteins from E. coli, host factor Hfq, ribosomal protein S1, and the histone-like protein StpA for their abilities to promote two simple reactions, RNA annealing and strand displacement. The results of a FRET-based assay show that S1 promotes only RNA strand displacement while Hfq solely enhances RNA annealing. StpA, in contrast, is active in both reactions. To test whether the two activities can be assigned to different domains of the bipartite-structured StpA, we assayed the purified N- and C- terminal domains separately. While both domains are unable to promote RNA annealing, we can attribute the RNA strand displacement activity of StpA to the C-terminal domain. Correlating with their RNA annealing activities, only Hfq and full-length StpA display simultaneous binding of two RNAs, suggesting a matchmaker-like model for this activity. For StpA, this "RNA crowding" requires protein-protein interactions, since a dimerization-deficient StpA mutant lost the ability to bind and anneal two RNAs. These results underline the difference between the two reaction types, making it necessary to distinguish and classify proteins according to their specific RNA chaperone activities.
Collapse
|
43
|
Prenninger S, Schroeder R, Semrad K. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap. Nat Protoc 2007; 1:1273-7. [PMID: 17406411 DOI: 10.1038/nprot.2006.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here, we report an assay to evaluate the intracellular RNA chaperone activity of a protein of interest in vivo in bacterial cells. The method is based on self-splicing of the group I intron, which is located in the thymidylate synthase (td) gene of phage T4. A previously described td mutant (tdSH1) has significantly impaired splicing due to formation of splicing-incompetent alternative structures. In this procedure, overexpression of RNA chaperones in the presence of the td mutant SH1 is used to evaluate whether the putative RNA chaperone is able to rescue the incorrectly folded group I intron. The ability of the RNA chaperone to assist during folding is measured indirectly by assessing the difference between the splicing efficiencies of the td mutant in the absence and in the presence of the RNA chaperone. This procedure can be completed in 5-6 d, not including the time needed to clone the putative RNA chaperone.
Collapse
Affiliation(s)
- Silvia Prenninger
- Max F. Perutz Laboratories, University of Vienna, Dept. of Biochemistry, Dr. Bohrgasse 9/5, A-1030 Vienna, Austria
| | | | | |
Collapse
|
44
|
Ameres SL, Shcherbakov D, Nikonova E, Piendl W, Schroeder R, Semrad K. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition. Nucleic Acids Res 2007; 35:3752-63. [PMID: 17517772 PMCID: PMC1920258 DOI: 10.1093/nar/gkm318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing.
Collapse
Affiliation(s)
- Stefan L. Ameres
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry Shcherbakov
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Ekaterina Nikonova
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Wolfgang Piendl
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Renée Schroeder
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Katharina Semrad
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- *To whom correspondence should be addressed. +43-1-4277-54694+43-1-4277-9522
| |
Collapse
|
45
|
Fleurdépine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 2007; 35:3306-21. [PMID: 17459889 PMCID: PMC1904278 DOI: 10.1093/nar/gkm200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 01/28/2023] Open
Abstract
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3'-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.
Collapse
Affiliation(s)
- Sophie Fleurdépine
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Martine Devic
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
46
|
Backofen R, Bernhart SH, Flamm C, Fried C, Fritzsch G, Hackermüller J, Hertel J, Hofacker IL, Missal K, Mosig A, Prohaska SJ, Rose D, Stadler PF, Tanzer A, Washietl S, Will S. RNAs everywhere: genome-wide annotation of structured RNAs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:1-25. [PMID: 17171697 DOI: 10.1002/jez.b.21130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Starting with the discovery of microRNAs and the advent of genome-wide transcriptomics, non-protein-coding transcripts have moved from a fringe topic to a central field research in molecular biology. In this contribution we review the state of the art of "computational RNomics", i.e., the bioinformatics approaches to genome-wide RNA annotation. Instead of rehashing results from recently published surveys in detail, we focus here on the open problem in the field, namely (functional) annotation of the plethora of putative RNAs. A series of exploratory studies are used to provide non-trivial examples for the discussion of some of the difficulties.
Collapse
|
47
|
Croitoru V, Semrad K, Prenninger S, Rajkowitsch L, Vejen M, Laursen BS, Sperling-Petersen HU, Isaksson LA. RNA chaperone activity of translation initiation factor IF1. Biochimie 2006; 88:1875-82. [PMID: 16938378 DOI: 10.1016/j.biochi.2006.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Translation initiation factor IF1 is an indispensable protein for translation in prokaryotes. No clear function has been assigned to this factor so far. In this study we demonstrate an RNA chaperone activity of this protein both in vivo and in vitro. The chaperone assays are based on in vivo or in vitro splicing of the group I intron in the thymidylate synthase gene (td) from phage T4 and an in vitro RNA annealing assay. IF1 wild-type and mutant variants with single amino acid substitutions have been analyzed for RNA chaperone activity. Some of the IF1 mutant variants are more active as RNA chaperones than the wild-type. Furthermore, both wild-type IF1 and mutant variants bind with high affinity to RNA in a band-shift assay. It is suggested that the RNA chaperone activity of IF1 contributes to RNA rearrangements during the early phase of translation initiation.
Collapse
Affiliation(s)
- Victor Croitoru
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Karakasiliotis I, Chaudhry Y, Roberts LO, Goodfellow IG. Feline calicivirus replication: requirement for polypyrimidine tract-binding protein is temperature-dependent. J Gen Virol 2006; 87:3339-3347. [PMID: 17030868 DOI: 10.1099/vir.0.82153-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family Caliciviridae has been limited to in vitro binding analysis. In this study, Feline calicivirus (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5' sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 degrees C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 degrees C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.
Collapse
Affiliation(s)
- Ioannis Karakasiliotis
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Yasmin Chaudhry
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Lisa O Roberts
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ian G Goodfellow
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
49
|
Huang Y, Bayfield MA, Intine RV, Maraia RJ. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 2006; 13:611-8. [PMID: 16799560 DOI: 10.1038/nsmb1110] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/15/2006] [Indexed: 11/08/2022]
Abstract
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, US National Institutes of Health, 31 Center Dr., Rm. 2A25, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
50
|
Curry S, Conte MR. A terminal affair: 3'-end recognition by the human La protein. Trends Biochem Sci 2006; 31:303-5. [PMID: 16679019 DOI: 10.1016/j.tibs.2006.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/15/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The La protein, an autoantigen in rheumatic disease, orchestrates several aspects of the metabolism of noncoding RNA molecules. More than 20 years ago it was shown that La primarily binds the 3' UUU-OH tails of nascent transcripts of RNA polymerase III. A recent study now reveals how the structure of the amino-terminal domain of the human La protein achieves specific 3'-end recognition.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Faculty of Natural Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|